
Fast Image Motion Computation on an Embedded Computer

X. Lu and R. Manduchi
University of California, Santa Cruz

{xylu,manduchi}@soe.ucsc.edu

Abstract

Wireless, battery–powered camera networks are becom-
ing of interest for surveillance and monitoring applications.
The computational power of these platforms is often limited
in order to reduce energy consumption. Among the visual
tasks that the onboard processor may be required to per-
form, motion analysis is one of the most basic and relevant.
Knowledge of the direction of motion and velocity of a mov-
ing body may be used to take actions such as sending an
alarm or triggering other camera nodes in the network.

We present a fast algorithm for identifying moving ar-
eas in an image and computing the average velocity in such
areas. The algorithm, which was implemented and tested
on a Crossbow Stargate embedded platform, is comprised
of three stages. First, local differential measurements are
used to determine an initial labeling of image blocks. A
total least squares approach is proposed, with fast imple-
mentation inspired by the work of Benedetti and Perona.
Then, belief propagation is used to impose spatial coher-
ence and resolve aperture effect inherent in textureless ar-
eas. Finally, the velocity of the resulting blobs is estimated
via least squares regression. A detailed analysis of timing
and power consumption characteristics of this algorithm is
also presented.

1. Introduction

There is a growing interest in wireless networks of cam-
eras for surveillance and monitoring. These are ideal sys-
tems for impromptu security installations or when the area
to be monitored cannot be wired due to size, cost or other
ecological or cosmetic reasons. Designing a wireless net-
work poses a number of engineering challenges. In partic-
ular, if the system is battery–operated, power–aware strate-
gies must be implemented to increase the network lifetime.

Energy is consumed in a camera node for three main
tasks: sensing (i.e., image acquisition); processing; and
communications (via a radio link). A number of trade–offs
among these tasks is possible. For example, images may
just be transmitted as they are acquired. No energy is spent

Local motion analysis

Initial labeling

Final labeling

Velocity vectors

Motion blobs

Input frames

Label propagation

Connected components

Velocity computation

Figure 1. The general scheme of our algorithm.

for image processing, but the energy cost of communication
can be substantial. Onboard processing may reduce com-
munication cost by extracting only the relevant information.
For example, if nothing has changed or nothing is moving
in a monitored scene, there is probably nothing to report.
However, image processing may be (and often is) a compu-
tationally intense task. Hence, efficient and fast algorithms
should be employed in order to minimize the associated en-
ergy cost.

Scene change detection is often performed using back-
ground subtraction. This is a relatively simple approach,
which, however, fails in the case of unpredicted illumina-
tion changes or accidental camera motion. Another possi-
bility is to detect and compute the image motion between
two consecutive frames, taken at a short time interval. This
approach requires that two images (rather than one) are ac-
quired during a single duty cycle of the system, and assumes
that interesting events are associated with moving bodies
in the scene. Unlike background subtraction, however, this
procedure is immune from illumination changes and camera
motion, as long as these do not occur during the acquisition
of a frame pair. In addition, motion information can be used
to track a moving object across cameras.

In this paper we present an algorithm for fast motion
computation, specifically designed for a processor using

1

Figure 2. A Meerkats node. Visible are the Crossbow Stargate
board with an Orinoco Wi-Fi card and Logitech webcam, the bat-
tery (white), and the DC–DC voltage regulator.

fixed point arithmetic. The general scheme of the algorithm
is shown in Fig.1. Image patches are first analyzed indepen-
dently to derive an initial labeling. More specifically, each
image patch is labeled as textured (moving or still), textured
only along one direction (with or without a normal motion
component), untextured, or outlier. This analysis is based
on the computation of the rank of the structure matrix using
a fast technique inspired by previous work of Benedetti and
Perona [1]. Initial labeling is then propagated using Belief
Propagation, generating the final labeling, by which each
patch is labeled as moving, not moving, or outlier. Con-
nected components of moving patches are then determined,
and an average velocity vector is computed for each one of
them. Only this last step requires floating point computa-
tion.

We have implemented this algorithm in the nodes of
our wireless camera network, dubbedMeerkats. Meerkats
nodes are based on the Crossbow Stargate board, which has
an XScale PXA255 CPU running at 400 MHz, 32MB flash
memory and 64MB SDRAM. No floating point unit is avail-
able, hence the requirement for fixed point arithmetic pro-
cessing for efficiency. The Stargate board provides PCM-
CIA and Compact Flash connectors on the main board. It
also has a daughter board with Ethernet, USB and serial
connectors. As shown in Fig.2, we equipped each Stargate
with an Orinoco Gold 802.11b PCMCIA wireless card and a
Logitech QuickCam Pro 4000 webcam connected through
the USB, producing images at320 × 240 resolution. We
power the board with a customized 7.4 Volt, 1000mAh, 2
cell Li-Ion battery, and an external DC-DC switching regu-
lator to reduce voltage to 5 Volts. The board runs the Linux
OS (kernel 2.4.20).

This article is organized as follows. Sec.2 introduces out
local analysis algorithm to obtain the initial labeling. Label
propagation is described in Sec.3, where a number of ex-
perimental results are also discussed. A detail analysis of
timing and energy consumption associated with the imple-
mentation of this algorithm in a Meerkats node is presented
in Sec.4. Sec.5 has the conclusions.

2. Local Motion Analysis

The general assumption in motion computation is that
the brightnessI of a moving point in the image is con-
served. This is formalized by the well–known optical flow
equation:

∇IT v + It = 0 (1)

where∇I = (Ix, Iy)T andv = (vx, vy)t. The velocity vec-
tor v cannot be computed at a single point due to the rank
deficiency of system (1) (the so–calledaperture effectprob-
lem). One possible strategy for conditioning this problem
is to assume that all points within a small patch move by
the same motion. This hypothesis is at the basis of the least
squares approach of Tomasi and Kanade [9]:

vLS = argmin
v

∑

p

(

∇IT (p)v + It(p)
)2

(2)

where the sum extends over theN pixels of the considered
patch. We will represent (2) in matrix form for simplic-
ity’s sake, by stacking the values of∇IT (p) in the columns
of theN × 2 matrix A and the values ofIt(p) in the col-
umn vectorb. The least squares problem (2) can thus be
re-written as:

vLS = argmin
v

‖Av + b‖2 = arg min
v

(

vT Gv + 2vT c
)

(3)

whereG = AT A andc = AT b:

G =

[∑

p I2
x(p)

∑

p Ix(p)Iy(p)
∑

p Ix(p)Iy(p)
∑

p I2
y (p)

]

(4)

As pointed out in [9], the rank ofG determines whether
the patch is well textured (rank(G) = 2) or aperture effects
prevails (rank(G) < 2). Patches with rank(G) = 1 are
characterized by 1-D texture, and only the component of
the motion in the direction of the principal image gradient
can be estimated.

Another possibility for velocity estimation in a well–
textured patch is to use total least squares regression. In
this case, we minimize the following form1:

rTLS = argmin
r

∑

p

(

[∇IT (p)|It(p)]r
)2

, ‖r‖2 = 1 (5)

wherer is a 3-vector and[∇IT (p)|It(p)] is aN × 3 matrix
obtained by juxtaposing∇IT (p) andIt(p). Then,vTLS

x =
rTLS
1 /rTLS

3 andvTLS
y = rTLS

2 /rTLS
3 . Equation (5) can be rewritten

in matrix form as:

rTLS = argmin
r

rT Hr , ‖r‖2 = 1 (6)

1Before computing spatial/temporal derivatives, we smooththe images
with a simple and fast two–pass separable block filter.

whereH is the following symmetric positive semidefinite
matrix:

H = (7)

G

∑

p Ix(p)It(p)
∑

p Iy(p)It(p)
∑

p Ix(p)It(p)
∑

p Ix(p)It(p)
∑

p I2
t (p)

As well known, total least squares regression has the advan-
tage that errors in the dependent and independent variables
(or “data” and “observation” [4]) are given the same im-
portance. Total least squares was first employed for motion
flow computation in [11]. As pointed out by Haußecker and
Jähne [5], the spectrum ofH provides useful insight about
the structure of the problem. For the optical flow equation
(1) to be satisfied with the same value ofv by all points
in the patch, the spatio–temporal gradients ofI must be
contained in a plane containing the origin, and therefore
rank(H) ≤ 2. Thus, if rank(H) = 3, the patch behavior
is not well described by (1). In this situation we will say
that the patch is anoutlier. Haußecker and Jähne maintain
that the rank ofH is equal to 2 in the case of a moving tex-
tured patch, 1 for a patch with 1-D texture (equivalent to the
case rank(G) = 1 above), and 0 for a textureless patch. In
fact, there are two more situations that were not considered
in [5]. First, suppose that rank(H) = 2, which means that
the gradients(Ix, Iy, It) live in a plane. In this case, (1)
is satisfied unless the plane contains the axisIt, in which
case the spatial gradients(Ix, Iy) are confined to a line,
corresponding to the case rank(G) = 1 above. The opti-
cal flow constraint is not satisfied in this case, and therefore
this patch should be labeled as outlier. Likewise, the condi-
tion rank(H) = 1, which signifies that the spatio-temporal
gradients live in a line, leads to two different possibilities.
The optical flow equation is satisfied unless this line coin-
cides with theIt axis, corresponding to the case of a tex-
tureless patch (rank(G) = 0) that changes its brightness
due, for example, to noise or illumination variations. Thus,
this patch should be labeled as outlier. These additional two
conditions must be taken into account for accurate motion
analysis.

We formalize the above reasoning in the block scheme
of Fig. 3(a), which exploits the observation that rank(H) is
equal to either rank(G) or to rank(G) + 1. Based on this
algorithm, a patch may be labeled into one of the follow-
ing categories: Textured, satisfying (1); Aperture Effect (1–
D, meaning rank(G) = 1); Aperture Effect (Flat, meaning
rank(G) = 0); Outlier. The velocity vector for a Textured
patch, or its projection onto the dominant spatial gradient
for an Aperture Effect (1-D) patch, can be computed by de-
termining the null space ofH .

rank(G) = 0 ?

YES

NO

rank(G) = 1 ?

NO

rank(H) = 0 ?

YES

NO

Aperture Effect
(Flat)

Outlier

rank(H) = 2 ?

YES

NO

rank(H) = 1 ?

YESYES

NO

Outlier

Outlier

Aperture Effect
(1-D)

Textured

(a)

FG(δ) > 0 ,
G11 < 0 ?

YES

NO

Trace(H) < δ ?
YES

NO

FG(δ) < 0 ?

NO

FH(δ) > 0 ?

YES

NO

Aperture Effect
(Flat)

Aperture Effect
(Flat)

Outlier

FH(δ) > 0 ?

YES

NO

FH(δ) < 0 ?

YESYES

NO

Outlier

Outlier

Aperture Effect
(1-D)

Textured

Determine scaling
coefficient k

Scaling:
δ=kδ, H=kH

(b)
Figure 3. The block scheme of the algorithm to determine the ini-
tial labeling of a patch (a) and its implementation (b).

2.1. Fast Computation of Matrix Rank

Estimating the rank of a matrix with noisy data is usually
performed using SVD (which in this case is equivalent to
eigenvalues analysis). Letλ1 ≤ λ2 ≤ λ3 be the eigenvalues
of H . The “numerical rank” ofH (rank(H)) is the number
of the eigenvalues that are larger than a threshold,δ [4].

Unfortunately, direct eigenvalue computation requires
finding the roots of a polynomial, which is computation-
ally demanding using fixed point arithmetic. Benedetti and
Perona [1] proposed an elegant method to estimate the rank

0
λ1

λ2

λ3

FH(λ)

FG(λ)

δλ1
G

H

H

Hλ2
G

rank(G)=0rank(G)=1rank(G)=2

rank(H)=3 rank(H)=2 rank(H)=1 rank(H
)=

0

Figure 4. The characteristic polynomialsFG(λ) (red) andF̄H(λ)
(black). The choice of the thresholdδ determines the numerical
rank ofG and ofH .

of G, by comparing its eigenvalues with a threshold without
explicitly computing them. We extend this approach to our
case in the following.

Consider the characteristic polynomialsFG(λ) =
det(G − λI2) andFH(λ) = det(H − λI3), whereIn is
the n × n identity matrix. FG(λ) (FH(λ)) is a quadratic
(cubic) polynomial, with two (three) positive roots. In addi-
tion, FG(0) ≥ 0 andFH(0) ≥ 0. It can also be shown that
the eigenvalues ofG andH are interleaved. Fig.4 shows
an example ofFG(λ) andFH(λ).

In [1] it is shown that:

• rank(G) = 0 iff FG(δ) > 0 andG11 < 0

• rank(G) = 1 iff FG(δ) < 0

• rank(G) = 2 iff FG(δ) > 0 andG11 > 0

Let us recall that rank(H) is equal to rank(G) or rank(G)+
1. A glance at Fig.4 will convince the reader that this
relationship holds also for numerical ranks. Hence, given
rank(G), rank(H) is determined by the sign ofFH(δ). For
example, in the case of Fig.4, rank(G) = 1, and thus
rank(H) = 1 becauseFH(δ) > 0. In our implementation,
we choseδ = N · 200, whereN is the number of pixels in
each patch.

A quick check for patches with rank(H) = 0 can be
done by comparing the trace ofH with a threshold. The
trace ofH is equal to the sum of its (positive) eigenvalues,
hence, if trace(H) < δ, we are guaranteed thatλ3 < δ.
Patches that don’t pass this check go through the test proce-
dure described above. This strategy is very efficient in situ-
ations with many textureless patches (e.g., when the camera
is facing a wall with solid color).

2.2. Avoiding Overflow

Since our implementation uses 32-bit fixed point arith-
metic, it is important to correctly dimension and resize the
quantities involved in the computation. We start with a 8

bit per pixel grey level and use windows of sizes11 × 11.
Hence, each entry inH uses up to⌈log2 121⌉ + 17 = 24
bits (no re-scaling is necessary here). We use the “integral
image” method [10] to avoid duplicate operations when an-
alyzing overlapping blocks. In order to avoid overflow, inte-
gral images are computed over strips with height of 64 pix-
els. If the strip width isNw pixels, the accumulated values
in the integral image can occupy up to⌈log2 64Nw⌉+17 ≤
⌈log2 Nw⌉+ 23. Hence, as long asNw is less than or equal
to 512, the accumulated values in the strip fit into 32-bit
words. We use images of size240 × 320, with each strips
formed by 64 full image rows. The case of patches strad-
dling across two strips requires special handling which in-
volves a few additional sums.

The entries ofH may have to be rescaled before com-
putingFG(δ) andFH(δ). It is easy to show that, in order
to avoid overflow while computingFH(δ), it is sufficient
that each entries ofH as well asδ use no more than 10 bits.
This can be achieved by suitable bit-shifting on a patch-by-
patch basis. For consistency, we use the same re-scaling for
computingFG(δ) andFH(δ).

2.3. Velocity Thresholding

The next step is to determine whether each patch labeled
as Textured or Aperture Effect (1-D) is moving or still. Di-
rect velocity computation using the eigenvectors ofH as
in [5] requires floating point operations that are computa-
tionally intensive. Note, however, that at this stage we are
not interested in finding the actual velocity of a patch, but
only whether it is moving or not (i.e., whether its velocity is
larger than a certain threshold). This can be achieved effi-
ciently based on the least squares approach of (3). The least
squares velocity estimate for a Textured block is:

(

vLS
x

vLS
y

)

= −G−1c = (8)

=
−1

H1,1H2,2 − H2
1,2

·

(

H2,2H1,3 − H1,2H2,3

H1,1H2,3 − H1,2H1,3

)

Given a thresholdγ, we can check whether both compo-
nents ofvLS are smaller than it by performing the following
tests:

− γ(H1,1H2,2 − H2
1,2) < (H2,2H1,3 − H1,2H2,3) (9)

−γ(H1,1H2,2 − H2
1,2) < (H1,1H2,3 − H1,2H1,3)

To avoid overflow, the factors in the expressions above
should be rescaled by bit-shifting to a maximum size of 16
bits. We setγ = 0.25 pixels/frame in our experiments.

For what concerns patches marked as Aperture Effect (1-
D), it is easy to see that the normal component of the veloc-
ity has magnitude equal to:

vLS
⊥ =

|H1,3|
√

H2
1,1 + H2

1,2

(10)

Consequently, in this case we only need to perform the fol-
lowing test:

γ2(H2
1,1 + H2

1,2) < H2
1,3 (11)

At the end of this local analysis stage, each image patch is
labeled into one of six possible categories:

• T0: A textured patch (still);

• T1: A textured patch (moving);

• AE0: A patch with 1-D texture (generating aperture
effect) with no normal motion;

• AE1: A patch with 1-D texture and normal motion;

• AEf: A textureless (“flat”) patch;

• OL: A patch that does not satisfy the optical flow equa-
tion (1) (“outlier”).

Note that we do not consider at this point (and in fact, never
computed) the actual velocity vector at each patch.

Some examples of initial labeling are shown in Figs.5-6.
Local analysis was performed on11× 11 pixel overlapping
patches centered on a subgrid of the original image (one
patch every4 × 4 pixels, totaling78 × 58 patches). Note
that most patches in the moving areas were labeled as AE0
or AE1, due to poor image resolution.

In order to appreciate the role of the two conditions on
the rank ofG mentioned in Sec.2 and not considered in [5],
we present an extreme case with a person abruptly “appear-
ing” in the scene in Fig.7. Our algorithm correctly inter-
prets the corresponding image area as an outlier. However,
if only the rank ofH is considered as in Fig.7(d) (neglect-
ing the rank ofG), the result is grossly incorrect, with most
patches been labeled as AE1. A similarly incorrect result
is obtained using the algorithm of Haußecker and Jähne [5]
(Fig.7(d)). Let us remark that the ability to robustly identify
outlier patches is important for motion analysis. There are
many situations (occlusions, abrupt change of brightness,
moving object that are too close to the camera) in which the
optical flow constraint (1) is not satisfied. Failure to detect
these situations may lead to gross errors in the estimated
motion.

3. Label Propagation

Different labels convey different levels of information
and confidence based on local analysis. Patches of type T0
or T1 can be used as “anchor points” for motion informa-
tion propagation, since they have enough texture and satisfy
equation (1) to an acceptable degree. A patch of type AE1
conveys the same motion information as a T1 one (the block
was seemingly moving). A patch of type AE0, however, is
somewhat different from a T0 one in that there is a (small)
chance that the former was actually moving, in a direction

orthogonal to the dominant spatial gradient. A patch of type
AEf conveys no information about its motion: it could be
moving or not, but local analysis is not going to reveal it.
Finally, a patch of type OL represents an “anomaly” with
respect to our model.

Based on this labeling, we would like to create a new
labeling into a reduced set of categories:

• M0: A still patch;

• M1: A moving patch;

• OL: An outlier patch;

We will do this by exploiting spatial coherence under the be-
lief propagation (BP) framework. The basic concept is that
a patch whose motion characteristics have been estimated
with good confidence (e.g., T0) should propagate motion
information to nearby patches with lower confidence (e.g.,
AEf). This is particularly important to “fill up” textureless
areas.

Loopy belief propagation [12] has been used in recent
years for stereo [7], image restoration [8], motion com-
putation [3], and shape matching [2]. The goal is to esti-
mate the unobservable labeling of a graph (in this case, the
patch grid, with 4–connectivity) from site–based observa-
tions, hypothesizing an underlying generative model. The
assumption is that labels vary smoothly across sites, except
for a limited number of possibly abrupt variations. Borrow-
ing the notation from [3], we define the energy of a given
labelingl(p) over the sites (nodes)p as:

E =
∑

(p,q)

V (l(p), l(q)) +
∑

p

D(l(p)|o(p)) (12)

where (p, q) are neighboring sites. The function
V (l(p), l(q)) is the discontinuity cost, that is the cost of
assigning different labels to neighboring sites. The term
D(l(p)|o(p)) (data cost) quintifies the cost of assigning la-
bel l to sitep given that the observation waso. In our case,
the observations are the original labels assigned by local
analysis.

The BP algorithm seeks to find the labeling that mini-
mizes energy (12) via an iterative mechanism of message
exchange. At timet, a sitep sends messages to all of its
neighbors. Each message is in fact a vector ofM values,
whereM is the number of labels (in our case,M = 3).
Using the max–product formulation, thei–th message com-
ponent from nodep to nodeq is computed as follows:

mt
i(p, q) = min

j

(

V (lj , li) + ht−1
j (p, q)

)

(13)

where:

ht−1
j (p, q) = D(lj |o(p)) +

∑

s∈N (p)\q

mt−1
j (p, q) (14)

N (p) \ q represents the set of neighbors ofp other thanq.
Thebeliefat pixelp at timet is equal to :

bt
p(j) = D(lj |o(p)) +

∑

s∈N (p)

mt
s,p(j) (15)

At convergence, the maximizer ofbt
p(j) is the label index

assigned top.
Thus, at each each timet, 4M = 12 messages must be

computed by each site. We use the Potts model for the dis-
continuity cost, withV (li, lj) = d > 0 if li = lj , and 0 oth-
erwise (d=3 in our implementation). As noted by Felzen-
szwalb and Huttenlocher [3], in this case the minimization
in (13) can be expressed as:

mt
pq(i) = min

(

ht−1
pq (i), min

j
(ht−1

pq (j)) + d

)

(16)

This formulation reduces the number of comparisons in-
volved in message formation.

In order to avoid possible overflow due to accumulation
of messages in (14), we modify (16) by “normalizing” the
messages from one node to another, i.e. by removing a con-
stant so that the smallest message is equal to 0 (and conse-
quently, the largest message is≤ d). In other words, the
messages actually exchanged are:

m̄t
pq(i) = min

(

ht−1
pq (i) − min

j
(ht−1

pq (j)), d

)

(17)

It is easy to see that the maximizer of the belief (15) does
not change after message normalization. In order to speed
up computation, we use the the multiscale implementation
of BP proposed in [3]. Two iterations of BP per level are
performed starting from the top level of a 5–level pyramid,
except for the last level (comprising all image patches), in
which case 5 iterations are performed.

In order to assign meaningful data costs, we should re-
call the meaning of the labels assigned in the previous stage.
As a general rule, patches that were not originally labeled
as outliers (OL) should have a very high cost of being trans-
formed into outliers. Patches that were labeled as moving
with a high degree of confidence (T1 and AE1) should be
assigned a relatively high cost of switching to not moving
(M0). The final assignment of a textureless patch (AEf)
should, in principle, be completely dependent on the mes-
sages it receives from its neighbors. However, we no-
ticed empirically that assigning a higher cost to the tran-
sition AEf→M1 than to AEf→M0 produces better results,
partly because most of the image patches are expected to be
still. Finally, an AE0 patch (which has no normal velocity)
should be assigned a higher cost to be transformed into a
moving (M1) than a still (M0) patch. Tab.3 translates these
considerations into data cost assignments over a small set
of parameters (mid1 = 1; mid2 = 8; high = 50). These

D(l|o) l=M0 l=M1 l=OL
o=T0 0 mid2 high
o=T1 mid2 0 high

o=AE0 0 mid1 high
o=AE1 mid2 0 high
o=AEf 0 mid1 high
o=OL mid2 mid2 0

Table 1. The matrix of data cost valuesD(l|o). We have used the
following parameters in our implementation: mid1 = 1; mid2 =
8; high = 50. The discontinuity costd was set to 3.

values have been assigned empirically, with trial-and-error
adjustments, and work reasonably well in our experiments.
Some results of final labeling are shown in Figs.5-6. For
each connected component of patches marked as M1, a ve-
locity vector is estimated using the least squares regression
of (3). Since only few connected components are usually
present, we can afford to use floating point arithmetic for
this computation. Although the results are for the most part
satisfactory, there is some room for improvement. For ex-
ample, moving surfaces that are too close to the camera are
often labeled as outliers (e.g. Fig.5(c.1-2)). Another prob-
lem is that sometime textureless moving areas are labeled
as still, because of insufficient label propagation. This can
be improved somewhat by reducing the costD(M1|AEf), at
the risk, however, of excessive motion propagating. For ex-
ample, Fig.7(f) shows the final labeling obtained by setting
D(M1|AEf) = 0. Comparing with Fig.5(c.2), one notices
that a large portion of the still background has been labeled
as moving. Finally, when a moving object occludes an-
other object moving in a different direction, it may happen
that a single connected components of M1 patches strad-
dles across the two moving areas. In this case, the velocity
vector regressed over this connected component is incorrect
(see the topmost component in Fig.6(c.2)).

4. Timing and Energy Considerations

An imaging duty cycle in a typical surveillance appli-
cation of the Meerkats network includes opening the USB
device (camera), taking the two images, closing the device,
and processing the images2. Using thetime command in
Linux, we determined that the total time elapsed during a
duty cycle (invoked as a script) is 1.2 s on average. For
comparison, acquiring two images (without processing) re-
quires 520 ms. The difference (680 ms) represents the time
required for processing. Further analysis showed that initial
labeling based on local analysis takes 70% of the processing
time (with BP iterations using the remaining 30%).

2A full duty cycle would probably also include loading/removing the
appropriate module in/from the kernel, thereby powering on/off the cam-
era. These operations consume a considerable amount of energy [6].

(a.1) (a.2)

(b.1) (b.2)

(c.1) (c.2)
Figure 5. Motion computation experiments. (a.1),(b.1): First im-
age in the pair. (a.2),(b.2): Initial labeling based on local analysis.
Yellow: AEf; Green: AE0; Magenta: AE1; Cyan: T0; Red: T1;
Blue: OL. (a.3),(b.3): Final labeling. Yellow: M0; Red: M1;Blue:
OL. For each connected component of blocks labeled as M1, the
velocity vector (multiplied by a constant factor) is shown with an
arrow.

These numbers alone, however, are not sufficient to char-
acterize the energy cost of an image acquisition/processing
duty cycle. Ideally, the CPU would be in idle state until
the beginning of the duty cycle, and then switch back to
idle as soon as the cycle is over. Note, however, that it is
not possible to control this state switch from the application
(the control is operated by the OS). In addition, other OS
tasks may take place that increase the effective processing
time. In order to get a better understanding of the energy
issues involved in a duty cycle, we performed direct mea-
surements of the current drawn by the board during as a
function of time. For this purpose, we used an HP 34001A
digital multimeter providing a reading rate of 60 Hz. Dur-
ing this analysis, the board was powered at 5.4 Volts by an
HP E3631A power supply. Fig.8(a) shows the time profile
of current drawn during a duty cycle comprising only acqui-
sition of two images (no processing). Note that the current
drawn during idle state (before and after the duty cycle) is
about 345 mA. The duration of the “effective” duty cycle
(during which time the current drawn is considerably higher

(a.1) (a.2)

(b.1) (b.2)

(c.1) (c.2)
Figure 6. See caption of Fig.5.

than during idle state) is 0.7 s. The incremental charge
drawn (i.e. the integral over time of the additional current
drawn during the duty cycle with respect to idle state cur-
rent) is 0.06 C (Coulomb). When motion analysis using our
algorithm is performed (Fig.8(b)), the duration of the ef-
fective duty cycle is 1.61 s and the incremental charge is
0.22 C. We thus maintain that our processing has an effec-
tive duration of 1.61-0.7=0.91 s, and requires an additional
charge of 0.22-0.06=0.16 C (corresponding to an energy of
0.16 · 5.4=0.86 J). This quantitative analysis is important
for the determination of the energy consumption over a cer-
tain period of time (and therefore node lifetime for a given
battery charge) under fixed duty cycle policy.

5. Conclusions

We have presented an algorithm for fast velocity compu-
tation of moving areas in a scene, and discussed its imple-
mentation using fixed point arithmetic in an ARM–based
embedded computer. This algorithm proceeds by first la-
beling individual image patches according to their spatial-
temporal structure, and then propagating motion informa-
tion using Belief Propagation. Floating point operations are
only required at the end for estimating the velocity of a very
small number of moving image blobs. In addition to algo-
rithm description and experimental tests, we have provided

(a) (b)

(c) (d)

(e) (f)
Figure 7. (a),(b): Pair of images for motion computation. (c) Ini-
tial labeling using our algorithm (see caption of Fig.5 for color
codes). The area where a person “appeared” is correctly labeled
as outlier (OL). (d) Initial labeling using onlyrank(H) (neglect-
ing rank(G)). (e) Initial labeling using the method of Haußecker
and Jähne [5]. (f) Final labeling for the case of Fig.5, with
D(M1|AEf) = 0.

14.5 15 15.5 16 16.5 17
0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

Time (s)

C
ur

re
nt

 (
A

)

∆T = 0.70 s
∆C = 0.06 C

14.5 15 15.5 16 16.5 17
0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

Time (s)

C
ur

re
nt

 (
A

)

∆T = 1.61 s
∆C = 0.22 C

(a) (b)
Figure 8. The current drawn during a duty cycle of a Meerkats
node. (a): A duty cycle comprising only acquisition of two frames.
(b) A duty cycle comprising acquisition of two frames and mo-
tion computation.∆T represents the duration of the interval with
higher current drawn than in the idle state.∆C represents the ad-
ditional (with respect to the idle state) charge (in Coulomb) drawn
during this period.

a detailed timing and energy consumption analysis. This al-
gorithm is currently used in our Meerkats camera network
for wide area surveillance.

Two main improvements to the current algorithm are

currently being investigated. The first one regards adding
the option of multiscale (pyramidal) motion analysis. This
would allow for estimation of velocity of bodies at different
distances from the camera. Our current system fails when
bodies are too close to the camera, due to large image dis-
placement between the two frames (and therefore incorrect
time derivative computation). The second improvement re-
gards the segmentation into moving “blobs” for final veloc-
ity computation. Fig.6(c.3) shows the shortcomings of the
current method. As pointed out earlier, the topmost blob
straddles across two differently moving areas. At the same
time, several blobs have been identified for the same mov-
ing body, which complicates scene understanding. Further
research will be needed to devise a more robust and effec-
tive mechanism for splitting and merging moving blobs in a
more meaningful way.

References

[1] A. Benedetti and P. Perona. Real-time 2-d feature detection
on a reconfigurable computer. InCVPR98, pages 586–593,
1998.2, 3, 4

[2] J. Coughlan and S. Ferreira. Finding deformable shapes us-
ing loopy belief propagation. InECCV02, page III: 453 ff.,
2002.5

[3] P. Felzenszwalb and D. Huttenlocher. Efficient belief propa-
gation for early vision. InCVPR04, pages I: 261–268, 2004.
5, 6

[4] G. Golub and C. V. Loan.Matrix Computations. Johns Hop-
kins, 1989.3

[5] H. Haußecker and B. Jähne. A tensor approach for precise
computation of dense displacement vector fields. InDAGM-
Symposium, 1997.3, 4, 5, 8

[6] C. Margi, V. Petkov, K. Obraczka, and R. Manduchi. Char-
acterizing energy consumption in a visual sensor network
testbed. In2nd Int. IEEE/Create-Net Conf. on Testbeds and
Research Infrastructures for the Development of Networks
and Communities, 2006.6

[7] J. Sun, N. Zheng, and H. Shum. Stereo matching using belief
propagation.PAMI, 25(7):787–800, July 2003.5

[8] K. Taaka, J. Inoue, and D. Titteringron. Loopy belief prop-
agation and probabilistic image processing. InWorkshop on
Neural Networks for Signal Processing, 2003.5

[9] C. Tomasi and T. Kanade. Detection and tracking of point
features. Technical Report CMU-CS-91-132, Carnegie Mel-
lon University, 1991.2

[10] P. Viola and M. Jones. Robust real-time face detection.In
ICCV01, page II: 747, 2001.4

[11] J. Weber and J. Malik. Robust computation of optical-flow
in a multiscale differential framework.IJCV, 14(1):67–81,
January 1995.3

[12] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief
propagation and its generalizations. Technical Report TR-
2001-22, MERL, 2002.5

