A system for testing
specifications of CPU
semantics

or,
What | did on my summer vacation

Lindsey Kuper

The TSL testing problem

The TSL testing problem

ISA spec
(IA32,PPC, ...

written in TSL language

™\

Analysis spec

aka "interpretation”

Analysis

TSL system :
engine

Lim, J, and Reps, T.,“A System for Generating Static Analyzers from Machine Instructions”, CC ’08

2

Friday, August 20, 2010

The TSL testing problem

ISA spec
(IA32,PPC,...)
written in TSL language \

Analysis

TSL system :
engine

Analysis spec

aka "interpretation”

® TSL (Transformer Specification Language) lets us generate
static analyzers from specifications. Great!

Lim, J, and Reps, T.,“A System for Generating Static Analyzers from Machine Instructions”, CC ’08

2

Friday, August 20, 2010

The TSL testing problem

|A32
\

Analysis

TSL system :
engine

Analysis spec

aka "interpretation”

® TSL (Transformer Specification Language) lets us generate
static analyzers from specifications. Great!

Friday, August 20, 2010

The TSL testing problem

\32
PowerPC \

—

Analysis

TSL system :
engine

Analysis spec

aka "interpretation”

® TSL (Transformer Specification Language) lets us generate
static analyzers from specifications. Great!

Friday, August 20, 2010

The TSL testing problem

x86-64

erPC
L

4

\32

Analysis spec

aka "interpretation”

Analysis

TSL system :
engine

® TSL (Transformer Specification Language) lets us generate
static analyzers from specifications. Great!

Friday, August 20, 2010

The TSL testing problem

x86-64

erPC
L

4

\32

VSA

Analysis

TSL system :
engine

® TSL (Transformer Specification Language) lets us generate
static analyzers from specifications. Great!

Friday, August 20, 2010

The TSL

x86-64

\32

testing problem

rerPC
L

VSA

EMUL

—

Analysis
engine

TSL system

® TSL (Transformer Specification Language) lets us generate
static analyzers from specifications. Great!

Friday, August 20, 2010

The TSL testing problem

x86-64

rerPC
L

QFBV

N S

\32

1UL

VSA

Analysis
engine

TSL system

® TSL (Transformer Specification Language) lets us generate
static analyzers from specifications. Great!

Friday, August 20, 2010

The TSL testing problem

x86-64

\32

rerPC
L

QFBV

VSA
1UL

TSL system

Analysis Analysis

Ine

> Analysis
engine

Analysis
engine

® TSL (Transformer Specification Language) lets us generate
static analyzers from specifications. Great!

Friday, August 20, 2010

The TSL testing problem

x86-64

\32

rerPC
N

QFBV VSA
AUL

TSL system o
> Analysis
engine

Analysis
engine

® TSL (Transformer Specification Language) lets us generate
static analyzers from specifications. Great!

® But how do we know if the generated analysis
engines (multiplicatively many!) are correct!

Friday, August 20, 2010

Our approach

Our approach

ISA spec
(IA32,PPC,...)
written in TSL language \

Analysis

TSL system :
engine

Analysis spec

aka "interpretation”

Friday, August 20, 2010

Our approach

ISA spec
(IA32,PPC,...)
written in TSL language \

Analysis

TSL system :
engine

Analysis spec

aka "interpretation”

® Narrow the focus to testing just the ISA specs.

Friday, August 20, 2010

Our approach

ISA spec
(IA32,PPC,...)
written in TSL language \

Analysis
engine

TSL system

® Narrow the focus to testing just the ISA specs.

Friday, August 20, 2010

Our approach

ISA spec
(IA32,PPC,...)
written in TSL language \

Analysis

TSL system :
engine

EMUL

® Narrow the focus to testing just the ISA specs.

® Can we really isolate an ISA spec? We can come close by
using EMUL, the “simplest” interpretation.

Friday, August 20, 2010

Our approach

|A32
\

Analysis

TSL system :
engine

EMUL

® Narrow the focus to testing just the ISA specs.

® Can we really isolate an ISA spec? We can come close by
using EMUL, the “simplest” interpretation.

Friday, August 20, 2010

Our approach

|A32

EMUL

® Narrow the focus to testing just the ISA specs.

® Can we really isolate an ISA spec? We can come close by
using EMUL, the “simplest” interpretation.

Friday, August 20, 2010

Our approach

|A32

EMUL

® Narrow the focus to testing just the ISA specs.

® Can we really isolate an ISA spec? We can come close by
using EMUL, the “simplest” interpretation.

® And for now, start with |A32.

Friday, August 20, 2010

Goal for the summer

Goal for the summer

¢ Find out how complete and precise our
IA32 TSL specification is...

Friday, August 20, 2010

Goal for the summer

¢ Find out how complete and precise our
IA32 TSL specification is...

® _.by generating an IA32 emulator, then
comparing the emulator to the real processor.

Friday, August 20, 2010

Goal for the summer

¢ Find out how complete and precise our
IA32 TSL specification is...

® _.by generating an IA32 emulator, then
comparing the emulator to the real processor.

® |f resulting states differ on the same inputs, the
spec was (probably) buggy.

Friday, August 20, 2010

Goal for the summer

¢ Find out how complete and precise our
IA32 TSL specification is...

® _.by generating an IA32 emulator, then
comparing the emulator to the real processor.

® |f resulting states differ on the same inputs, the
spec was (probably) buggy.

® We already have all the pieces: IA32 spec, EMUL, and
a third-party tool for testing CPU emulators. This
will be easy, right?!

Friday, August 20, 2010

How to test a CPU emulator

How to test a CPU emulator

EmuFuzzer’s design

Martignioni, L., et al,“Testing CPU Emulators”, ISSTA 09

Friday, August 20, 2010

How to test a CPU emulator

EmuFuzzer’s design

But wait!

FB
QFBY VSA

We don’t only want to
test emulators.

_

Martignioni, L., et al,“Testing CPU Emulators”, ISSTA 09

Friday, August 20, 2010

How to test a CPU emulator

EmuFuzzer’s design

Martignioni, L., et al,“Testing CPU Emulators”, ISSTA 09

Friday, August 20, 2010

How to test a CPU emulator

(someday)
\ . .
How to test any analysis engine

(someday)

How to test any analysis engine

Our design

Look-thru memory

Look-thru memory

Look-thru memory

"Hey, what did you say €aX was again?"

— e — - —
— — — ~
p— — O — ——— —-—

- o P
does nothing 0
at first!
\ " "

—~—
— -
————————-__—————————'

® The ability to lazily instantiate the
emulator's state (memory and registers)
from that of the process as each
instruction is being emulated.

Friday, August 20, 2010

TSL validator main loop

TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/

Clear emulator's Emulate i using
memory look-thru memory

—

Write-protect all of
P's memory pages

Try to single-step P
on instruction i

| % Write fault?

l Unprotect and
try again

Friday, August 20, 2010

TSL validator main loop

Halt test program P

/ at instruction i

Repeat for
instruction i +|

/

Clear emulator's Emulate i using
memory look-thru memory

—

Write-protect all of
P's memory pages

Try to single-step P
on instruction i

| % Write fault?

l Unprotect and
try again

Friday, August 20, 2010

TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/ Abstract environment Physical environment

Randomly (or deliberately)
chosen state
Clear emulator's Emulate i using
memory look-thru memory . o .
"Abstract”
irllrs‘::;Etr.‘i‘:n add eax, 4 inEs::uc:tzzn
? Write-protect all of
L

|
- j

e~

P's memory pages
‘ E) \

Try to single-step P
on instruction i .
|~ Write fault?

' Unprotect and
try again

Friday, August 20, 2010

TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/ Abstract environment Physical environment

Randomly (or deliberately)
chosen state
Clear emulator's Emulate i using
memory look-thru memory . o .
"Abstract”
irllrs‘::;Etr.‘i‘:n add eax, 4 inEs::uc:tzzn
? Write-protect all of
L

|
- j

e~

P's memory pages ‘ \

Try to single-step P
on instruction i .
|~ Write fault?

' Unprotect and
try again

Friday, August 20, 2010

TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/ Abstract environment Physical environment

Randomly (or deliberately)
chosen state
Clear emulator's Emulate i using
memory look-thru memory . o .
"Abstract”
irllrs‘::;Etr.‘i‘:n add eax, 4 inEs::uc:tzzn
? Write-protect all of
L

|
- j

e~

P's memory pages
‘ E) \

Try to single-step P
on instruction i)
| Write fault?

' Unprotect and
try again

Friday, August 20, 2010

TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/ Abstract environment Physical environment
Randomly (or deliberately)
chosen state
Clear emulator's Emulate i using
memory look-thru memory . e .
‘Abstract
irllrs‘::lzzt?::n add eax, “ inEs)t(re::tzzn

Write-protect all of

P's memory pages
‘ E \

X — I
"Abstract”

e~

Try to single-step P
on instruction i .
|~ Write fault?

' Unprotect and
try again

Friday, August 20, 2010

TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

-

\

State comparison

/ Abstract environment Physical environment
Randomly (or deliberately)
chosen state
Clear emulator's Emulate i using
memory look-thru memory . e .
‘Abstract
| T add eax, 4 Sxc

instruction

X — I
"Abstract”

Write-protect all of
P's memory pages

I =~J

is tricky

e~

u

Try to single-step P
on instruction i .
|~ Write fault?

' Unprotect and
try again

Friday, August 20, 2010

TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/

Clear emulator's Emulate i using
memory look-thru memory

I I

[
4 :
? Write-protect all of
L
State comparison _ P's memory pages
is tricky =
\

Try to single-step P
on instruction i

| % Write fault?

l Unprotect and
try again

Friday, August 20, 2010

TSL validator main loop

Halt test program P

" at instruction i

Repeat for
instruction i +|

/

Clear emulator's Emulate i using
memory look-thru memory

N T

[
4 :
? Write-protect all of
L
State comparison _ P's memory pages
is tricky =
\

Try to single-step P
on instruction i

| % Write fault?

l Unprotect and
try again

Friday, August 20, 2010

Future work:
short-term stuff

Future work:
short-term stuff

¢ The hard part of state comparison:
identify changed locations on the real process
side, and compare them with corresponding
locations on the emulator side.

Friday, August 20, 2010

Future work:
short-term stuff

The hard part of state comparison:
identify changed locations on the real process
side, and compare them with corresponding
locations on the emulator side.

Better logging and reporting: eventually, we'd
like to have a “dashboard”.

Friday, August 20, 2010

Future work:
short-term stuff

¢ The hard part of state comparison:
identify changed locations on the real process
side, and compare them with corresponding
locations on the emulator side.

® Better logging and reporting: eventually, we'd
like to have a “dashboard”.

® How will we deal with test programs that
“misbehave™?

Friday, August 20, 2010

Future work:
long-term stuff

Future work:
long-term stuff

ISA spec
(IA32,PPC, ...

written in TSL language

Analysis spec

aka "interpretation”

TSL system
engine

Friday, August 20, 2010

Future work:
long-term stuff

ISA spec

(IA32,PPC,...)
written in TSL language

Analysis spec

aka "interpretation”

TSL system
engine

® Support for more ISAs. (x64, at least!)

Friday, August 20, 2010

Future work:
long-term stuff

ISA spec
|A32, PPC, ...
wric(ten inTSL Iangt)lage \
TSL system A;r:\z;ll); s;s
Analysis spec

aka "interpretation”

® Support for more ISAs. (x64, at least!)

e Support for abstract interpretations, not just EMUL.

Friday, August 20, 2010

Future work:
long-term stuff

ISA spec
Analysis
engine

IA32, PPC, ...
writften inTSL Iang\)lage \
® Support for more ISAs. (x64, at least!)

TSL system

Analysis spec

aka "interpretation”

e Support for abstract interpretations, not just EMUL.

® Find ways to choose which inputs to test that will be most
likely to turn up bugs in a specification.

Friday, August 20, 2010

What | learned

What | learned

® Emulators, debuggers, and static analyzers are
not made of magic

Friday, August 20, 2010

What | learned

® Emulators, debuggers, and static analyzers are
not made of magic

® First real systems programming experience:
didn’t quite cross the kernel space boundary,
but came right up next to it

Friday, August 20, 2010

What | learned

® Emulators, debuggers, and static analyzers are
not made of magic

® First real systems programming experience:
didn’t quite cross the kernel space boundary,
but came right up next to it

® A metric for how much | can accomplish in 13
weeks

Friday, August 20, 2010

What | learned

Emulators, debuggers, and static analyzers are
not made of magic

First real systems programming experience:
didn’t quite cross the kernel space boundary,
but came right up next to it

A metric for how much | can accomplish in |3
weeks

Finally convinced that OOP is good for
something

Friday, August 20, 2010

Thank you!

Questions!

(ex1it)

Friday, August 20, 2010

