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Abstract—The practice of superimposing the fields of a frame is applied
in various fields, for example, thermographic and biomedical imaging.
The pictures obtained in this way, which are termed composite frames,
are severely degraded if the scene’s objects are not perfectly still. The
restoration of composite frames affected by motion-induced blurring
requires the ability to estimate the field displacement from composite
frames. The frequency domain analysis of composite frames proposed
in this work suggests a displacement estimation technique of a phase-
correlation type that can be applied to composite frames.

I. INTRODUCTION

Several imaging techniques produce their pictures by superimpos-
ing the two fields of a frame of a sequence scanned by a camera
operating with an interlace ratio of 2:1. Thermograms are a typical
example of this. Other equipment that is also used for computerized
medical images uses the idea of superimposing the fields of a frame.
In the following, we will refer to the images obtained in this way
as composite frames.

Anybody who has ever taken a picture of a scene displayed on a
television set may well have experienced a typical “staircase” effect
at the edges of moving objects [1]. Such a visual effect is due to the
fact that the edges of a moving object appear at close but different
positions in the succeeding fields of a television sequence.

Composite frames have been developed for the recording of still
scenes. If the scene taken (or the camera) is not perfectly still, as often
occurs, the edge disalignment on succeeding fields becomes a rather
noticeable source of visual quality degradation. Image restoration
procedures for composite frames must be able to cope with this kind
of motion-induced blurring.

With respect to motion effects, several techniques exist (1], [2] for
restoring pictures derived from sequences supported by orthogonal
(spatio-temporal) lattices [3]. The restoration of composite frames,
however, must take into account the interlaced nature of the spatio-
temporal lattice from which the picture is obtained. The special
features of line interlacing were first recognized in p. 604 of [1].

This work examines the structure of composite frames in the
frequency domain. Such an analysis is instructive as it reveals a
spectral regularity that suggests the possibility of developing a phase-
correlation type technique [7] for estimating the object’s displacement
in consecutive fields. An estimate of displacement can be used in
order to realign the fields with the object’s position in the first field.
Such an operation may be seen as a special case of the technique
commonly known as “motion-compensated deinterlacing” (see for
instance [4], [5]). Unlike the algorithms commonly employed in the
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area of television and computer vision, the algorithm proposed is
capable of measuring the displacement within one single frame (i.e.,
exploiting the information provided by only two succeeding fields).
Thus, it can be used in cases (e.g., biomedical imagery) where only
one image frame is available. As the application example shows, this
simple motion deblurring method is remarkably effective.

The second section of this work analizes composite frames relative
to the 2:1 interlace ratio in the frequency domain. Section III
presents the displacement measurement technique and the results of
its application to the motion-compensated restoration of composite
frames.

. SPECTRAL ANALYSIS OF COMPOSITE FRAMES OF MOVING IMAGES

A. Spectral Characteristics of Composite Frames

Consider a 2:1 interlaced scanning system: the field period T and
the frame period Tq (clearly Tq = 2TF). Let A, be the interline
distance in a frame (e.g., on the focal plane), and take the distance
between two consecutive pixels of a line as A;. Let u.(z,y,t) be the
luminance intensity function on the focal plane (or the radiometric
intensity function for thermographic systems). The sampled version of
uc(z,y,t) will be denoted as u(IA.,mAy, nTr); it is only defined
for values of m and n that are both even or both odd (i.e. for
(m - n) = 0meod 2),

It is well known [3] that the Fourier transform of u({A;, mA,,
nTr), which is denoted U(k,,ky, f), is related to the Fourier
transform Ue(ky, ky, f) of uc(z,y,t) as
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where sum indexes m and n are either both even or both odd.
Given integer n, signal
un(lAz,mAy)
u(lAz,mA,,2nTF) evenm
= JA,meZ
v(lAz,mA,,(2n+1)Tr) oddm
2

will be referred to as the nth composite frame or, in the case of
thermographic imagery, as the nth thermogram. This section derives
the Fourier transform Uy, (kz, ky) of un(IAz,mA,) as a function
of Uc(kz,ky, f). Such a result is instrumental for the motion-
compensated restoration procedure of the next section.

Let us introduce signal

#(10z, mAy, nTQ) = un (1A, mA,) 3)

which is formed by the composite frames sequence. Signal (3) can

be rewritten as
1 —_— e]xm

2
+u(lAz,mA,, (2n+ 1)TF)

a(lAz, mAy,nTy) = u(lA,,mA,,2nTF) -
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The Fourier transform of (4) is
U(kz, ky, f)
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By comparing (1) with (5), one can see that although U (k., ky, f)
is obtained by the periodic repetition of Uc.(k., ky, f) on the points
of lattice

1
2

I m
{A’QA T,lmnEZ(m—n) 0mod2} 6)
U (kz, ky, f) is obtained by the periodic repetition of Ue(kz, ky, f)
on the points of lattice

{Alr’ZzyT lmnEZ} (@)
weighted by function [(1+4 (=1)"*"e’™/7Q)/2].

It is worth noticing that since e’™/7@ s periodic with period equal
to 2/Tq, expression (5) is periodic along f with period equal to
1/Tq. This is consistent with the fact that 2(IA;,mA,,nTg) is
sampled along the temporal axis with sampling period equal to Tgq.

The expression of Un(k.,ky) can be obtained by using the
integration property of the Fourier transform on (3), namely

1/T,
Un(ka ky) = /
0

For the sake of simplicity, in the following, we will refer to the first
composite frame of the sequence, i.e., to n = 0.

Q . _
¥l Uk, ky, f) df. ®

B. The Global Translation Case
Consider a case of global translation, in which each point of the
_focal plane image moves with velocity v = (v, = 75, vy = -TJFL) R
ie.
uc(‘T’y’t) = u,(av— vIt’y—vyt)' (9)

As is well known, the relationship between the Fourier transforms
Ue(kz, ky, f) of uc(z,y,t) and Uy (ke, ky) of us(z,y) is

Uc(kzy ky, f) = Us(kzo ky)S(f + veke + vyky). (10)
By substituting (10) into (5), from (8), one has
Uo(kz, ky)
1 [V & l m
=i X v(e-gohgg)
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In order to appreciate global translation effects on the spectrum

of the composite frame, assume u,(z,y) is bandlimited within an
elementary cell V [3] of lattice {I/A.,m/2A}, ie..

Us(k17 ky) =0, (kra ku) ¢ 1% (12)

In a suitable elementary cell P of lattice {I/A.;,m/A,,l,m € Z}

}3|, the power density spectrum of uo(z,y) under condition (12) is
[Uo(kz, k) = |Us(kzy ky ) cos® (w(s:kz + 8,ky))

1 2
+ Us (kzn ky - E)
Yy

. 1
x sin® (ﬂ' (szkl + sy (ky - m)))

(13)

The above expression is interesting in that it shows that spectrum
|Us(kz, ky)|? (within the elementary cell P) is the sum of two
terms supported by disjoint sets: One is the “low-pass”component
|Us (k= ky)|* weighted by function cos? ((s- k. + syky)), and the
other one is the “high-pass” component formed by the (frequency
domain) shifted version of [|Us(kz, k)| sin®(n(s:kz + s,ky))].

C. An Example: A Moving Grating

It may be instructive to consider (11) in the specific case of a signal
u,(x,y) with a simple spectrum, such as a grating (spatial sinusoid)
of spatial period P = (P, P,)T

u.(,9) = sin (2"(1-% +%))

05P1<%i, 0<P <2 (14)
The Fourier transform of u,(z,y) is simply
k:v =
U,(kz, ky) ((k +P k+P)
1 1 .
—6(k,-E,ky—Fy))/23. (15)

Equation (11) shows that the composite frame uo(IA;, mA,) of the
moving grating coincides with the following continuous signal:

ua(z,y)

. e-% y-% 5 8y
—sm(?'fr( P + F, ))COS(W(E-FE
_ 2% (o) (L 1
cos(27r( P +(y 2 7, " 7A,

(16)
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Fig. 1.

i

Fig. 2. Composite frame of the spatial grating of Fig. 1 moving

with
v = (vy = 8 pels/Tr, vy = 0 pels/Tr)7T (interlace ratio 2:1).
sampled on lattice
[ = {IA.,mA,,l,m € Z}. an

Signal uq(z,y) is the sum of a pair of spatial sinusoids respectively
weighted by constants [cos(m (= + %5—))] and [sin(m (3= + %))]
sampled on lattice I'.

The difference between ua(z,y) and u.(z,y) explains the vi-
sual effects of the composite frames of gratings. One example of
the visual effect of a global translation by vector 8 = (s, =
8 pels/Tr,s, = O pels/Tr)T of the spatial sinusoid of period
P = (P. = 50 pels, P, = 50 pels)” of Fig. 1 is shown by the
composite frame of Fig. 2. It is worth noting that the difference
between (11) and (16) manifests itself through a diffuse blurring.

Figs. 3 and 4, respectively, show the spectrum of the sinusoid of
Fig. 1 (see (14)) and of the composite frame of Fig. 2 (see (16)) in an
elementary cell of dual lattice [3] I'*. The spectral low- and high-pass
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Fig. 3. Power spectrum of the grating of Fig. 1.

¢
¢ 3

Fig. 4. Power spectrum of the composite frame of Fig. 2.

components, which are typical of the Fourier transform of composite
frames, are clearly visible in Fig. 4.

The spectral characteristics noted in the simple case of the com-
posite frame of a moving grating can be also recognized in the
case of real-life imagery. Fig. 5 shows the thermogram of an object
typically used to measure the modulation transfer function (MTF)
of thermocameras [6]. Fig. 6 shows the thermogram of the moving
object of Fig. 5 taken by a 2:1 interlaced thermocamera. The charac-
teristic blurring previously noted is also present in Fig. 6. The power
spectrum of the thermograms of Fig. 5 and Fig. 6, in an elementary
cell of %, can be seen from Figs. 7 and 8, respectively. Fig. 8 clearly
shows the two spectral components expected from (11).

The separation of the spectrum into two components and the
high-frequency content of the blurred edges could suggest that
the visual quality of the composite frame would be improved by
linear smoothing. However, such an approach is not very effective.
One reason for this is that if u.(z,y), for instance, is vertically
bandlimited, as is (12), then the output of a filter with a pass-
band equal to the spectral support of u.(z,y) is the sampled
version of [(us(x,y)+ va(z — 52,y — 5y))/2]. In this case, the
signal information is in a single field, and interpolating the odd
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Fig. 5. Thermogram of a still object.

of the of with

moving
v = (v; = 8 pels/Tr,vy = 5, pels/Tr)T (interlace ratio 2:1).

Fig. 6. Thermogram object Fig. 5

lines from the even lines (or vice-versa) would be a better way of
restoring the composite frame. In most practical cases, however, the
band-limitation assumption is not verified, and this simple recovery
procedure is not applicable. The technique described in Section III is
able to handle such general situations.

1. MOTION-COMPENSATED RESTORATION OF COMPOSITE FRAMES

As exemplified by Figs. 2 and 6, the composite frames of moving
objects are likely to lose object definition and eventually intelligi-
bility, expecially in highly textured images. The frequency domain
analysis results of the previous section may be profitably used in order
to devise a simple algorithm for “deblurring” composite frames from
motion induced artifacts. A key problem for the proposed method
is how to determine displacement vector s from a single composite
frame.
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Fig. 7. Power spectrum of the thermogram of Fig. 5.
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Fig. 8. Power spectrum of the thermogram of Fig. 6.

Motion detection algorithms typically use several frames exclu-
sively, utilizing even (or odd) lines fields when dealing with signals
obtained from interlaced scanning. As the displacement detection
technique presented in this work shows, the same information can be
obtained by means of the even and odd fields of a single frame. Its
operation is reminiscent of a well-known correlation-based algorithm
called phase correlation [71-[10]. In contrast to the original method,
the technique of this work exploits the possibility (suggested by the
frequency domain results of Section II) of displacement estimation
derived from the two interlaced fields of a single frame.

Once the displacement vector 8 has been found, the restoration
is carried out by simply shifting the second field of vector s. If an
approximation of s belonging to lattice {IA;,2mA,,I,m € Z} is
used as the shift vector, no interpolation is necessary.

Consider (11) under the band-limiting hypothesis (12), and assume
that image displacement during period Tr is

5= (52,8) = (loAz,2moA)T, lo,mo € Z.  (18)

Within a suitable elementary cell P of lattice I' (17), the following
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Fig. 9. Spatial function (21) relative to the thermogram of Fig. 6.

relationships hold:

Us (k,,k,,)+Uo(k,,k 7w )

19)

1
= U,(kz, ky) + Us (kzyky + —Q—A—y)

Uo(ke, ky) — Uo(k,,k +2A )

= e~ Coekatork) (U (ko b))+ Us Koy by 4+ —— ) ).
A,

20)
Hence, we have
Uo(ks, ky) = Uo (key by + 542)
Uoks, k) + Vo (ke by + 545
= 8((1 = lo)Az, (m — 2mo)Ay) @1

where F~! denotes the inverse Fourier transform operator, and (-, -)
is the 2-D discrete impulse. The components of s can be clearly
determined by localizing the maximum of function (21). For practical
implementation purposes, expression (21) can be computed by means
of 2-D FFT algorithms [7], whose computational efficiency is well
known.

The method can also be put to work in the case of nonbandlimited
signals by performing a suitable regularization of the input. In fact, if
the input signal is forced to be bandlimited by an appropriate low-pass
filtering, the deblurring will still be correct. A simple but effective
way of implementing such a provision is given by setting a suitable
set of DFT coefficients [7] equal to zero. Practical tests with real-
world composite frames have shown that forcing to zero half, or three
quarters, of the DFT coefficients gives sufficiently accurate resuits.

In the case of thermographic images, however, it should be noted
that the typical low-pass characteristics of the modulation transfer
function [6] of thermocameras make for well band-limited input
signals.

Fig. 9 shows a 64x 64 plot of spatial function (21) relative to
the thermogram of Fig. 6. The position of the maximum of Fig. 9
coincides with the true image displacement associated with velocity
v = (8 pels/Tr, 5 pels/Tr)T. (For a treatment of the robustness
of the phase-correlation algorithm with respect to noise and to scene
characteristics, see [7]-[11].)
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