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® TSL (Transformer Specification Language) lets us generate
static analyzers from specifications. Great!

® But how do we know if the generated analysis
engines (multiplicatively many!) are correct!
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Our approach

|A32

EMUL

® Narrow the focus to testing just the ISA specs.

® Can we really isolate an ISA spec? We can come close by
using EMUL, the “simplest” interpretation.

® And for now, start with |A32.
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Goal for the summer

¢ Find out how complete and precise our
IA32 TSL specification is...

® _.by generating an IA32 emulator, then
comparing the emulator to the real processor.

® |f resulting states differ on the same inputs, the
spec was (probably) buggy.

® We already have all the pieces: IA32 spec, EMUL, and
a third-party tool for testing CPU emulators. This
will be easy, right?!
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How to test any analysis engine

Our design
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Look-thru memory

"Hey, what did you say €aX was again?"

— e — - —
— — — ~
p— — O — ——— —-—

- o P
does nothing 0
at first!
\ " "

—~—
— -
————————-__—————————'

® The ability to lazily instantiate the
emulator's state (memory and registers)
from that of the process as each
instruction is being emulated.

Friday, August 20, 2010



TSL validator main loop




TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/

Clear emulator's Emulate i using
memory look-thru memory

—

Write-protect all of
P's memory pages

Try to single-step P
on instruction i

| % Write fault?

l Unprotect and
try again

Friday, August 20, 2010



TSL validator main loop

Halt test program P

/ at instruction i

Repeat for
instruction i +|

/

Clear emulator's Emulate i using
memory look-thru memory

—

Write-protect all of
P's memory pages

Try to single-step P
on instruction i

| % Write fault?

l Unprotect and
try again

Friday, August 20, 2010



TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/ Abstract environment Physical environment

Randomly (or deliberately)
chosen state
Clear emulator's Emulate i using
memory look-thru memory . o .
"Abstract”
irllrs‘::;Etr.‘i‘:n add eax, 4 inEs::uc:tzzn
? Write-protect all of
L

|
- j

e~

P's memory pages
‘ E) \

Try to single-step P
on instruction i .
|~ Write fault?

' Unprotect and
try again

Friday, August 20, 2010



TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/ Abstract environment Physical environment

Randomly (or deliberately)
chosen state
Clear emulator's Emulate i using
memory look-thru memory . o .
"Abstract”
irllrs‘::;Etr.‘i‘:n add eax, 4 inEs::uc:tzzn
? Write-protect all of
L

|
- j

e~

P's memory pages ‘ \

Try to single-step P
on instruction i .
|~ Write fault?

' Unprotect and
try again

Friday, August 20, 2010



TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/ Abstract environment Physical environment

Randomly (or deliberately)
chosen state
Clear emulator's Emulate i using
memory look-thru memory . o .
"Abstract”
irllrs‘::;Etr.‘i‘:n add eax, 4 inEs::uc:tzzn
? Write-protect all of
L

|
- j

e~

P's memory pages
‘ E) \

Try to single-step P
on instruction i )
| Write fault?

' Unprotect and
try again

Friday, August 20, 2010



TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/ Abstract environment Physical environment
Randomly (or deliberately)
chosen state
Clear emulator's Emulate i using
memory look-thru memory . e .
‘Abstract
irllrs‘::lzzt?::n add eax, “ inEs)t(re::tzzn

Write-protect all of

P's memory pages
‘ E \

X — I
"Abstract”

e~

Try to single-step P
on instruction i .
|~ Write fault?

' Unprotect and
try again

Friday, August 20, 2010



TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

-

\

State comparison

/ Abstract environment Physical environment
Randomly (or deliberately)
chosen state
Clear emulator's Emulate i using
memory look-thru memory . e .
‘Abstract
| T add eax, 4 Sxc

instruction

X — I
"Abstract”

Write-protect all of
P's memory pages

I =~J

is tricky

e~

u

Try to single-step P
on instruction i .
|~ Write fault?

' Unprotect and
try again

Friday, August 20, 2010



TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/

Clear emulator's Emulate i using
memory look-thru memory

I I

[
4 :
? Write-protect all of
L
State comparison _ P's memory pages
is tricky =
\

Try to single-step P
on instruction i

| % Write fault?

l Unprotect and
try again

Friday, August 20, 2010



TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/

Clear emulator's Emulate i using
memory look-thru memory

N T

[
4 :
? Write-protect all of
L
State comparison _ P's memory pages
is tricky =
\

Try to single-step P
on instruction i

| % Write fault?

l Unprotect and
try again

Friday, August 20, 2010



Future work:
short-term stuff




Future work:
short-term stuff

¢ The hard part of state comparison:
identify changed locations on the real process
side, and compare them with corresponding
locations on the emulator side.

Friday, August 20, 2010



Future work:
short-term stuff

The hard part of state comparison:
identify changed locations on the real process
side, and compare them with corresponding
locations on the emulator side.

Better logging and reporting: eventually, we'd
like to have a “dashboard”.

Friday, August 20, 2010



Future work:
short-term stuff

¢ The hard part of state comparison:
identify changed locations on the real process
side, and compare them with corresponding
locations on the emulator side.

® Better logging and reporting: eventually, we'd
like to have a “dashboard”.

® How will we deal with test programs that
“misbehave™?
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Future work:
long-term stuff

ISA spec
Analysis
engine

IA32, PPC, ...
writften inTSL Iang\)lage \
® Support for more ISAs. (x64, at least!)

TSL system

Analysis spec

aka "interpretation”

e Support for abstract interpretations, not just EMUL.

® Find ways to choose which inputs to test that will be most
likely to turn up bugs in a specification.
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What | learned

Emulators, debuggers, and static analyzers are
not made of magic

First real systems programming experience:
didn’t quite cross the kernel space boundary,
but came right up next to it

A metric for how much | can accomplish in |3
weeks

Finally convinced that OOP is good for
something
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