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Multistage Sampling Structure Conversion
of Video Signals

R. Manduchi, G. M. Cortelazzo, and G. A. Mian

Abstract—This work extends multistage implementation of
sampling structure conversion to the multidimensional (M-D)
case. The issues arising in this task are usefully addressed on
the basis of lattice theory.

Numerical data supporting the advantages of multistage sam-
pling conversion are presented, and the case of format conver-
sion from 4 /3 to 16 /9 aspect ratio is examined as a study case.

The main indication of this work is that multistage implemen-
tation, in the case of systems for sampling structure conversion
of video signals, may improve the system characteristics and
visual rendition.

1. INTRODUCTION

A growing number of applications in the area of im-
proved quality television (IQTV) and high definition tele-
vision (HDTV) call for sampling structure conversion of
television signals.

Examples of such occurrences are the conversion from
a scanning standard to a different one (rather typical is
so-called deinterlacing, i.e., the conversion from inter-
laced to progressive scanning standard), the format con-
version from 4,/3 to 16,/9 aspect ratio, and the zooming of
a scene’s details for the picture-in-picture feature. All
these applications require practical and effective sampling
structure conversion techniques.

A one-dimensional (1-D) signal with sampling period T,
can be conveniently converted into a signal with sampling
period 7, by a well-known three-step procedure [1] if
T,/T, = M/L, with M and L coprime integers. The first
step of such a procedure (up-sampling) decreases the
input signal sampling period to T,/L (by suitable zero
padding). The second step performs an appropriate low-
pass filtering of the signal sampled at T,/L. The third
step (down-sampling) decimates the low-pass filtered sig-
nal at sampling period 7,. When T, /7] is not rational, or
when L is very large, the sampling rate conversion can be
effectively performed by methods of the type proposed in
(9l

The procedure of [1] has been extended to the case of
multidimensional (M-D) signals in [3] and [2]. Its practical
application for changing a signal defined on lattice A,
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into a signal defined on lattice A, requires the determina-
tion of their sum [2], as well as the devising of filter
specifications suitable to the undertaken task.

The procedure of [3] and {2] is appropriate for situa-
tions where the ratio between the density of the sum of
two lattices and the density of one of them is not too
large. A method for determining such a ratio without
explicitely determining the sum of two lattices is another
useful result of this work.

The computational and /or performance advantages of
the multistage implementation of 1-D sampling rate con-
verters are well known [1]. Their theoretical justification
rests upon the relationship between transition bandwidth
and minimax error for the 1-D linear phase FIR filters.

This work examines in detail the implications of multi-
stage implementation of M-D sampling rate converters,
originally proposed in [19] and [12], which in many cases
have no 1-D counterpart. Multistage implementation is
shown to be advantageous also in the case of M-D sam-
pling structure conversion. The theoretical characteriza-
tion of such advantages is considerably more difficult than
in the 1-D case for various reasons.

The theory of FIR filters, in the M-D case, is not yet
understood as well as in the 1-D case. The relationships
between M-D FIR filter orders and their transition bands
are not known. Hence the arguments justifying the perfor-
mance gains of 1-D multistage implementation (when the
considered performance parameter is the minimax error)
cannot be easily extended to the M-D case. Some conjec-
tures grounded on experimental data motivate the mini-
max error gains of M-D multistage schemes.

In the case of video filters, the minimax error of the
system frequency response is not as significant as in the
1-D case. Other parameters, such as the passband
smoothness of the frequency response [31] and the step-
response behavior (“ringing”) [32], are also very important
for visual rendition. The analytical relationships between
such parameters and multistage implementation would be
very difficult to express also in the case of 1-D systems.
Although no clear theoretical argument is presently avail-
able to justify the general characteristics of multistage
implementation of M-D systems, the presented data show
that their overall performance is extremely interesting for
video applications.

The M-D multistage implementation theory is exempli-
fied by using format conversion from 4 /3 to 16/9 aspect
ratio as a study case. This application is of considerable
interest in current television practice.
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Although this issue is not treated in this work, it is
worth noting that the presented M-D multistage imple-
mentation theory can also be applied to M-D IFIR filters
[12], [19].

This paper has five sections. Topics concerning M-D
sampling rate conversion require familiarity with lattice
theory. Some essential notions are presented in the Ap-
pendix and some more advanced concepts in Subsections
II-A and II-B. Subsection II-C discusses the M-D sam-
pling structure conversion scheme of [2] and [3] and some
practical aspects of its application. Section III introduces
multistage implementation of M-D systems. Section IV
applies the concepts of Section III to format conversion as
a study case. Section V contains the conclusions.

II. SAMPLING STRUCTURE CONVERSION: DEFINITIONS
AND FUNDAMENTALS

The sampling rate conversion procedure of [1] has been
extended to the case of M-D signals by [3] and [2]. Since
M-D signals in the applications of most typical interest
are defined on lattices, the presentation of some results
concerning lattice theory serves as useful introduction to
the procedure of [3] and [2].

A. Some Lattice Theory Results

This subsection assumes familiarity with basic matrix
theory notions and results. For the reader’s convenience,
the necessary background is summarized in the Appendix.

Let Z,,, Q,, and R,, denote the rings of the M X M
matrixes with integer, rational, and real entries, respec-
tively.

Given integers / and m, if there is an integer n such
that / = mn, then m is said to divide / (written m|l).

Given a € Q, den(a) denotes the least positive integer
such that (den(a)-a) € Z. Similarly, given matrix 4 €
@y, den(4) will denote the least positive integer such
that (den(A4) - 4) € Z,,, that is, den(4) is the least com-
mon multiple among {den (a;;)}, where a;; are the entries
of A.

Let us recall that the M-dimensional lattice generated
by basis 4 € R,, with nonsingular 4 (written LAT (A)) is
defined as set {a = An, n € ZM}. Equivalently, a lattice
can be defined as a discrete commutative subgroup of RY
[5]. Value |det(A4)] is called the module of LAT(A), and
its inverse represents the density of the points of LAT (4)
[4].

Two fundamental results about lattices are reported
below (for the proofs, see [4], [5], and [7]).

Result 1: Matrixes 4 € R,, and B € R,, are bases of
the same lattice if and only if 4 = BU, with U the
unimodular matrix of Z,,. ]

Result 2: Given A = LAT(A4) and I’ = LAT(B), A is
a (proper) sublattice of T if and only if 4 = BH, with H
full rank matrix of Z,, with |det (H)| > 1. ]

Integer |det (H)| is called the index of A in " (denoted
as (I':A)). It represents the ratio between the module of
A and the module of I' (that is, the ratio between the
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density of the points of I' and the density of the points of
A).

From Result 1, Result 2, and the Smith normal form
theorem (Result A.2 of the Appendix), it can be seen that
for an M-dimensional lattice A and an M-dimensional
sublattice I' of A, there exists a basis 4 of A and a basis
B of T, whose vectors are pairwise parallel.

The next corollary [13] follows from Result 1 and Re-
sult 2.

Result 3: Given k € Z, let (L, i = 1,2,---,n(k)) be the
set of Hermite normal form matrixes of Z,, with determi-
nant equal to k. For a given M-dimensional lattice A =
LAT (A), matrixes AL;, i = 1,2,---, n(k) are the bases of
each and every M-dimensional sublattice of A with index
kin A. |

Given two M-dimensional lattices A, and A,, their
sum A, + A, is defined as

A +A,={a+b:acA,beA,)}. (D

The sum of two lattices is not necessarily a lattice; for
instance, the sum of A, ={n € Z} and A, ={nv2, n €
7} is not a 1-D lattice, since it is not a discrete group. The
following lemma characterizes the sum of two lattices with
basis in R,,.

Lemma 1: Given M-dimensional lattices A; and A,,
A, + A, is an M-dimensional lattice if and only if there
exists an M-dimensional lattice ¥ containing both A, and
A,. In such a case, A, + A, is the smallest lattice con-
taining both A, and A, (the “smallest” means “the one
with maximum module”).

Proof: Since A, + A, contains both A, and A,, is it
necessary only to prove that if there exists a lattice ¥
such that

2

then A, + A, is a lattice. It is straightforward that every
lattice V¥ satisfying (2.2) contains A; + A, and that A, +
A, is a commutative subgroup of R (since ¥, A,, and
A, are commutative subgroups of RM). Hence A, + A, is
a lattice (as W is discrete and finite-dimensional); actually,
it is the intersection among all the lattices containing both
A, and A;. Since the module of the intersection between
two lattices is greater than, or equal to, the maximum
between the modules of the two lattices, A, + A, is the
lattice with the maximum module among the lattices
containing both A, and A,. [ ]

A theorem characterizing the basis of the sum of two
lattices with bases in R, (if the sum is a lattice) follows.
The procedure uses the notion of greatest common left
divisor (gcld) of two matrixes, which can be found in the
Appendix.

Theorem 1: Given A; = LAT(A4) and A, = LAT(C),
with 4,C € R, A, + A, is a lattice if and only if
AT'Ce Q. If A, + A, is a lattice, it is A; + A, =
LAT (geld (4, C)).

Proof: If A| + A, is a lattice, then a basis B € R,
of A, + A, exists. Both A, and A, are sublattices of
A, + A, and, by Result 2, there exists a pair of full rank

AjCc¥ and A,CV¥
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matrixes H and K of Z,, such that

A=BH and C = BK. 3)

From the equalities above it follows that B = AH™' =
CK! and

A'C=H 'K €]

Hence, if A, + A, is a lattice, then 47'C € Q,,.

The proof that if 47'C €@, then A, + A, =
LAT (gcld(4,C)) is a simple generalization of a result
contained in [33]. [ ]

If A =LAT(4), A* = LAT(A4 T) is the reciprocal lat-
tice of A [2]. It should be noted that the procedure for
determining a basis of the sum of two lattices can also be
used for determining a basis of the intersection of two
lattices, in force of the result [2]

AN A= (A + A (5)

A procedure for directly determining a basis of A, N A,,
when A, and A, have bases in Z,,, is given in [11].

The following corollary allows one to obtain the value
of (A} + Ay:A)) (or (A, + A,:A,)) without explicitly
finding a basis for A; + A,, when A; and A, are two-di-
mensional lattices.

Corollary 1: Given A; = LAT(4) and A, = LAT(C),
with 4,C € R,, if A, + A, is a lattice the following
equalities hold:

(A} + Ay:A) = den(471C)
~den(den(47'C) - det (471C)) (6)

(A} + Ay:A,) = den(4710)
~det(471C) - den (den(47'C) -det (4°'C)) (7)

Proof: 1t follows directly from Theorem 1 and Corol-
lary A.1. ]
As an example of application of Corollary 1, consider
the design of a transcoder from CCIR System I standard
525/2:1/60 to CCIR System M standard 625/2:1/50.
Call A, the verticotemporal lattice corresponding to the
System I raster and A, the verticotemporal lattice corre-
sponding to the System M raster. As will be explained in
the next section, a possible transcoder scheme required
operation in A; + A,. A basis of A, is

1 1
A= 30 60 ,
-
525
and a basis of A, is
1 1
C- 25 50
0 1
625

Since
6 9
5 50
-1 —_
A-C= 21 |”
O N
25

det (47'C) 126

¢ 1257

By Corollary 1 it is (A; + A,:A,) = 250, a notion which

can be profitably exploited in order to devise practical
transcoder schemes, as Subsection C explains.

den(47'C) = 50.

B. Descending and Ascending Lattice Chains

Since multistage implementation has received a lot of
attention in the 1-D case, the possibility of changing
sampling structure from M-dimensional lattice I' to M-di-
mensional lattice A, with I' D A, in p intermediate steps
concerning lattices W, ¥,,--,¥,_; such that T > ¥, >
¥, D -+ D, W D A, deserves special attention.

Let & = (@, @,,", a,) be any ordered decomposition
of (I":A) into positive integer factors:

a; >0, i=1,2,,p
a, = (T:A) (8)

Any ordered set of M-dimensional lattices (¥, ¥,, -,
W¥,_,) such that

nrov,owv,o -
iy (I''¥) = a;

) o, €27,

i) aya, -

oV, ;DA

(¥;_ ) = «,, 1<i<p;

(¥, A =a, )

will be called a descending lattice chain (dlc) on . from T
to A.

Given & = (a, ay, ", ap), I'=LAT(P) and A =
LAT(Q), with T D A, let one call H= P 'Q(H € Z,,
by Result 2). An algorithm for finding all the dic on &
from I' to A may be represented by an oriented graph,
where each node corresponds to a lattice. The graph is
organized in (p + 1) levels. At level O there is a single
node, corresponding to lattice I'. Such a node branches
into the nodes of level 1. Each one of these nodes
corresponds to one of the n, sublattices {¥,; =
LAT(PM, ), i =1,2,--,n} of T with index equal to «;.
From Result 3, it can be assumed that matrixes M, ; are
in Hermite normal form.

Each lattice at level 1 is connected to all its sublattices
with an index equal to «,, forming the nodes of level 2.
The graph is built by iterating such a procedure for
i=3,4,--- p. The bases of all (and only) the ith level
lattices are matrixes PM,M, --- M;, with M; € Z,, Her-
mite normal form matrix such that det (M) = a;.

Note that according to (9), the pth level necessarily
includes lattice A. Such a fact implies that each dlc on &
from I' to A is associated to an oriented path from T to
A. Therefore, the determination of all the dlc on & from
I' to A is equivalent to the determination of all the
sequences of Hermite normal form matrixes (M, M,, -,
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M,) of Z,, with det(M,) = «,, such that MM, --- M, is
right equivalent to H. Note that PM| M, --- M, is a basis
of A (because it is right-equivalent to Q).

The determination of (M, M,,---, MP), with det(M,) =
@, i=1,2,», p, such that M\ M, --- M, is right-equiv-
alent to H, just requires the finding of p — 1 matrixes
(M}, M,, -, M, ) such that (M,M, - M, ) 'H=G
belongs to Z,,. Matrix M,, is, indeed, the Hermite normal
form matrix right-equivalent to G. It should be noted that
the determination of such matrixes M. LMy, M, can be
accomplished by a trial and error procedure of the
above-sketched type.

By Result A3 of the Appendix, given T, A, and .,
there exists at least one dlc on & from T to A. It should
be clear, as the following example shows, that given I', A,
and &/, there may be more than one dlc on .« from T to
A. Consider, for instance, I' = LAT(P) and A =

LAT(Q),
Pl ) e- (i 3)

H=P'Q-= (g g)

It is (T:A) = |[det (H)| = 8. Let one, for instance, choose
& =(2,2,2). The Hermite normal form matrixes of z,
with determinant equal to 2 are

_(2 0 _(2 1 _(1 0
v= (3 ) VZ‘(O o (6 9)
It is easy to see that (V,V,)"'H € Z, only if (m =1,
n=3,m=2n=1,m=2,n=2),(m=2n=23),
or (m = 3, n = 1). Therefore, there are just five distinct
dic’s on & from T to A, namely

(LAT (PV)),LAT (PVV3)), (LAT(PV,),LAT (PV,V,)),
(LAT (PV,), LAT (PV,V,)), (LAT(PV,),LAT (PV,V,)),
(LAT (PV;), LAT (PV,V))). (10)

and let

The five possibilities are shown in Fig. 1 (the paths of the
graph not leading to A are not shown, for clarity’s sake).
The arrowed lines indicate matrix multiplication of the
lattice basis by the matrixes written next to them. The
lattices of each dlc are explicitely shown in the figure.

The passage from A to I' can be similarly handled by
ascending lattice chains (alc’s), i.e., by any ordered set of
lattices @, ®,,--,®,_, such that

prce, cd,c - c,_,cA

i) (&:1) =a;; (D:0,_)=0;, 1<i<p;

(A:(Dp,l) =a, (11)

The determination of all the alc’s on & from A to T is
equivalent to the determination of all the sequences of
Hermite normal form matrixes (Lo, L,,+, L, ;) of Z,,
with det(L,) = a;. Then, a basis D; of &, is D, =

PL, L, , L,

Fig. 1. Thedlcon & = (2,2,2) from I to A relative to (10).

C. Multidimensional Sampling Structure Conversion

Consider M-dimensional lattices A, = LAT(4) and A,
= LAT(C) and assume that 47'C € Q,, (so that A, +
A, is a lattice, in force of Theorem 1). Let B = AL~! =
CM ™' be a basis of A, + A,. Signal x defined on A, can
be converted into a signal defined on A, called y, by the
cascade of an up-conversion, a linear filtering, and a
down-conversion [2], [3].

The up-conversion (or up-sampling) between signal s
defined on M-dimensional lattice W, and signal w defined
on M-dimensional lattice ¥,, with ¥, C W,, is defined as

s(a), acV,

w(a) =
0 otherwise

with a € ¥,. (12)

The down-conversion (or down-sampling) between sig-
nal u defined on M-dimensional lattice T, and signal v
defined on M-dimensional lattice T,, with I, DT, is
defined as

v(a) =u(a) witha €T,. (13)

If E is a basis of ¥, and F = EL™! is a basis of ¥,,
the up-converter will be denoted by the symbol of Fig.
2(a). If E is a basis of I', and F = EM is a basis of I,,
the down-converter will be denoted by the symbol of Fig.
2(b).

The Fourier transform of a signal x defined on the
M-dimensional lattice A = LAT(A) is defined as [2]

X(f) =Y x(a)exp(—j2uwfla),

acA

feERM (14)

The Fourier transform X(f) is periodic according to rule

X(f+b)=X(f), beA (15)
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®)

Fig. 2. (a) Up-converter; (b) down-converter.

therefore X(f) is completely defined from its values on
any fundamental cell & of A*.

It is well known [2] that the Fourier transforms of the
up-converter input and output are related as

W(f) = S(f)

and those of the down-converter input and output as

(16)

V(f) = Y U(f+o

ceFNP,

(T,:I,) a7

where 2, is a fundamental cell of T7}.

Fig. 3 shows the sampling structure conversion scheme
between A, and A,. The intermediate block of Fig. 3
represents a linear filter of impulse response k defined on
A, + A,. If & is a fundamental cell of (A, + A,)* = Af
N A%, 2, a fundamental cell of A% such that #, C2,
and 2, a fundamental cell of A% such that £, cZ,
there will be no aliasing (and hence perfect reconstruction
within 2, N,) if the Fourier transform of & is

(A, + A):A,,  feP NP,

(18)
0, otherwise

H(f) = {
with f €.

The choice of cells 2, and £, is critical for the overall
system performance, since it controls the system perfect
reconstruction region. In principle, it is appropriate to
choose #, and £, such that 2, NP, covers the greatest
possible portion of the hypervolumes of #, and £,. Fig.
4(a) shows three possible choices of %, and £,, relative
to lattices

4 0

*:
A% LAT(O i

% _ 6 3
) and A% = LAT(0 3).
Cell &, is the solid-line square. The dashed rectangles
and the dashed diamond of Fig. 4(a) are three possible
choices of #,. Clearly, the diamond-shaped £, gives the
maximum hypervolume %, N2,.

The maximization of the intersection’s hypervolume
may not be the only criterion worth adopting for the
choice of £, and £,. For instance, Fig. 4(b) shows three
possible choices of &, N P, relative to lattices

4 0

* =
A LAT(O .

. _ 4 2
) and A% LAT(0 3).

Cell &, is the solid-line square. The dashed rectangle and
the dashed -hexagon are two possible choices of £,.

NS ey I e N G vy
A L A*A, L Ath, ] A,

Fig. 3. Sampling structure conversion scheme.
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. 4 0
©c— A = LAT
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»
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F>< -7 . 4 2
S Ay = LAT
o 3

®)

Fig. 4. Possible perfect reconstruction regions.

Clearly, the hypervolume of the intersection between the
dashed rectangle of £, is equal to the hypervolume of
the intersection between the hexagon and £,. However,
the latter choice of %, may be more appropriate than the
former, since it gives a better conservation of the energy
along the two axes. Such a feature is visually very impor-
tant [14]. Choices of &, and 2, of this type are reported,
for instance, in [16]. (The characterization of the convex
fundamental cells of an M-dimensional lattice can be
found in [15)).

The scheme of Fig. 3 is effective if the value (A, +
A,:A,) is not too large. For instance, the conversion from
CCIR System I standard 525/2:1/60 to CCIR System M
standard 625 /2:1/50, considered in Subsection II-A and
corresponding to (A; + A,:A;) = 250, can be more ap-
propriately approached by techniques of the type pro-
posed in [9].

The sampling structure conversion scheme (see Fig. 3)
does not need the down-converter when A; C A,, and it
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does not need the up-converter when A; D A,. In any
case, though, the presence of the intermediate linear filter
is necessary. The realization of such a filter requires the
determination of A; + A, (achievable by the results of
Subsection II-A) and the choice of £, and £, (by consid-
erations of the type just exemplified). An efficient imple-
mentation of the scheme of Fig. 3 is considered in [11];
the next section discussed the effectiveness of the multi-
stage realization of M-dimensional sampling structure
conversion.

III. MULTISTAGE M-DIMENSIONAL SAMPLING
STRUCTURE CONVERSION

The advantages of multistage implementation of 1-D
FIR sampling rate converters are well known [1]. The
efficiences of such structures are essentially due to the
relationships between transition bandwidth (normalized
with respect to the sampling frequency) and filter order
for 1-D FIR filters. Given passband and stopband errors,
the smaller the normalized transition bandwidth, the
higher (typically) the order of the FIR filter achieving it. It
turns out that performing the up-sampling (or the down-
sampling) in several stages requires filters with larger
(normalized) transition regions than a single-stage up-
sampler, with remarkable overall performance gains.

The techniques originally proposed for designing IFIR
filters [17], [18], are very effective also for designing the
filters belonging to each stage, owing to the equivalence
between multistage sampling rate converters and IFIR
structures.

Similar concepts can be extended to the M-D case, as
suggested in {19] and [12). The motivation of the advan-
tages of the multistage approach to M-D sampling struc-
ture conversion, along the lines of the theory developed
for the 1-D case, is considerably complicated by the fact
that, in the M-D case, transition bands are M-D regions
(possibly irregular) and not simple intervals, as in the 1-D
case. Although quantitative relationships between the or-
ders of M-D FIR filters and their transition regions, for
given passband and stopband errors, are not known, the
conjecture that such orders increase as the transition
regions’ relative widths decrease is supported by consider-
able experimental evidence. The performance gains actu-
ally achievable by multistage sampling structure conver-
sion schemes versus direct implementation confirm such a
hypothesis.

In order to describe the multistage implementation of
the sampling structure conversion procedure of Fig. 3, let
us, for simplicity, focus on case A; C A,. In such a
circumstance, the system is formed only by the up-sampler
and the linear filter.

Consider an ordered integer decomposition & =
(@, @y,+, @) of (A;:A;) and an ascending lattice chain
(®,®,,-,®,_ ) on & from A, to A, [see (11)]. For
notational convenience let us denote A, = &, and A, =
®,. The sampling structure conversion from A, to A, can
be performed by p subsystems, each one formed by an
up-converter from ®; to ®,,,, (i =0,1,>-,p — 1) and a
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..L o l—>—+ Hl(fT’_)—l Hz(f)}—».u —>—{ H (t‘)L—)—
1< A A A A LR A

1 2 2 2 2 2

H(f)

®)

Fig. 5. (a) Multistage sampling structure conversion scheme; (b) equiva-

lent system.

suitable linear filter H,, (f), as shown in Fig. 5(a). If P is
a basis of A, and (Ly, L,,--,L,_,) are matrixes as de-
scribed in Subsection II-A, then ®; = LAT(PL,_, -+ L)).
By means of the multidimensional noble identity [20], [12],
the scheme of Fig. 5(a) can be shown to be equivalent to
that of Fig. 5(b). It is important to note that each transfer
function Hf) of Fig. 5(b) is periodic on @}, while the
corresponding impulse response is defined on A,. (The
description of the system of Fig. 5(b) in terms of M-D
z-transform [20] would make apparent such a fact).

If the transfer function H(f) = H\(f)H,(f) -+ H,(f)
of the system of Fig. 5(b) is defined as in (18), then the
system of Fig. 5(b), and its equivalent in Fig. 5(a), give
perfect reconstruction in 2, N %,. The generalization of
the scheme of Fig. 5 to the case of generic A, and A, is
straightforward.

The advantages of the multistage scheme depend on
the choice of factorization & (similarly to the 1-D case)
and of the specific alc on & from A, to A,, if there is
more than just one. It is worth noting that the latter point
does not have a counterpart in the 1-D case.

A. Useful Transfer Function Characteristics

The performance of a sampling structure converter
operating in video signals may be enhanced by the follow-
ing characteristics of the system transfer function.

As cleverly pointed out in [21], the avoidance of arti-
facts in flat areas due to aliasing requires that H(f) of
Fig. 5(b) satisfies to

H(f)=0, feA, fe +A)). (19

In the sampling structure conversion of video signals the
use of (19) is mandatory.

In the 1-D case (1], [22], sampling rate conversion by
means of M-band subfilters with impulse responses having
zeroes on the intersections between the input and output
domains of each stage (except at the origin) is computa-
tionally efficient and, in the up-sampling case, it preserves
the input signal samples at the output. Such filter charac-
teristics are typically referred to as Nyquist conditions.

The reasons supporting Nyquist filters in the 1-D case
apply also to the M-D case [34]. If h,(a) denotes the
impulse response of the subsystem with transfer function
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H{(f) in Fig. 5(a), the filter satisfies to the Nyquist condi-
tion if

1, a=0
hi(a) = {0’ ac (I)i—l — {0} (20)
with a € §,.
Condition (20) in the frequency domain becomes
Y H(f+¢)=(d;:9,_) =gq (21)

ce(®F  nA)

where &, is a fundamental cell of ®F.

IV. A StuDY CASE: VIDEO FORMAT CONVERSION

As an example of a practical situation where the multi-
stage implementation presented in the previous section
may be profitably applied, consider the format conversion
from aspect ratio 4/3 to aspect ratio 16/9 of a 2:1
interlaced television signal. The parameters entering the
problem can be seen from Fig. 6. In Fig. 6, both formats
are drawn with the same picture width in order to explic-
itly account for the fact that the line periods are the same
for both aspect ratios. In the case of aspect ratio 4/3, the
relationship between picture height P, and picture width
P,is P, = %Pw, and in the case of aspect ratio 16/9 it is
p, = %Pw. As the number of lines N is the same in both
cases, the interline distances Jy concerning 16/9 aspect
ratio, and dy concerning 4 /3 aspect ratio are related as
P, 3P, 3
SN TIN I
A possibility of converting aspect ratio 4/3 into 16/9 is
that of mapping N -3/4 lines of the input images, with
4/3 aspect ratio, into N lines of the output images, with
16/9 aspect ratio. The implications of such a format
conversion solution are considered in detail.

Fig. 7(a) shows the verticotemporal lattices associated
to the two aspect ratios; 7; denotes the field period and
interlace 2:1 is assumed.

A basis of lattice A,, relative to the verticotemporal
section of aspect ratio 4/3, is

21, T,
0 d

(22)

A=

s

y

while a basis of lattice A,, relative to the verticotemporal
section of aspect ratio 16/9, is

2, T,

C= 3
0 Zdy

By Theorem 1, since
1
'3
-1 —

A7C = 3
O —_
4

belongs to @,, lattice A; + A, exists. Also, by Corollary
1, since den(47'C) = 8 and det(47!C) = 2, itis (A, +

P

-

i l

Fig. 6. Format parameters relative to 4/3 (thin line) and 16/9 (bold
line) aspect ratios.

o
h ]
«0
o

(@
.

|
T t
r

®

Fig. 7. (a) Lattices corresponding to the verticotemporal intersection of
the scanning rasters for 4/3 aspect ratio (A, circles) and 16/9 aspect
ratio (A,, dots); (b) lattice A; + A,.

A,:A,) = 8. A basis of A; + A, can be found by Theo-
rem 1 and the procedure described in the Appendix.
Unimodular matrixes

_ 1 0
U‘(é —1)
and
_ {0 1
V‘(l —8)
are such that
1
p=uvaa'cwv=|3 °
0 6

is in Smith—McMillan normal form. Hence, by Result A.5,
(H, K) with
_(8 O0).,,_{(8 0
”‘(0 1) v (6 —1)’

(5 5)re(e )

is a left-coprime factorization of 4~ !C.
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Then, a basis of A; + A, is

I, -T;
B=AH '= |3
Zdy *dy

[see Fig. 7(b)] where, according to CCIR System M stan-
dard 625/2:1/50, T; = 1/50 s and d, =P, /N with N =
625.

Three possible bases of the dual lattices are

1 . 1
T, T, °
Ao | cr_|
-1 1 T -2 4 )
2d, d, 3d, 3d,
4 3
BT _ L, T
-4 -4
d}’ dy

where 1/T; = 50 Hz and 1/d, = 625 c/Ph (see Fig. 8).

Completely similar considerations apply to the case of
CCIR System I 525 /2:1 /60.

The sampling structure conversion from A, to A, + A,
according to the scheme of Fig. 3, requires seven new
lines for each input line. The conversion from A, + A, to
A, requires keeping one out of six lines, of the signal
defined on A; + A,. Such an operation can be performed
either by the single-step scheme of Fig. 3 or by a multi-
stage scheme of the type of Fig. 5(a) for the interpolation,
possibly cascaded by a similar arrangement for the deci-
mation.

Let us first consider the single-stage scheme of Fig. 3.
As explained in Section 2, the passband of the ideal
low-pass filter [see (18)] is given by the intersection of a
fundamental cell of A% with a fundamental cell of A%. An
effective choice for such a region is shown in Fig. 9(a).
The passband is the diamond of Fig. 9(a). The filter
stopband is the region of the fundamental cell of (A, +
A,)* complementary to the diamond. A realistic design
mask for the filter of Fig. 9(a) is shown in Fig. 9(b), where
the dotted region is the transition region (only the first
quadrant is shown, as the filter has quandrantal symme-
try).

As explained in Subsection III-A, it is important that
the specs incorporate condition [see (19)]. Such conditions
impose that the transfer function be exactly zero at the
points marked by crosses in Fig. 9(b).

Zero-phase FIR filters with transfer functions optimal
in the minimax sense, with respect to the mask of Fig.
9(b), were designed by linear programming [23]. (The
effectiveness of linear programming in these applications
is well known [24], [16].)

Fig. 10 (dotted line) shows the minimax errors (normal-
ized to unity), corresponding to equal error weights in
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f (c/Ph)
13

1250

f (Hz)
«

f (c/Ph)
v

1250 _—l

937.5 o X

625 %

425
312.5
200

t (Hz)
t

()

Fig. 9. Transfer function [see (18)]: (a) ideal mask; (b) actual design
mask.

both passband and stopband, for filters of different N, X
N, size. As (N, — 1) corresponds to the number of field
memories (FIFO) required by the filter, the examined
values were limited to N, equal to 3, 5 and 7. Vertical
length N,, associated to the number (N, =1 of line
memories, was allowed to assume considerably higher
values.
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It is clear from Fig. 10 that, for given N, values, the
normalized minimax error tends to saturate as N, in-
creases. For instance, if N, = 3, the normalized minimax
error tends to saturate to approximately 0.11.

The multistage realization of the format conversion
system can be performed in many ways as (A; + A,:A})
=8 and (A; + A,:A,) = 6. The lattice chains for the
interpolation and decimation steps are summarized by
Table I. Fig. 11 sketches such possibilities, according to
the conventions introduced for Fig. 1. Fig. 11(a) refers to
the possible alc performing the up-conversion from A, to
A, + A,, and Fig. 11(b) to the possible dlc relative to the
down-conversion from A, + A, to A,.

An interesting choice is a indicated by the bold path of
Fig. 11, considering a two-stage interpolation, where the
first step converts the signal from standard 625 /2:1 /50 to
standard 1250/1:1/50, the second step brings it to stan-
dard 2500/1:1/50, and a single-stage decimation brings it
to (3 - 625)/2:1/50.

Fig. 12(a) shows the design specs of the first-stage
interpolation filter H\(f,, f,) (the crosses represent the
points where the transfer function is constrained to be
zero). Fig. 12(b) shows the specs of the second-stage (1-D)
interpolation filter H,(f,). It is important to note that the
vertical width of the transition region of Fig. 12(a), nor-
malized to the “vertical” sampling frequency, doubles the
corresponding quantity of Fig. 9(b). It is well known [25]
that such a characteristic, in the 1-D case, allows the
attainment of a given minimax error by halving the filter
order. This type of trend is therefore expected also in the
case of the filter of Fig. 12(a), and it is experimentally
confirmed.

Fig. 10 (bold line) shows the normalized minimax errors
of the FIR filters H\(f,, f,) approximating the specs of
Fig. 12(a) for different N; X N, sizes. The minimax errors
for given N, values, and for the same vertical order, are
smaller than the corresponding errors of the single-stage
filter.

The second-stage interpolation filter (which operates
only on the lines) has a large transition band. As its
transfer function has to be zero at f, = 1250 ¢/Ph, a
raised cosine qualifies as an effective choice for such a
filter. In this case, the second-stage filter size has N = 1
(no field memory) and N) = 3.

The global performance of the two-stage interpolator is
given by the product of H\(f,, f,) with H,(f,). As hinted
by Fig. 12(c), the global performance approximates the
design specs of Fig. 9(b).

Let &, and &, denote the passband and stopband errors
of H(f,,f), and &, and & the corresponding quantities
of Hy(f,). The global passband error is therefore less
than or equal to §, + §,, and the global stopband error is
less than or equal to max{§/, §;}. It is clear that in the
intersection between the stopbands of the two systems,
the stopband error is less than or equal to ;8.

It is rather instructive to compare the single-stage inter-
polation scheme with the two-stage scheme. Let the mini-
max error of the single-stage interpolation be §, = §,.

PER CENT ERROR

3x3
5x3
Ix3
9x3
LIx5 ‘
13x5
15x5
17x5
19x5
Hx7
13x7
15x7 -I

z
z

Fig. 10. Minimax errors of FIR filters designed according to the specs
of Fig. 9(b) (dotted line) and Fig. 12(a) (solid line).
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Fig. 11. Lattice chains corresponding to Table I: (a) A; to A; + A,
conversion; (b) A, + A, to A, conversion.

TABLE 1
PossIBLE LATTICE CHAINS FOR 4 / 3 TO 16 / 9 FORMAT CONVERSION

A, = LAT(BH) - A, + A, = LAT(B)

& alc
(2,2,2) (LAT(BV,V,),LAT (BV,))
2,4 (LAT(BV,V,))
4,2) (LAT(BV,))

A, + A, = LAT(B) > A, = LAT(BK)

K% dlc
2,3) (LAT(BV,)
(3,2) (LAT(BV,))

H=(2 —01) K=(g c1>)

_{2 0 _(1 0 _{1 0
i OO e U M (O
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Fig. 12. Multistage interpolation: (a) first filter specs; (b) second filter
specs; (c) global specs (sketch).

Equal performance by the two schemes, at a given global
minimax error, requires that 6, =6, + 8, and 5, = §,. It
is also convenient to impose &/ = §/. As 8, = 0.032 and
& = 0.064 (from the raised cosine), the first-stage inter-
polator has to have 8/ = 0.064 and 8, <38,-0032=
0.032 (as 8, = §). From Fig. 10 it can be seen, for
instance, that the performance of the single-stage interpo-
lator of size 17 X 5 is matched by the two-stage interpola-
tor with H,(f,, f,) of size 11 X 5, followed by the raised
cosine. Hence the two-stage interpolator scheme is advan-
tageous with respect to the number of line memories.

It is important to observe that in the considered exam-
ple, the multistage decomposition is active only along the
vertical direction. Such a fact is likely to be responsible
for the mild overall performance gains of the two-stage
scheme with respect to the single-stage scheme. It is
straightforward that in situations where the sampling rate
changes in both directions, the possible advantages are
closer to those of the 1-D case. (As a simple example,
consider a situation where separable filters can be em-
ployed).

The memory savings obtainable by multistage schemes
are accompanied by computational savings only in cases
of pure up-conversion or pure down-conversion. When
both conversion types occur, as in the considered exam-
ple, this is not necessarily true. For instance, as pointed
out by a Referee, in the format conversion case single-
stage implementation allows one to compute only one out
of six samples of the intermediate lattice, AL+ A, A
similar possibility in the two-stage approach is available
only in the second stage.

However, one should observe that the number of allot-
ted field memories was only N, — 1 = 4. Also, in the 1-D
case multistage implementation is hardly of any use with
five coefficients filters. Conceivably, higher N, values—
closer to those for which multistage implementation leads
to order savings in the 1-D case—in addition to line
memories savings may also give field memory savings.

It should be observed that, also in the case of single-di-
rection sampling rate changes like the considered format-
conversion example, multistage schemes present advan-
tages not merely expressable in terms of minimax errors
but quite significant in practice. Such aspects are related
to the overall regularity, or smoothness, of the system
transfer function, to the system ringing behavior, and to
the visual rendition.

Fig. 13 shows the transfer function of a 17 X 5 single-
stage interpolator approximating the specs of Fig. 9(b)'.
Fig. 14 shows a 11 x 5 first-stage interpolator H(f,, f)
designed according to the specs of Fig. 12(a) (shown in the
fundamental cell of the dual of the intermediate lattice,
related to standard 1250,/1:1,/50). Fig. 15 shows the trans-
fer function of the overall two-stage interpolator
H\(f,, f,)- H)(f,) with Ny =11, N/ = 5,and N = 3. The
regularity of the latter transfer function is superior to that
of the transfer function of Fig. 13.

M-D FIR filters optimal in the minimax sense, not
differently than the 1-D FIR filters, have a number of
equal error ripples increasing with their orders [26].
Therefore, the FIR filters in the saturation region of Fig.
10 have error values rather close but transfer functions
increasingly oscillating as their orders increase. Such oscil-
lations can be seen in the single-stage filter of Fig. 13. The
oscillations of the two-stage filter are essentially due to
filter H\(f,, f,). Such a filter corresponds to transition
region requirements [Fig. 12(a)] more relaxed than those
relative to the single-stage filter [Fig. 9(b)]. Therefore such
specs are very likely to be satisfied by H,( f,» f) filters not
quite in the saturation region and with a limited number
of transfer function oscillations, i.e., with a more regular
transfer function behavior. The perceptual relevance of
transfer function regularity is well acknowledged in the
field [27].

The two-stage implementation also presents advantages
over the single-stage filter with respect to system ringing.
Fig. 16 compares three sections of the step responses of

"The coefficients of the filters of this paper are available upon
request.
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Fig. 13. Magnitude of the transfer function of the single-stage interpo-
lation filter: (a) perspective plot; (b) contour plot.

the single-stage filter (dotted line) with those of the dou-
ble-stage filter (solid line). The considered step responses
correspond to a vertical step [Fig. 16(a)l:

1, >0
s,(ny.m,) = = (23)
0, otherwise
a temporal step [Fig. 16(b)]
1, n,=0
ny,, = 24
s, m,) {0, otherwise (24)
and a diagonal step [Fig. 16(c)]
1, n,+n =0
spln,,n,) = ' ! 25
0, otherwise

The vertical step response accounts for the vertical ring-
ing relative to horizontal (stil) edges, and the temporal
step response for the temporal ringing, or flashing, rela-
tive to sudden appearances of objects into the scene. The
verticotemporal, or diagonal, step response accounts for
the ringing relative to horizontal edges moving along the
vertical direction. The usefulness of considering different
step responses has recently been pointed out [28].
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tor filter: (a) perspective plot; (b) contour plot.

Fig. 14.

From Fig. 16 it is clear that the undershoot and the
overshoot of the two-stage system are smaller than those
of the single-stage system for each type of step response.
Such a fact can be justified in light of the relationships
between transition bandwidth and step response. It is well
known that in the case of 1-D filters, the smaller the
transition bandwidth the greater the step response’s un-
dershoot and overshoot. A similar behavior is expected
with M-dimensional systems.

The ringing behavior of the single-stage filter is related
to the normalized transition region of Fig. 9(b). The
ringing behavior of the two-stage system is due to the
normalized transition region of Fig. 12(a) for the first
stage [which is much larger than that of Fig. 9(b)] and to
the raised cosine for the second stage. The raised cosine
(like any system with nonnegative impulse response) does
not increase the overshoot, or the undershoot, of a system
with which it is cascaded, but it can only increase the
overall raise and settling times. Therefore, the ringing of
the two-stage system is inferior to that of the single-stage
system.

The visual rendition of the two-stage interpolator is
indicated by Fig. 17, showing frame 37 of the television
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Fig. 15. Magnitude of the transfer function of the two-stage interpola-
tor filter: (a) perspective plot; (b) contour plot.

sequence Girls. (The elongated shapes of the scene’s
objects occur because the 16/9 image is displayed on a
conventional 4/3 monitor). With time-varying sequences,
the transfer function regularity and the ringing behavior
of the two-stage system manifest a superior visual rendi-
tion with respect to the single-stage system. Unfortu-
nately, such a charcteristic cannot be well appreciated by
photographs.

The use of single-stage and multistage format convert-
ers satisfying the Nyquist constraint (20) has also been
examined. The desired transfer functions can be easily
obtained by the adopted transfer function design tool of
[23] (see also [29], [30]). The use of the Nyquist constraints
presents computational advantages. For instance, in the
case of the considered single-stage system with impulse
response of size 17 X 5, 12 coefficients out of 85 are
forced to be zero; in the case of the 11 x S filter of the
first stage of the two-stage system, 12 coefficients out of
55 are forced to zero.

Clearly, the reduction of the coefficients number corre-
sponds to the reduction of the system degrees of freedom.
The minimax errors of the transfer functions satisfying to

vertical step-response
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Fig. 16. Step responses of the single-stage (dotted line) and the two-
stage (solid line) filters: (a) vertical step response; (b) temporal step
response; (c) diagonal or verticotemporal step response.

the Nyquist constraints are expected to be greater than
those of the unconstrained transfer functions. Figs. 18, 19,
and 20 show the counterparts of the transfer functions of
Figs. 13, 14, and 15, designed under the Nyquist con-
straints. The overall transfer function degradation is no-
ticeable, and the corresponding perceptual rendition is
not of the quality of the unconstrained systems. In this
case, the computational load reduction comes at a perfor-
mance price.
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Fig. 17. Frame 37 of television sequence Girls (courtesy of Centro
Ricerche RAI, Torino) converted from format 4/3 to 16/9 by the
system based on the two-stage interpolator.
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Fig. 18. Magnitude of the transfer function of the single-stage interpo-
lation filter with the Nyquist constraints incorporated: (a) perspective
plot; (b) contour plot.
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Fig. 19. Magnitude of the transfer function of the first-stage interpola-
tor filter with the Nyquist constraint incorporated: (a) perspective plot;
(b) contour plot.

V. CONCLUSION

This work extends multistage sampling structure con-
version to the M-D case.

Two important aspects of the practical application of
the sampling structure conversion scheme of Fig. 3 ([2],
[3]), namely the determination of A; + A, and of the
specs best suited to the linear filter, have been examined
in depth.

Multistage implementation of M-D sampling structure
conversion has been formally introduced and analyzed
with respect to several points of view. The concepts have
been applied to video format conversion. Even though the
theoretical prediction of the system performance improve-
ments attainable by multistage sampling structure conver-
sion is not available, the considered examples have shown
that multistage schemes are worth considering for video
applications. This is probably the most interesting indica-
tion of the paper. It is also noticeable that, due to the
complete equivalence between the idea of M-D multistage
implementation and the idea of M-D IFIR filters {12],




338

W

“““\““m\\\\\

0 \\\ {
S }m\mn “““\\
A \\\\\\'\‘u‘&“\‘f,
\\‘\“ “\\“\{R\‘\\Q&
\‘}““\\“‘
\\

0 ‘\
\\
0\ \\
X0 \ \
\\\‘\“ “\\‘t\
\ ‘ \ \\

<%

(e > A= -40 dB
0 A B = -20 dB
— — c=- 1]
o — 1 . NISS 3
N g— g D=-0.3d8
o — — TO G S S —f E=0 B
P . S—-— F=0.3 d8
[ W et IS~ It | <
S oz — et —=4
—
3 ] |4+ \\ P
5 o Z —
£ —] o
I Sy = == N i o B ooy (R S e
H B === o] T === ry
i A = = :
=l | B e
T —+— I —
e =Y QD [ nm—
— N P —
0.7
) __)& (&L {
T =
‘1. T T T T T T T T T T
S S
e pe——

Fig. 20. Magnitude of the transfer function of the two-stage interpola-
tor filter with the Nyquist constraints incorporated: (a) perspective plot;
(b) contour plot.

[19], the results presented in this work can be used in the
context of M-D IFIR filters.

Further work is necessary for a deeper understanding
of the mechanisms behind the performance improvements
allowed by multistage schemes and for their most effec-
tive exploitation. An open issue, currently under study, is
the individuation of the lattice decompositions associated
with the multistage implementations of best overall per-
formance.

APPENDIX

This Appendix presents a number of matrix theory
results and notions used in various parts of the paper.

Let Zy, Qy, and R, denote the rings of M X M
matrixes with integer, ratlonal and real entries respec-
tively.

Given integer [ and m, if there is an integer n such that
I = mn, then m is said to divide / (written /|m).

Given a € Q, den (a) denotes the least positive integer
such that (den (a) - a) € Z. Given matrix 4 € Q,,, den (A4)
will denote the least positive integer such that (den(A4) -
A) € Z,,, that is, den(A) is the least common multiple
among {den(a;)}, where a;; are the entries of A.
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Any full rank matrix 4 € Z,, such that 4-! € Z,, is
called unimodular. It is easy to see that 4 €7, is
unimodular if and only if |det(4)| =

Matrixes A € Z,, and B € Z,, are right-equivalent
(left-equivalent) if there exists a unimodular matrix V €
Z ) such that B = AV (B = VA). Matrixes 4 € Z,, and
B € 7, are equivalent if there exist two unimodular
matrixes U € Z,, and V € Z,, such that B = UAV.

Matrix 4 € Z,, is in Hermite normal form if
i) A is upper triangular
ii) a;; =0
iii) a;; <a; 1<i<j=zM, ifa; #0
lii) a;; =0 ifa;=0 (A.D

where a;; are the entries of A.
Result A.1: Every full rank matrix of Z,, is right equiva-
lent to one, and only one, Hermite normal form matrix.

Matrix 4 € Z,, is in Smith normal form if .
i) 4 = diag(a,,a,,,a,,0,,0)
ii) a; > 0, I<i<r
iii) a;,,la;, l1<i<r. (A2)

Result A.2: Every matrix of Z,, is equivalent to one,
and only one, Smith normal form matrix. |
By means of Result A.2 it is easy to prove the following
corollary:

Result A.3: Let A be a matrix of Z,, with |[det(4)| = mn,
where m and n are positive integers. There exist matrixes
B, C € Z,, such that
i) ldet(B)| = m,|det(C)| = n
i) A=BC. ®m (A3)

Matrix 4 € Q,, is in Smith~McMillan normal form if

a a,
i) A= dlag b bz ,b—’,O,---,O
with a;, b, € Z coprime
i) a; . la;,, i=1,,r—1
iii) blb;, ,, i=1,-r—1 A4)

Without loss of generality, it can be assumed that a; > 0,
b>0forl<ix<r.

Result A.4: Given matrix 4 € Q,,, there exist unimod-
ular matrixes U and V of Z,, such that § = U4V is in
Smith—-McMillan normal form, and such a reduction is
unique. Furthermore, b, (the denominator of the (1,1)
entry of S) is equal to den (A4). [

The proofs of the above results may be found in [8], [6],
and [10]. An algorythm for finding unimodular matrixes
UV such that UAV is in Smith—McMillan normal form
for a given 4 € Q, may be based on the following
concept [10]. Let m = den(4), then md € Z,,. If U and
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V are unimodular matrixes of Z,, such that U(mA)V is in
Smith normal form, then § = UAV is in Smith—-McMillan
normal form.

Given matrixes 4, D € Z,,, D is a left divisor of A and
A is a right multiple of D, if there exists a matrix C € Z,,
such that 4 = DC.

Given matrixes 4, B, D € Z,,, D is a greatest common
left divisor (gcld) of 4 and B if

i) D is a left divisor of both A and B
ii) D is a right multiple of every common
left divisor of A and B. (A.5)

Two matrixes 4, B Z,, are left coprime if every gcld
of 4 and B is unimodular.

The concept of common left divisor (or common right
multiple) can be generalized to the case of two matrixes
A,BER,.If A7'B € Q,, then D € R,, is a common
left divisor of 4 and B if A = DP and B = DQ, with
P,Qez,.

Given matrix 4 € Q,,, any ordered pair of left coprime
matrixes (H, K) of Z,, with det(H) # 0, such that 4 =
H7'K, is called a left coprime factorization (Icf) of A. It is
easy to see that, given matrixes 4, B € R,, with 47'B €
Qy, if D=gcld(A4,B), itis D=AH ' = BK~' where
(H,K)is alcf of A7'B.

Result A.5 [10]: Any matrix 4 € @,, has an Icf. Given
an Icf (H, K) of A4, an ordered pair (H,, K,) of matrixes of
Z, is another Icf of A if and only if there exists a
unimodular matrix U; € Z,, such that H, = UH and K;
= UK.

In order to find the left coprime factorization of a full
rank matrix 4 € Q,,, one can use the following algory-
thm [10]. Let U,V € Z,, be unimodular matrixes such
that UAV is in Smith—McMillan normal form:

UAV = S;'S,, S, = diaglb,,b,,, by},

S, = diag{a,,a,,", a,) (A.5)

with {b;} and {a;} satisfying all the properties (A.4). Then
(H=S8,U, K=SV")is an Icf of A.

Result A5 straightforwardly implies that all the lcf
(H;,K;) of a given matrix A4, share the same value of
[det (H))| and of |det(K;)|. The next corollary shows how
to obtain such values when A is a full-rank 2 X 2 matrix
of rational numbers, without explicitly calculating an lcf of
A.

Corollary A.1: Given any lcf (H, K) of a full-rank ma-
trix 4 € Q,, it is

ldet (H)| = den (A4) - den (den (4) - det (4)) (A.6)

[det (K)| = den(A4) - det (4) - den (den (A4) - det (4))
(A7)

Proof: Let S, and S, be the diagonal matrixes of
(A5), with H = S,U, K=S,V"!, U and V unimodular.
Then |det (H)| = det(S,) = b;b,. Furthermore, it is
ldet (A4)| = Idet (UAV)| = det (S,)/det(S,) and b, =
den(4) (by Result A.4). Hence, den(A4)- den(den(A4)-
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det(A4)) = b, - den(b, - (a,/b,) - (ay/b,)) = b,b, = |det (H)),

since (a,, b,) [as well as (a,, b,)] are coprime.

Equation (A.7) derives straightforwardly from (A.6) and
equality K = HA. u

Corollary A.1, an original contribution of this work,
shows its practical usefulness in Section II-A for deter-
mining the index of a lattice in the sum of two lattices.

Corollary A.2: Given matrix 4 € Q,,, for any ordered
noncoprime pair (L, M) of matrixes of Z,, such that
A = L"'M, and for any Icf (H, K) of A4, it is

|det (L) > |det (H)| and |det (M)| > |det (K)| (A.8)

Proof: The result directly follows from the nonco-
primeness of (L, M) and from Result A.5. [ ]
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