A system for testing specifications of CPU semantics

or, What I did on my summer vacation

Lindsey Kuper

Lim, J, and Reps, T., "A System for Generating Static Analyzers from Machine Instructions", CC '08

• TSL (Transformer Specification Language) lets us generate static analyzers from specifications. Great!

Lim, J, and Reps, T., "A System for Generating Static Analyzers from Machine Instructions", CC '08

- TSL (Transformer Specification Language) lets us generate static analyzers from specifications. Great!
- But how do we know if the generated analysis engines (multiplicatively many!) are correct?

• Narrow the focus to testing just the ISA specs.

• Narrow the focus to testing just the ISA specs.

- Narrow the focus to testing just the ISA specs.
- Can we really *isolate* an ISA spec? We can come close by using EMUL, the "simplest" interpretation.

- Narrow the focus to testing just the ISA specs.
- Can we really *isolate* an ISA spec? We can come close by using EMUL, the "simplest" interpretation.

- Narrow the focus to testing just the ISA specs.
- Can we really *isolate* an ISA spec? We can come close by using EMUL, the "simplest" interpretation.

- Narrow the focus to testing just the ISA specs.
- Can we really *isolate* an ISA spec? We can come close by using EMUL, the "simplest" interpretation.
- And for now, start with IA32.

• Find out how complete and precise our IA32 TSL specification is...

- Find out how complete and precise our IA32 TSL specification is...
 - ...by generating an IA32 emulator, then comparing the emulator to the real processor.

- Find out how complete and precise our IA32 TSL specification is...
 - ...by generating an IA32 emulator, then comparing the emulator to the real processor.
 - If resulting states differ on the same inputs, the spec was (*probably*) buggy.

- Find out how complete and precise our IA32 TSL specification is...
 - ...by generating an IA32 emulator, then comparing the emulator to the real processor.
 - If resulting states differ on the same inputs, the spec was (*probably*) buggy.
- We already have all the pieces: IA32 spec, EMUL, and a third-party tool for testing CPU emulators. This will be easy, right?!

EmuFuzzer's design

Martignioni, L., et al, "Testing CPU Emulators", ISSTA '09

Martignioni, L., et al, "Testing CPU Emulators", ISSTA '09

EmuFuzzer's design

Martignioni, L., et al, "Testing CPU Emulators", ISSTA '09

(someday) How to test any analysis engine

(someday) How to test any analysis engine

Look-thru memory

Look-thru memory

Look-thru memory

 The ability to *lazily* instantiate the emulator's state (memory and registers) from that of the process as each instruction is being emulated.

• The hard part of state comparison: identify changed locations on the real process side, and compare them with corresponding locations on the emulator side.

- The hard part of state comparison: identify changed locations on the real process side, and compare them with corresponding locations on the emulator side.
- Better logging and reporting: eventually, we'd like to have a "dashboard".

- The hard part of state comparison: identify changed locations on the real process side, and compare them with corresponding locations on the emulator side.
- Better logging and reporting: eventually, we'd like to have a "dashboard".
- How will we deal with test programs that "misbehave"?

• Support for more ISAs. (x64, at least!)

- Support for more ISAs. (x64, at least!)
- Support for abstract interpretations, not just EMUL.

- Support for more ISAs. (x64, at least!)
- Support for abstract interpretations, not just EMUL.
- Find ways to choose which inputs to test that will be most likely to turn up bugs in a specification.

• Emulators, debuggers, and static analyzers are not made of magic

- Emulators, debuggers, and static analyzers are not made of magic
- First real systems programming experience: didn't quite cross the kernel space boundary, but came right up next to it

- Emulators, debuggers, and static analyzers are not made of magic
- First real systems programming experience: didn't quite cross the kernel space boundary, but came right up next to it
- A metric for how much I can accomplish in I3 weeks

- Emulators, debuggers, and static analyzers are not made of magic
- First real systems programming experience: didn't quite cross the kernel space boundary, but came right up next to it
- A metric for how much I can accomplish in I3 weeks
- Finally convinced that OOP is good for something

Thank you!

Questions?

(exit)