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ABSTRACT

In computer vision and, increasingly, in rendering
and image processing, it is useful to filter images
with continuous rotated and scaled families of fil-
ters. For practical implementations, one can think
of using a discrete family of filters, and then to in-
terpolate from their outputs to produce the desired
filtered version of the image.

We propose a multirate implementation of de-
formable kernels, capable to further reduce the com-
putational weight. The “basis” filters are applied to
the different levels of a pyramidal decomposition.
The new system is not shift-invariant — it suffers
from “aliasing”. We introduce a new quadratic er-
ror criterion which keeps into account the ineherent
gystem aliasing.

By using hypermatrix and Kronecker algebra,
we are able to cast the global optimization task
into a multilinear problem. An iterative procedure
(“pseudo-SVD”) is used to minimize the overall
quadratic approximation error.

1. INTRODUCTION

Several image analysis techniques require the linear filter-
ing of an image (or of a sequence of images) with a (pos-
sibly large) set of different kernels. Algorithms for motion
flow computation, texture analysis and classification, stereo
matching, curved lines grouping, brightness boundary de-
tection, quite often require to convolve the image(s) with
many suitably scaled and oriented versions of one or more
prototype kernels.

Filtering an image with many different filters is compu-
tationally expensive. However, one may reduce the com-
putational cost by exploiting the fact that the outputs of
a bank of multi-oriented — multi-scaled filters are typically
higly correlated. Consider for example the class of “steer-
able filters” [1]. In this case, there exists a finite set {gl"l(x)}
of “basis” filters such that, for any orientation 8, a suitable
linear combination of the outputs of such filters gives the
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version of the image filtered at orientation 6. If filtering at
many different orientations is required, the computational
weight is effectively reduced this way: convolve the image
with the kernels {gm(x)} once for all, store the outputs,
and then recombine them with coefficients that are a func-
tion of the desired orientations.

Unfortunately, the exact steerable decomposition exists
only for a very restricted class of kernels [1]. We may then
be interested in an approximated solution. Perona [2] stud-
ied the following problem: given a set {d(x, 5,6)} of scaled
(by &) and oriented (of §) versions of some given kernel d(x),
find a suitable decomposition order R and basis kernels and
recombining functions {fU1(x), #7(8),s(a),1 < r < R}
such that the following guadratic error is minimized:

R

¢ =ld(x,0,6) = > ) (0)s" (o))

r=1

(1

Perona’s technique computes successive approximations us-
ing the singular value decomposition (SVD), after discretiz-
ing the variables x, 6, 0. Note that the algorithm can be put
to work for any FIR prototype d(x).

In order to reduce the number of elementary operations
per input pixel (OPP), one may add the constraint that the
filters {fI1(x)} be separable, ie. {fI7(x) = al(2)ol (1)}
def

{where x = (z,y)). Such an extension has been considered
in [3] by Shy and Perona, which used the “pseudo-SVD”
algorithm.

In the present paper, we take into exam a pyramidal im-
plementation of the steerable-scalabe decomposition which
further reduces the overall computational weight. To un-
derstand the idea at the basis of our work, consider a 1-D
example: we want to find a set of “basis” filters to approxi-
mate the scaled versions {d(z,o) = d(z/0)} of a prototype
kernel d(z) along a continuous range of scales of few oc-
taves (see Fig. 1(a)). The support of the scaled kernels can
be assumed to be proportional to the scale ¢. A draw-
back of the SVD-based algorithm of Perona [2], is that the
basis filters share the same support, corresponding to the
largest support of the filters {d{z,0)} (see Fig. 1(b), where
we set the decomposition order R to 4). This problem may
be solved by choosing a different basis for the approxima-
tion space, by linearly combining the basis kernels found
using the SVD. Consider for example a basis constituted
by our scalable approximations to filters {d(z,0)}, where
{or,1 < r < R} is a coarse sampling (perhaps logarithmic,
like in the case of Fig. 1) of the scale axis. If the overall ap-



Figure 1: (a) Evample of scaled versions d(z,0 = 27),r €
{1,5/3,7/3,3} of a prototype kernel. (b) The R = 4 orthonormal
basis filters obtained using the SVD technique [2]. The kernels’
length is 81 pizels. (c) The new basis functions, chosen as the
approrimated versions of the kernels of (a). (d) The 8 impulse
responses of the pyramidal system of Section 8 corresponding to
g =4.6.

Figure 2: Scheme for the multirate implementation of a filter.

proximation error is reasonably small, we may expect that
the supports of the new basis filters are again a function of
the scale 0. Fig. 1 (¢) shows the new basis functions rel-
ative to our former example. It may be seen that, except
for the basis function corresponding to the smallest scale
(drawn with the thinnest line), the support of the new ba-
sis functions can be assumed to be equal to that of the
corresponding kernels {d(z,0.)}. The number of OPP us-
ing the new basis functions is then effectively reduced (since
the number of OPP to implement an FIR filter is equal to
the number of samples of the filter in its support). If large
scales of the filters are required, then, in order to further re-
duce the computational weight, one may adopt a multirate
implementation of the basis filters. The multirate imple-
mentation of FIR filters has been considered in the past
[4]. Fig. 2 shows the most general scheme: a filter d(z) is
implemented as the cascade of a prefilter g(z), a decimator
by an integer factor M, a filter p(z), an interpolator (or
expander) by factor M, and a postfilter A(x). Note that
we consider only digital FIR filters, therefore it is under-
stood that the variable z is discrete (actually integer). It
is common practice in the literature to assume that d(z) is
strictly bandlimited within [~ /M, 7/M], so that it can be
implemented using the multirate scheme of Fig. 2 without
aliasing. Manduchi et al. [5] chose a different approach, and
derived a novel approximation error criterion which keeps
into account the inherent system’s aliasing. More specifi-
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cally, we can observe that a system like the one in Fig. 2 is
periodically shift-invariant [6], i.e. it is fully characterized
by M impulse responses {qr(z + k)}, corresponding to in-
puts {6(z + £),0 < k < M}. If the impulse responses are
identical, then the system is alias—free. Otherwise, we can
consider the following quadratic error:

M-—1

e (n) =Y |ld(=) — a(2)|I®

k=0

(2)

An iterative linear procedure to design the components of
the scheme of Fig. 2, in order to minimize error (2) for a
given impulse response d(z), has been described in [5].

We adopt a pyramidal scheme for our scalable (1-D)
and steerable-scalable~separable (2-D) decomposition, and
use a measure of the overall quadratic approximation error
similar to (2), as described in Section 3. One might attempt
to minimize the approximation error by designing a multi-
rate implementation of each basis filter (obtained using the
procedure of [2]) separately. However, this 2-step approxi-
mation procedure does not necessarily yield the best solu-
tion: to achieve the minimum of the approximation error,
we should design the components of the multirate system
simultaneously. An algorithm to fullfill such a task is pre-
sented in Section 3. In order to describe our technique, some
preliminary results are first derived in Section 2, where we
use the formalism of the hypermatrix and the Kronecker al-
gebra to manipulate the multilinear expressions that appear
in the approximation problem.

2. SEPARABLE-STEERABLE-SCALABLE
DECOMPOSITION

We show here how the problem of the steerable-scalable-
separable decomposition for 2-D kernels can be formalized
and solved using the hypermatrix and Kronecker algebra
notation. The results of this section will be similar to those
of [3], but the new formalism introduced here will be in-
strumental to extending our scheme to the multirate case,
considered in Section 3. The problem is to minimize the
quadratic error

R

e =|ld(z.y,0,0) = > _ u(@) ) (0)s ()P (3)

r=1

with respect to the variables {ul"(z), v[")(y), #{71(8), sV (5)}.
Note that {ul(z),v[l(y)} are the basis filters, while
{t11(8), s'"N(5)} are the recombination functions. It is un-
derstood that all the variables {x,y, 0,8} are discrete.

Hypermatrix algebra [7],[8] is a convenient formalism to
manipulate indexed arrays. It is designed to describe oper-
ations on multilinear tensors, but its isomorphism with the
Kronecker algebra makes it particularly suitable to reduce
multiliner expressions into canonical forms, for example in
order to compute quadratic minimizations.

A hypermatriz AJ) "™ is an indexed array represented
by a unique matrix A via the following mapping (mized
radiz representation):

AL = ais

(4)



C=AT & =47

C=A+x & C :=A +B

C=AB & C(,:=AB
C=AQB & C&=AB
c=vecc(A) & (' :=Aj

Table 1: Useful dualities between hypermatriz and Kronecker al-
gt’(??'('l/ CTPTressions.

t=t1 4+t () +. o im - (G){(2) . (fmet)

J=a+ 5 -G+ F g G1)Ge) o (In-1),
where |A;i;’:\ represents the entry of the hypermatrix
corresponding to indices (21,...,%m), (J1:-..,Jn), @i; is the
entry of matrix A at the ¢-th row and j-column, and (3)
represents the maximum value assumed by index 7 (it is
assumed that all the indices start from 1). The correspon-
’3’" and a matrix A is

..... 2

denoted as

Hypermatrices may be manipulated using a number of
rules described in [8]. In particular, there exists a one-to-
one correspondence between hypermatrix expressions and
matrix operations in the Kronecker algebra. We list in Ta-
ble 1 a few dualities instrumental to our work (for a detalied
treatment, see [8]).

The symbol “:=" is used to specify a hypermatrix as-
signment. The symbol & denotes the Kronecker product,
while by vec.(A) it is meant the stacking of the columns of
A into a single vector. Another useful hypermatrix expres-
sion represents the point-by-point multiplication along one
(or more indices): for example, C; := A} B;].

We are ready now to restate our minimization problem
in terms of hypermatrix expressions. Equation (3) may be
rewritten as

e* = D™ — (UPVISTTS) 17| (5)
where |17} = 1Vr, while the other hypermatrices in the ex-
pression correspond to the functions of (3) in a straightfor-
ward fashion. It is clear that the minimization task becomes
a multilinear problem in U/, V, 8,7 and it can be solved, as
in [3], by iteratively minimizing (5) with respect to each
variable, while keeping all the other ones fixed *.

Suppose, for example, that we want to minimize e with
respect to the orientation reconstruction function ¢(6). Af-
ter some manipulations, expression (5) may be rewritten
as

62 — ||D.‘ryo’9 _ j:fga@irén? (6)
where
ATE = ATOT] AT = UTVYST
/]-—ré — 7;’;?
I{ is an identity hypermatrix: |Ig| = §(8 — §). The useful-

ness of expression (6) is in the fact the the corresponding

INote, however, that although we are guaranteed to converge
to some solution, it will not necessarily be the global minimum

of (5) [3].
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matrix expression is in canonical form (a matrix times a
vector). Using the dualities reported in Table 1 expression
(6) becomes

¢’ = |[(A® Tt —d|f (7)

where A & A9 t & 777 d & D™ and Ly, is the
(8) x (9) identity matrix.

By applying some properties of the Kronecker algebra

[8], the minimizing vector t for (7) can be expressed as

t=(((ATA)'AT) 0 L) d (8)

Expression (8) contains a Kronecker product with an iden-

tity matrix, which produces a (typically) large sparse ma-

trix. This drawbak can be avoided as follows. Let T & 7°

and D & D7 := D*¥°®. Then, noting that t = vec.(T),

one can prove that identity (8) is equivalent to

T

T = ((ATA)"'A"D) (9)

Note that no Kronecker product is present in equation (9).

However, as we show in the next section, this last reduction
cannot be used in the multirate case.

3. A SCALABLE PYRAMIDAL
DECOMPOSITION

We present in this section our scheme for the pyramidal
implementation of the system. Only the 1-D scalable case
is considered here, for simplicity’s sake. Although the 1-D
case 1s not useful for vision and image processing, it serves
to illustrate for the complete 2-D scheme, described in [9].

As anticipated in the Introduction, we consider a mul-
tirate implementation of the larger filters in the basis set.
In particular, we use the pyramidal scheme shown in Fig. 3.
The pyramidal scheme seemes appropriate, since typically
one is interested in a logarithmic sampling of the scale axis.
The filter h(z) has impulse response [1, 2, 1]. Its frequency
response is a raised cosine (therefore it is low-pass), and it
may be implemented with only two sums and one multipli-
cation (by 2) per input sample. For the I-th level of the
pyramid, the decimation ratio is 2'71.

In the {-th level of the pyramid of Fig. 3, the parameters
involved are are i) the number K, of kernels {p;;(z)} and i)
their lengths {M}. In [9] we derive a heuristic procedure
to determine such parameters, given the characteristics of
the filters {d(z, o)} to be approximated.

If the pyramid is composed by L levels, then the overall
system is characterized by 25~ different impulse responses
{qx(x,0)}, as discussed in the Introduction. The quadratic
error must include all of them:

oL~1

= |ld(z,0) = gu(z. )|

k=1

(10)

We briefly describe in the following our procedure to simul-
tanously design the filters {pi;(z)} in order to minimize €*
in (10). Let p be the vector obtained by stacking the im-
pulse responses of the filters {pi;(z)} of Fig. 3. It is shown
in [9] that, if S & & is the scale reconstruction matrix?,

?Note that now the index 7 spans Zszl K values.



the vector qu, representing the k-th impulse response at
scale & may be written as

Qie = (Sv,a (& I)Hka (11)
In the above expression, S., is the o-th column of S, I
is a suitably sized indentity matrix, J is a block-diagonal
matrix J = diag(J;;) where each J;; is an expansion ma-
trix, and Hy is a block-diagonal matrix Hy = diag(Hx:)
where each Hyy; is a Toeplitz matrix representing the fil-
tering with a kernel corresponding to the k-th impulse re-
sponse of the [-branch of the pyramid after short-circuiting
the filters {pii(x)}. Such impulse responses may be easily
computed analytically using the polyphase decomposition
of the system [6].

We can thus minimize the quadratic error (10) using
an iterative algorithm, in a fashion similar to the case of
Section 2. In particular, the minimizing vector p for fixed
scale reconstruction matrix 8 is

sL—1 -1

> H{S'So1L)H, | ]

k=1

p=|J" (12)

2L~—-1

LIPS HT ) (8T oLwd
k=1

where d & D is the vector representing d(x, ).

In Fig. 3 we show the results of the pyramidal scalable
approximation of the function d{z,s) of Fig. 1(a), for &
ranking from 2 to 8 (2 octaves). We used a four levels pyra-
mid, with one filter per each level, and set the filter lengths
as {My1 = 11, M2y = 11, May = 9, My; = 7}. The optimal
basis filters are shown in the left column of Fig. 3. The
overall error is e = 0.013. Note that we have imposed the
central sample of each kernel to be equal to -1, and that the
filters turned out to be linear-phase, i.e. symmetric (sym-
metry can actually be constrained in the design procedure).
In the right column of Fig. 3 we reported the scale recon-
struction functions s;;{o). In order to implement the basis
filters, a total of 15 multiplications and 30 additions per
input sample are required (note that the filter at the I-th
level of the pyramid operates on a signal decimated by 2/~
and that the filter symmetry can be exploited to reduce the
number of multiplications). Then, 4 multiplications and 3
additions per input sample are required for each scale in the
reconstruction. The computational weight reduction with
respect to the non—multirate scalable implementation {with
basis filters as in Fig. 1(c)) is apparent, considering that it
would require 70 multiplications and 140 additions per in-
put sample to realize the basis filters. In Fig. 1(d), the 8
impulse responses of the multirate system, corresponding
to the instance o = 4.6, are shown.

The 2-D case (pyramidal-separable-steerable—scalable
decomposition) is a conceptually straightforward extension
of the scheme proposed in this section, although the no-
tation becomes significantly more complicated, and it is
studied in [9]. In particular, in [9] we consider a separa-
ble pyramid with L, levels along th z-axis, and L, levels
along the y-axis. Hence, the overall system is characterized
by 2%«+Lv=2 impulse responses.
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Figure 3: Pyramidal scheme used in the multirate implementation
of the scalable filters.
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Figure 4: Basis kernels (left column) and reconstruction functions
(right column) corresponding to the scalable decomposition of the
filters of Fig. I(a) using the pyramidal scheme of Fig. 3 with 4
levels (ome basis filter per each level). The central sample of the
kernels was constrained to -1.



