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Fig. 4 Hybrid tree structure

If the sub-band tree is composed of layers of M-ary and N-ary
branches, the codeword generation works in a similar way. Each
digit for the codeword is in modulo-m for the layer corresponding
to the M-ary branch and it is in modulo-n for the layer corre-
sponding to the N-ary branch. Suppose the first branch is ternary,
and it is followed by binary branches at each node. This time, the
code generation is as follows:

01]0 0]0 0
01 01 1
0 1] 1j1| _ |3
[1]:‘ 1 [T ljo] 7|2 ®)
2| 2]0 4
2| 2] 1 5

Visually, this corresponds to the tree in Fig. 4. When different
number of branches exist at the same layer in the decomposition,
the calculation of the frequency order is carried out separately for
each branch.
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Least-squares multirate FIR filters
R. Manduchi and P. Perona

Indexing terms: FIR filters, Digital filters

The authors propose a new least-squares design procedure for
multirate FIR filters with any desired shape of the (band-limited)
frequency response. The aliasing, inherent in such systems, is
implicitly taken into account in the approximation criterion.
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Introduction: The multirate implementation of FIR filters (see Fig.
1), introduced by Rabiner and Crochiere [1], leads to reduced
computational complexity. In fact, the samples at the output of
the FIR filter g(x) that are deleted by the A-fold sampler do not
need to be computed, and the null-valued samples introduced by
the M-fold interpolator do not contribute to the convolution oper-
ated by the FIR filter A(x). Only the case of brick-wall frequency
response was considered in [1], and the design technique was
inspired by minimax criteria.

B cakls

Fig. 1 Multirate implementation of filter

‘We propose a least-squares criterion for the design of multirate
FIR filters, to approximate the spectral shape of any desired pro-
totype d(n) (assuming that the necessary band-limiting conditions
are met ie. that the spectral support of d(x) has a length <2m/M).
The resulting system is linear periodically time-invariant (LPTV
{2]), and it is characterised by the M impulse responses {(n + i),
0 < i < M}, corresponding to the M inputs {3(n + 1), 0 < i < M}.
The fact that the impulse responses differ from each other is usu-
ally referred to as the aliasing effect. The least-squares criterion
introduced in this Letter makes for the joint reduction of the
approximation error and of the inherent aliasing.

Theory: We only consider the case M = 2 (definitions and results
are extended straightforwardly to the case of higher M). Define
the polyphase components [2] of g(») as

go(n) =g(2n)  g1(n) =g(2n+1)
It is easily shown [2] that

tOm)y=hxgn) tYn+1)=hxgn)
where g(#) and g,(#) are obtained by interleaving gy(x) and g,(n)
with null-valued samples.

We propose the following design criterion: given the kernel d(n)
to be approximated, find the filters g(n) and A(n) with given length
N, and N, respectively, which minimise the approximation error
€2, defined as

(0) - 2 &) - 2
o = WO = P + 1O = dlP

The term € implicitly accounts for both the approximation
quality and the aliasing. In fact, if €2 is small, we may expect both
impulse responses of the system to be ‘close’ to d(n), and therefore

‘close’ to each other. More precisely, the following upper bound
holds:

[1£® ()=t ()1* < 22 +14 () —d(n) |6 (m)—d ()]

No simple closed form solution can be found to the minimisation
problem, since the error € in eqn. 1 is composed of quadratic
forms of bilinear expressions in g(n) and A(n). A standard proce-
dure in such cases is based on iterative minimisation [3]. Our itera-
tive algorithm is briefly outlined in the remainder. Vectorial
notation is used for sequences: a sequence x(n) is represented by a
column vector X whose entries are the samples of x(#). The symbol
T stands for vector/matrix transposition. We start from an initial
guess of g(n) and g,(n), and then iterate through the following two
steps:

Optimisation of h(n) for fixed g,(n), g,(n): Let G, and G, be the
Toeplitz matrices representing the filtering with g.(n) and g,(n),
respectively. Then
22— (Goh—d)T(Goh—d)+ (G h—d,)T(G1h—d,)
2

where d, is the vector representing d(n + 1). Hence, €* is minimised
for

h = (G§Go) 1 (Gfd + Gl'dy)

Optimisation of gy(n) and g,(n) for fixed h(n): Let H be the
Toeplitz matrix representing the convolution with A(n), and let U
be a matrix obtained by interleaving the rows of a suitably sized
identity matrix with null-valued rows. Then
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HUg,—d)” (HUg,—d)+(HUg, —-d;)"(HUg, —d;)
2

Error € is minimised for
go = (UTHTHU)'UTHTd
g1 = (UTHTHU)'UTHTd,
Since the error € does not increase at any iteration and is
bounded from below by zero, we are guaranteed to converge to
some minimum of €. However, the minimum may be just local,

and it may be useful to run the algorithm several times with differ-
ent starting points, choosing the solution that gives the smallest €.

Fig. % Kernel d(n) to be approximated and filters g(n) and h(n) minimis-
ing €

a Kernel to be approximated
b Filter g(n)
¢ Filter h(n)

A design example: We have tested the proposed design technique
for a kernel d(n) shaped as the second derivative of a gaussian
function, a filter widely used in computer vision (see Fig. 2). The
standard deviation ¢ was set to 10 and the length of d(n) was 47
samples. The design parameters were: M = 4, N, = N, = 25. The
multirate implementation thus requires approximately four times
fewer elementary operations per input sample than the direct
implementation of d(x). The starting point for the iterative optimi-
sation was a constant sequence g(n).

To evaluate the multirate system’s performance, we may define

the signal to approximation noise ratio
2
sxp < 10
&
and the signal to aliasing ratio:
lldm)1I>

max; ;{ [0 (n) — t0) ()%}

In our case, we obtained SNR = 28.3dB and SAR = 25.8dB.

SAR =

Conclusion: The multirate implementation of band-limited FIR fil-
ters leads to the reduction of the computational weight. We have
presented a novel least-squares technique to design multirate FIR
filters for any shape of the (band-limited) desired frequency
response. The technique is based on temporal domain approxima-
tion, and the error criterion accounts for both good approxima-
tion and aliasing.
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Nth-order allpass voltage transfer function
synthesis using CCll+s: Signal-flow graph
approach

C. Acar

Indexing terms: Current conveyors, Active filters

A general synthesis method is given for the realisation of an nth-
order allpass voltage transfer function by the active RC circuit
containing a minimum number of capacitors and at most rn+1
current conveyors. All the current conveyors are positive, and 7 of
them act as voltage followers. This makes the proposed circuit
simple and attractive.

Introduction: High-order allpass filters are widely used in crossover
systems, and a broad class of transfer functions e.g. the lowpass,
highpass, bandpass and bandreject characteristics can be imple-
mented as the parallel combination of two allpass filters [1].
Although second generation current conveyors are functionally
flexible and versatile active components [2], little work has been
carried out towards the realisation of high-order allpass filters
using current conveyors [3 — 5]. The purpose of this Letter is to
give a synthesis method for the realisation of any nth-order allpass
voltage transfer function by an active-RC circuit using only resis-
tors, capacitors and second generation current conveyors with
positive gains (CCII+s). The proposed method is based on realis-
ing the allpass transfer function by a signal-flow graph and then
obtaining, from the graph, the active-RC circuit involving CCII+s.

tan  Hnn-n) tag to tyg

Fig. 1 Signal-flow graph model realising T(s) of eqn. 1

Redalisation procedure: Let the n-th order allpass voltage transfer
function be expressed as

D(-s)

D(s)

(D)@ (1) 18" - 4Das® —bis+

- bps™ +bp_187 "1+ - 4 bos?+bys+1

T(s)=

(1)
where the denominator polynomial D(s) is a Hurwitz polynomial
with positive real coefficients. This function can be represented by
the signal-flow graph shown in Fig. 1 if the following values are
assigned to the branch transmittances:

b
tii=1—k; <8+ lbl> i=1,...,n

bz—l
tiienyi = ks i=1,..,n
(1)1 4 b2 (2)
ti-1)i = kis t=2,..,n
tio = 2(—1)"1 i=1,.,n

t(nt1)o = (=1)"

where b, = 1, and ks, i = 1, 2, ..., n, are independent parameters
introduced to the design. These transmittance values are obtained
from the signal-flow graph [6] by modifying its transmittance val-
ues according to the elementary transformations [7]. It may be eas-
ily verified, using the well known Mason’s gain formula, that the
signal-flow graph in Fig. 1, with the above transmittance values,
realises the T(s) of eqn. 1; i.e. the graph gain from the input node
n+1 to the output node 0 is equal to 7(s).
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