Parametric Polymorphism Through Run-time Sealing or, Theorems for Low, Low Prices!

> Amal Ahmed Lindsey Kuper Jacob Matthews

Northeastern University Programming Languages Seminar February 23, 2011

Thursday, February 24, 2011

# What is parametricity?

#### Separation of implementation and interface

#### Separation of implementation and interface

Counter = 
$$\exists \alpha$$
. {new :  $\alpha$ ,  
inc :  $\alpha \rightarrow \alpha$ ,  
get :  $\alpha \rightarrow \text{Nat}$ }

#### Separation of implementation and interface

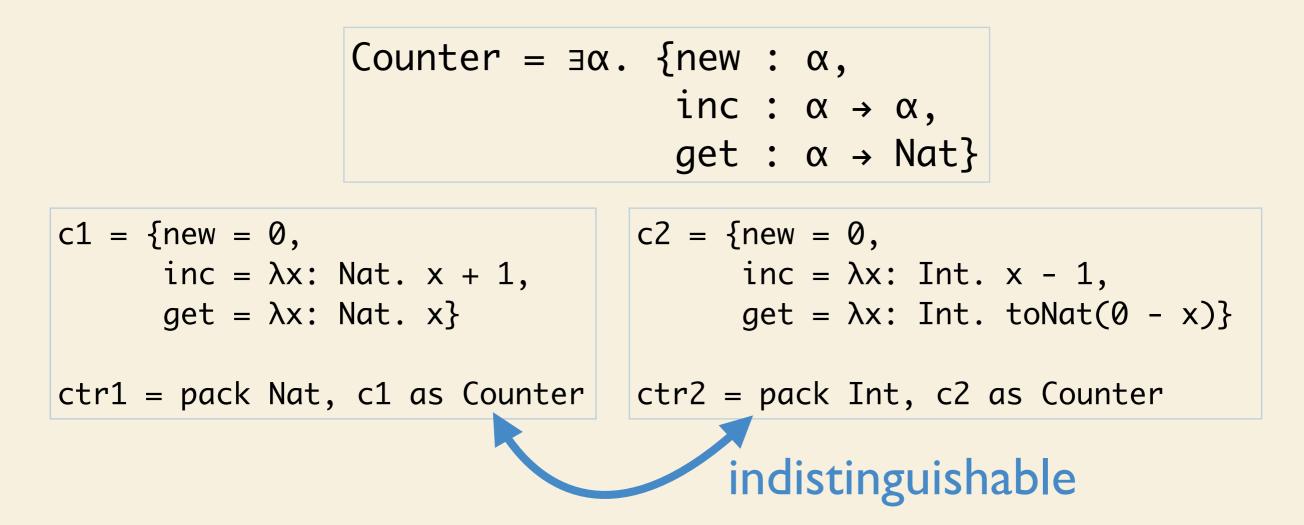
Counter = 
$$\exists \alpha$$
. {new :  $\alpha$ ,  
inc :  $\alpha \rightarrow \alpha$ ,  
get :  $\alpha \rightarrow \text{Nat}$ }

 $c1 = \{new = 0, \\ inc = \lambda x: Nat. x + 1, \\ get = \lambda x: Nat. x\}$ ctr1 = pack Nat, c1 as Counter

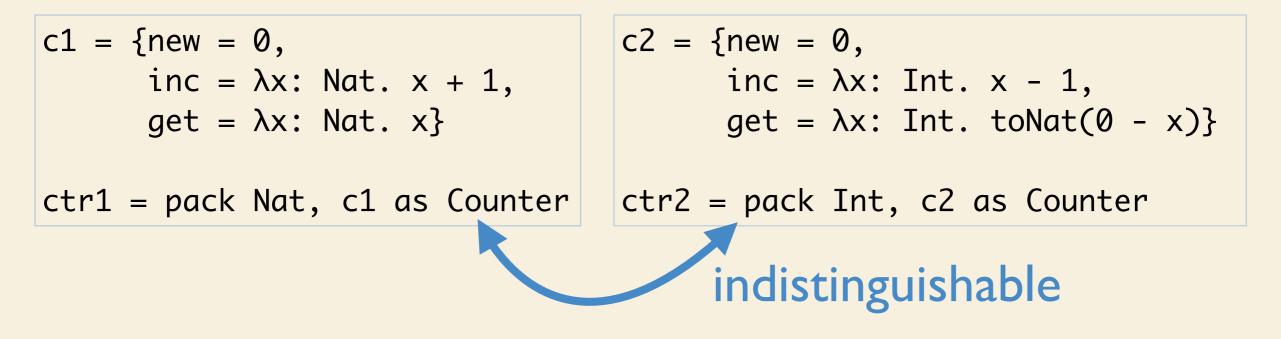
#### Separation of implementation and interface

|                                                              | Counter = $\exists \alpha$ . {new : $\alpha$ ,<br>inc : $\alpha \rightarrow \alpha$ ,<br>get : $\alpha \rightarrow \text{Nat}$ } |                                                                                           |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| c1 = {new = 0,<br>inc = $\lambda x$ :<br>get = $\lambda x$ : | Nat. x + 1,<br>Nat. x}                                                                                                           | $c2 = \{new = 0, \\ inc = \lambda x: Int. x - 1, \\ get = \lambda x: Int. toNat(0 - x)\}$ |
| ctr1 = pack Nat,                                             | c1 as Counter                                                                                                                    | ctr2 = pack Int, c2 as Counter                                                            |

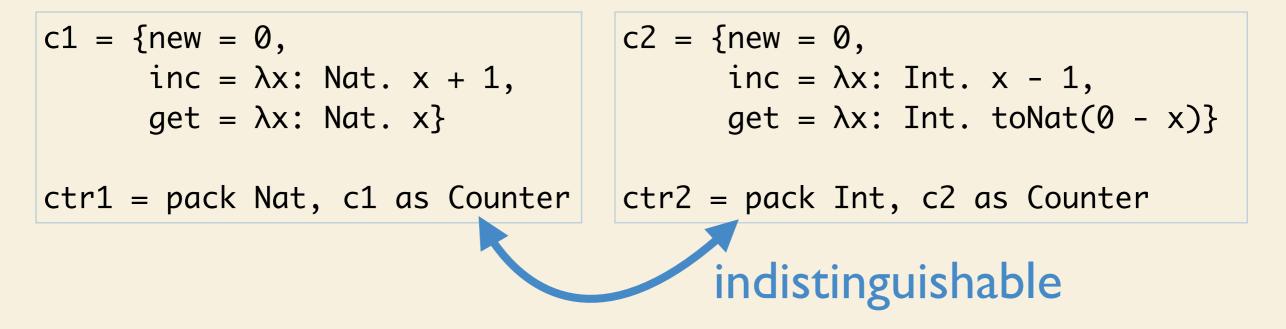
#### Separation of implementation and interface



# Existential types...

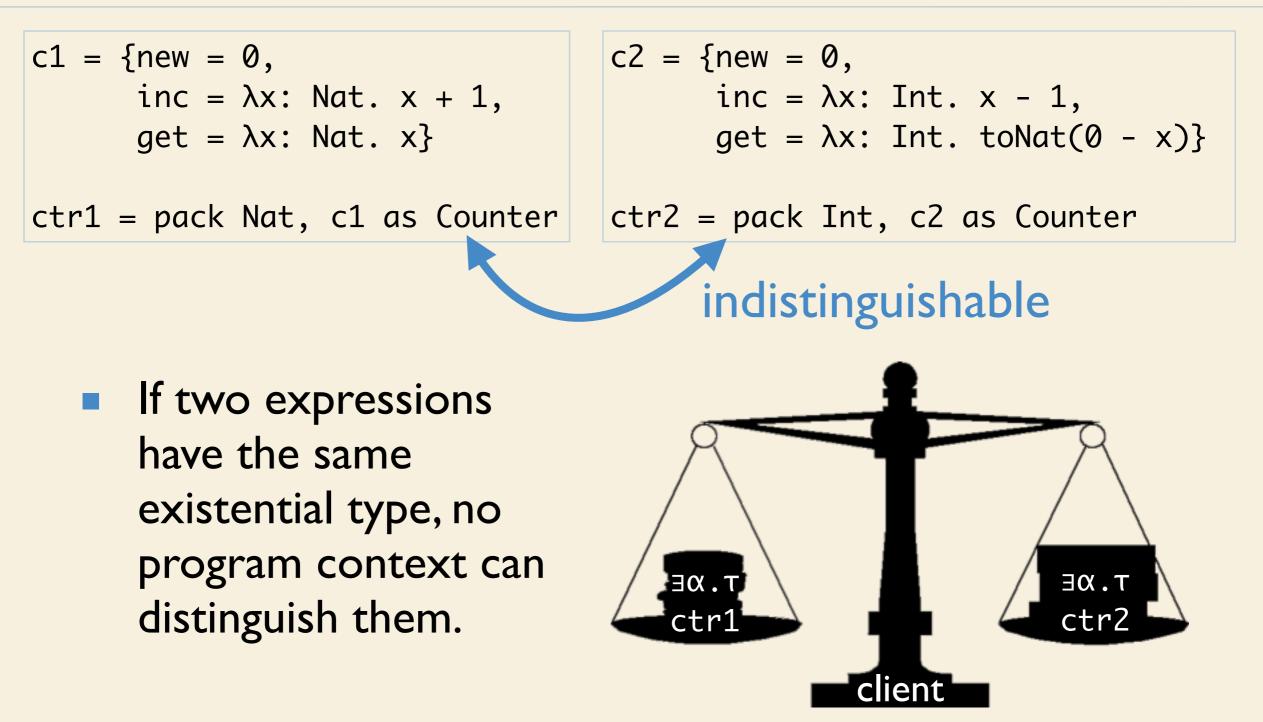


# Existential types...



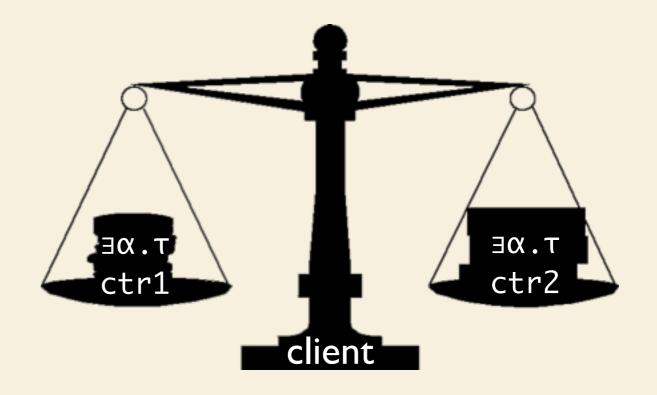
 If two expressions have the same existential type, no program context can distinguish them.

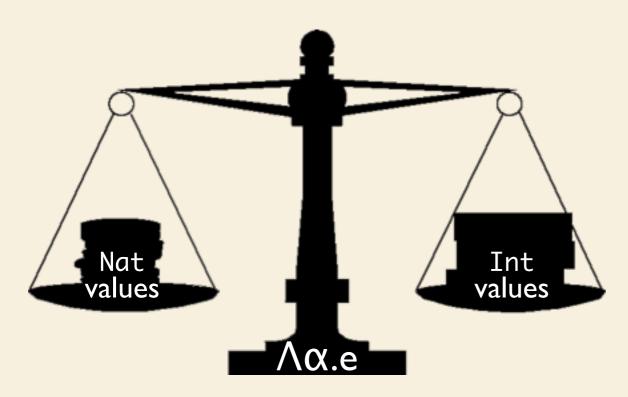
# Existential types...

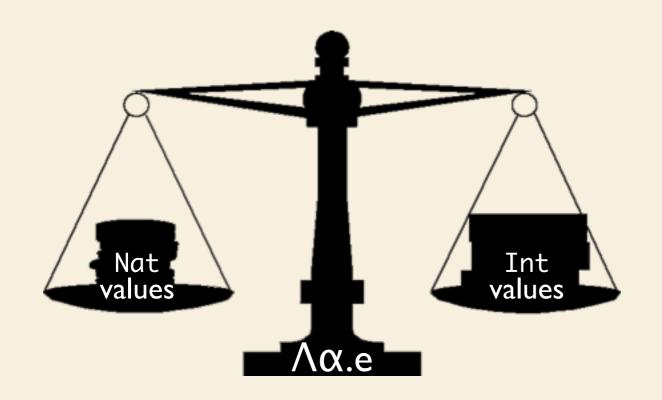


# Existential types...and their dual, universal types

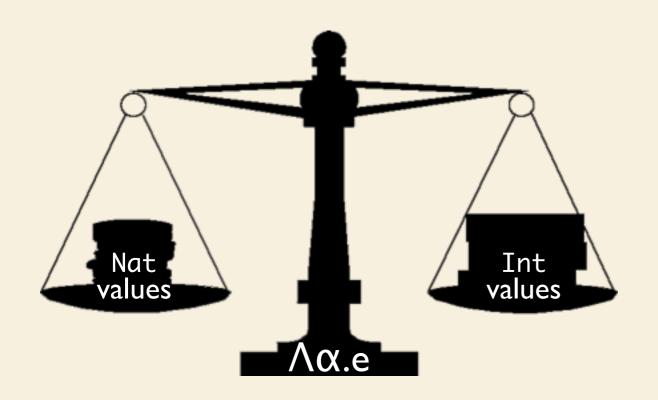
 If two expressions have the same existential type, no program context can distinguish them.





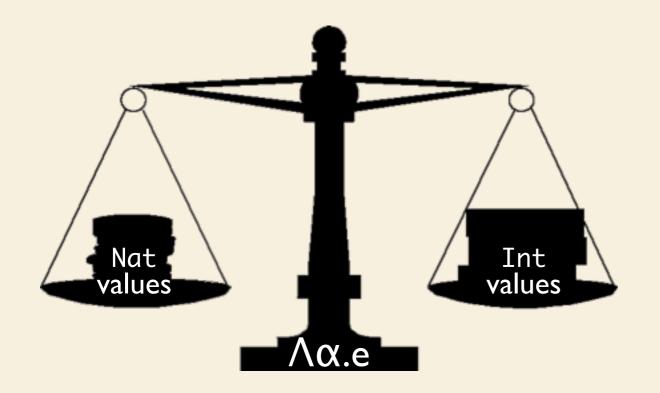


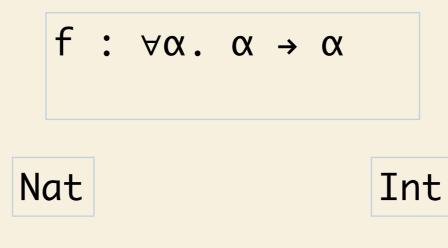
f :  $\forall \alpha . \alpha \rightarrow \alpha$ 

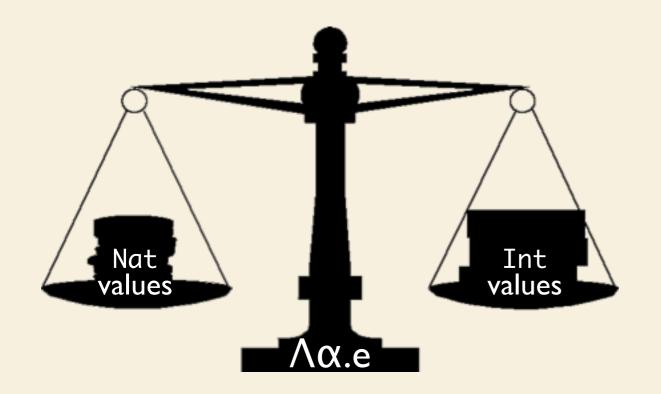


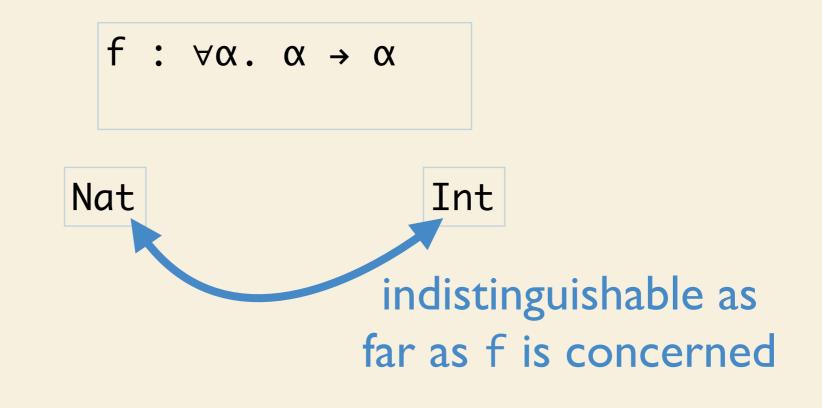
f :  $\forall \alpha . \alpha \rightarrow \alpha$ 

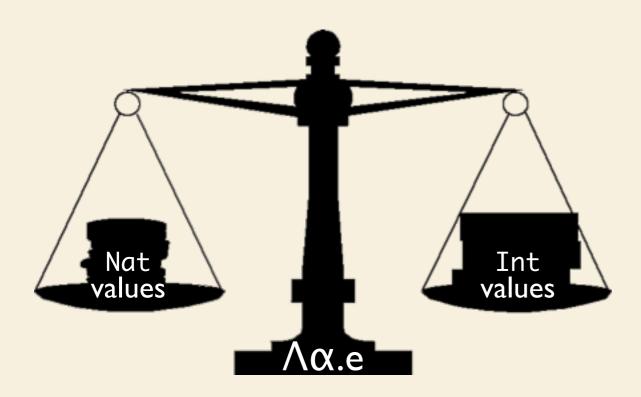


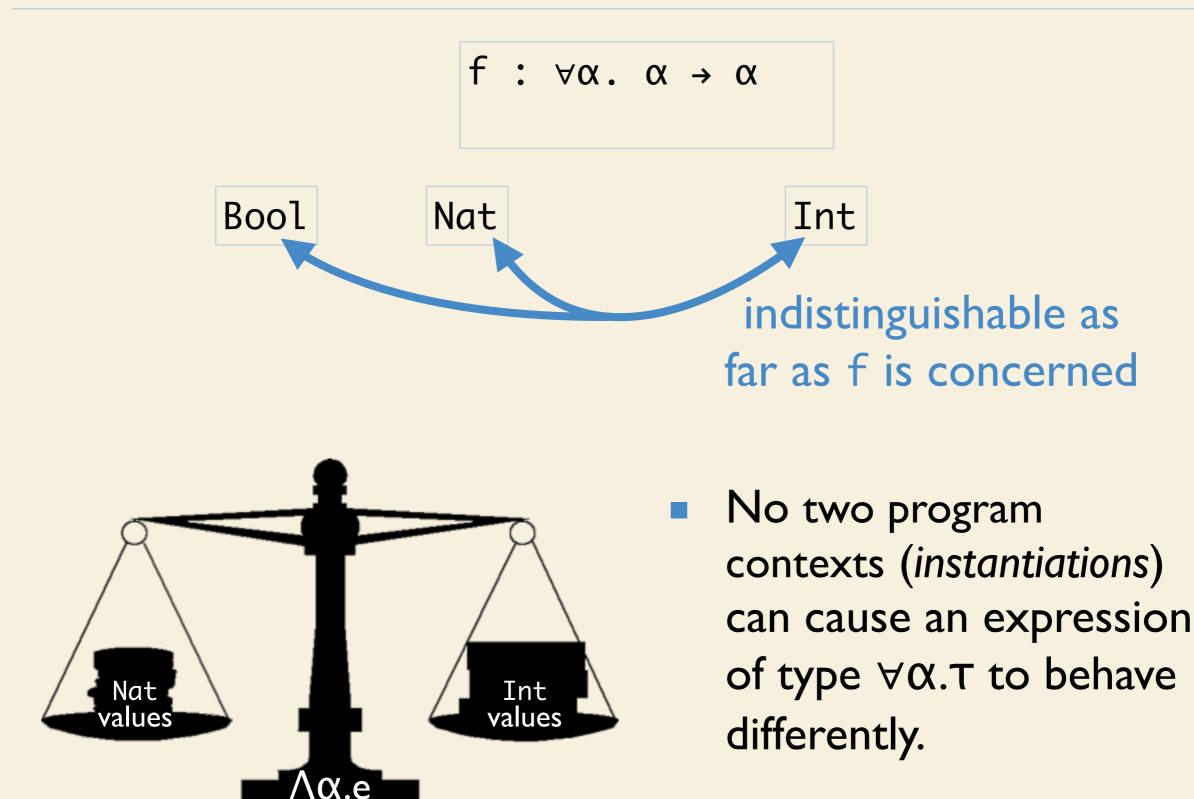


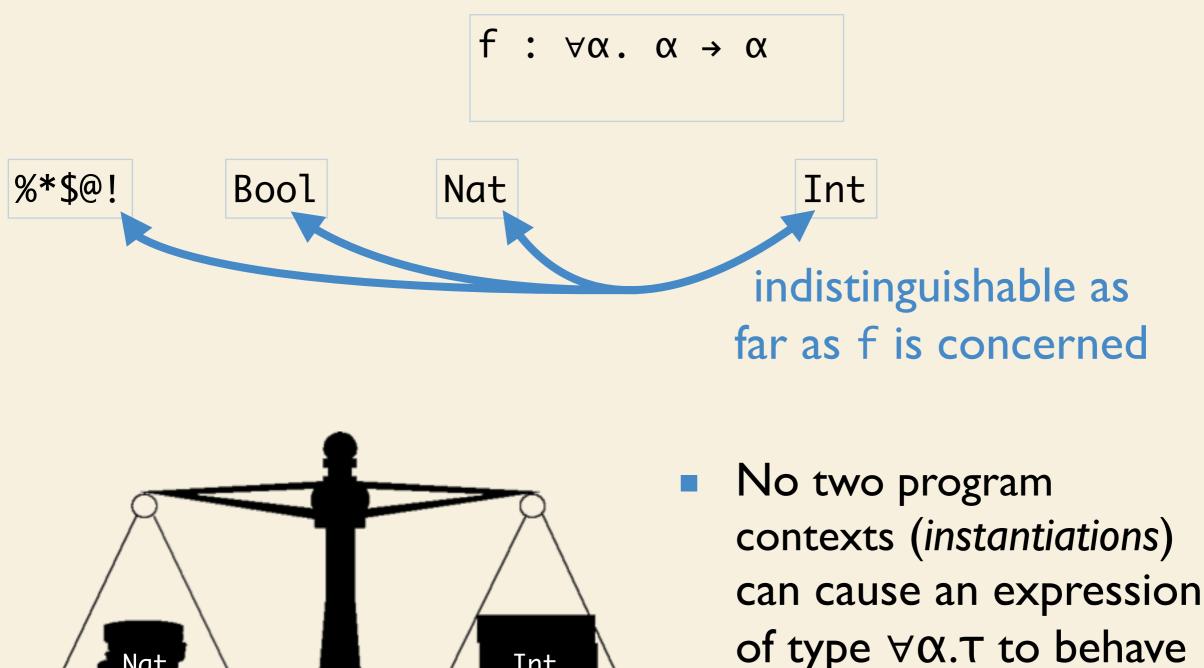










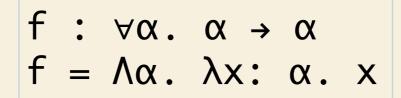


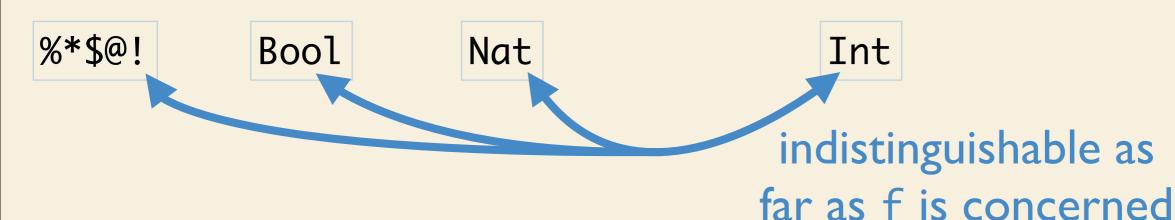
 $\operatorname{Int}$ 

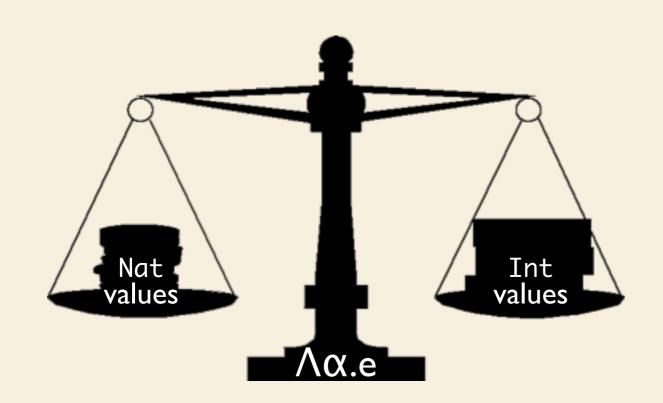
α.e

differently.

Nat



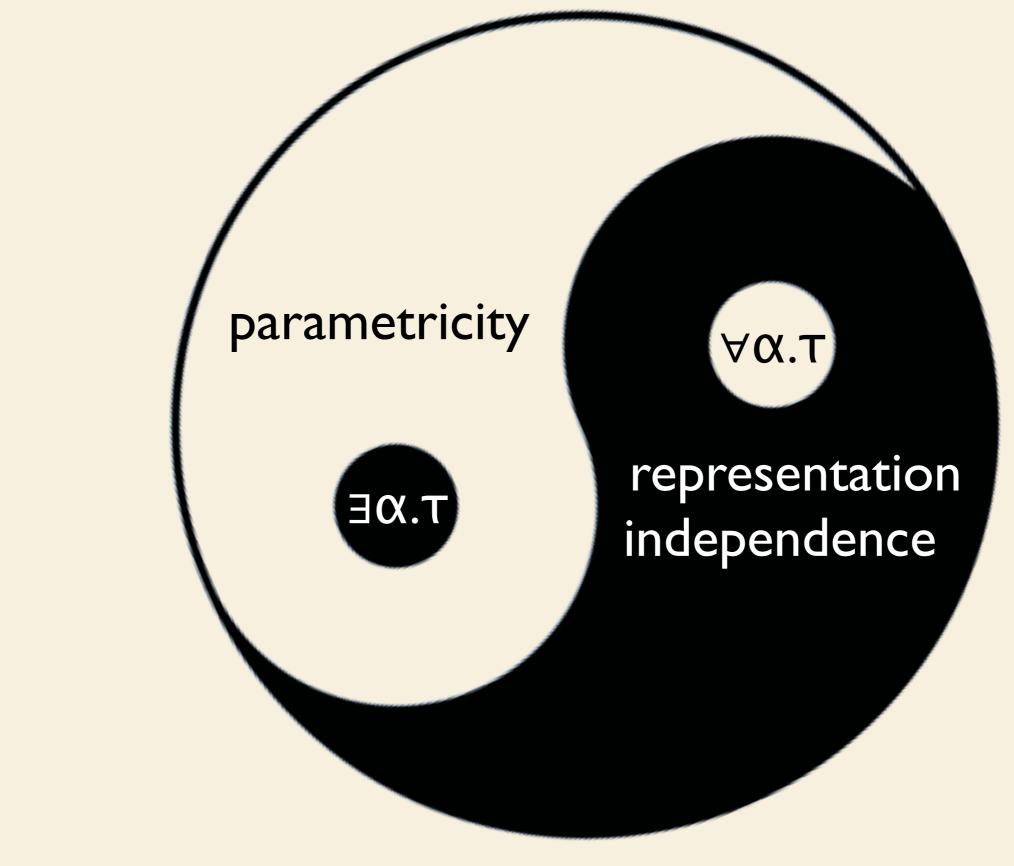




## Existential types...and their dual, universal types



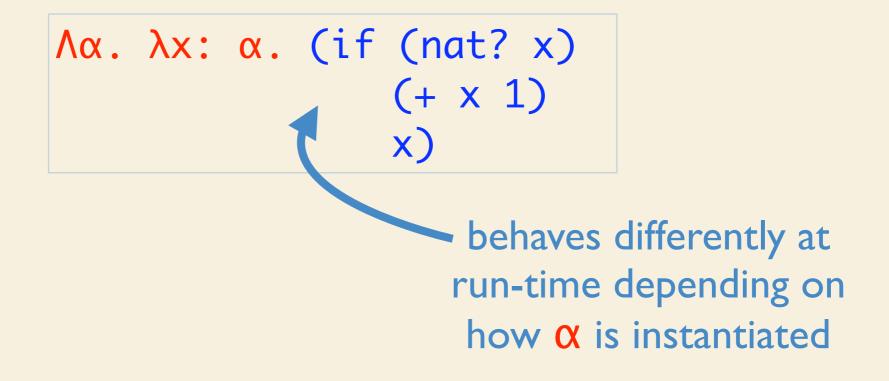
## Existential types...and their dual, universal types



# **Breaking parametricity**

### How to break parametricity in one easy step

### How to break parametricity in one easy step



#### How to break parametricity in one easy step

 $\Lambda \alpha$ .  $\lambda x$ :  $\alpha$ . (if (nat? x) (+ x 1) x) behaves differently at run-time depending on how  $\alpha$  is instantiated

#### Putting dynamically typed code in an otherwise statically typed program provides a way to "smuggle values past the type system" (Abadi et al., 1989)

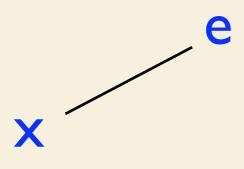
How can we assign a type to a program that's written in two languages?

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews & Findler, 2007):

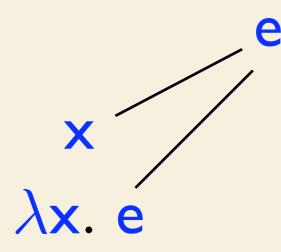
- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews & Findler, 2007):

e

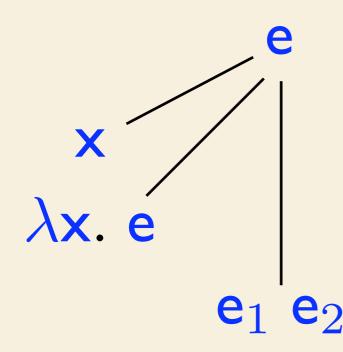
- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews & Findler, 2007):



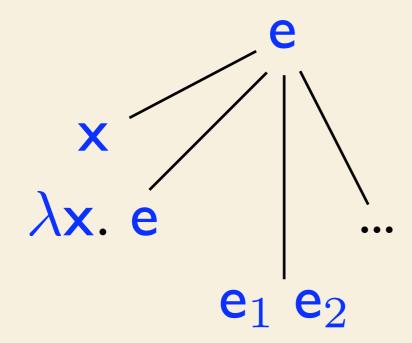
- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews & Findler, 2007):



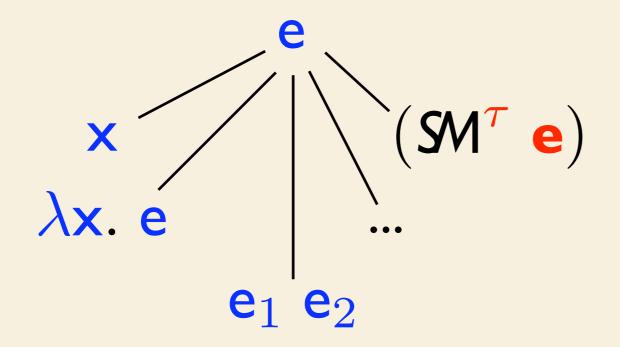
- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews & Findler, 2007):



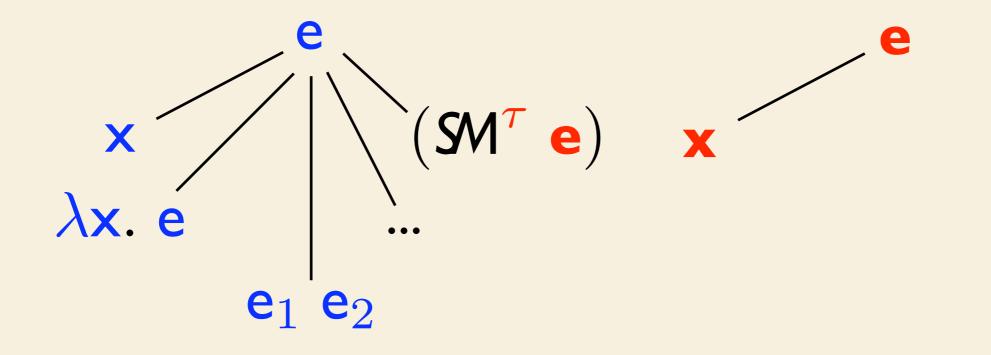
- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews & Findler, 2007):



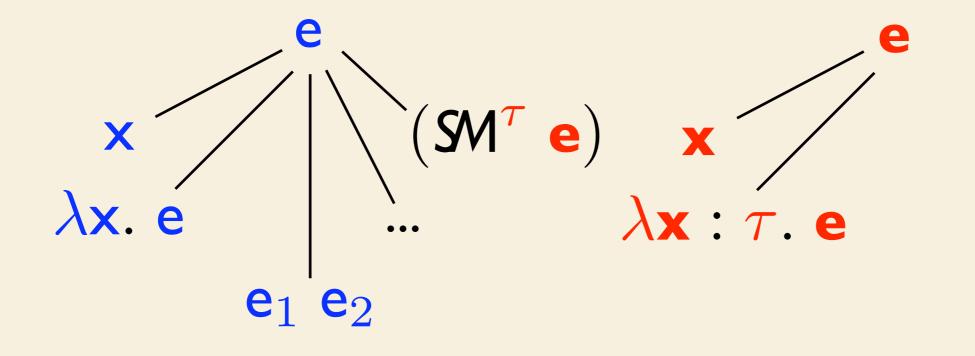
- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews & Findler, 2007):



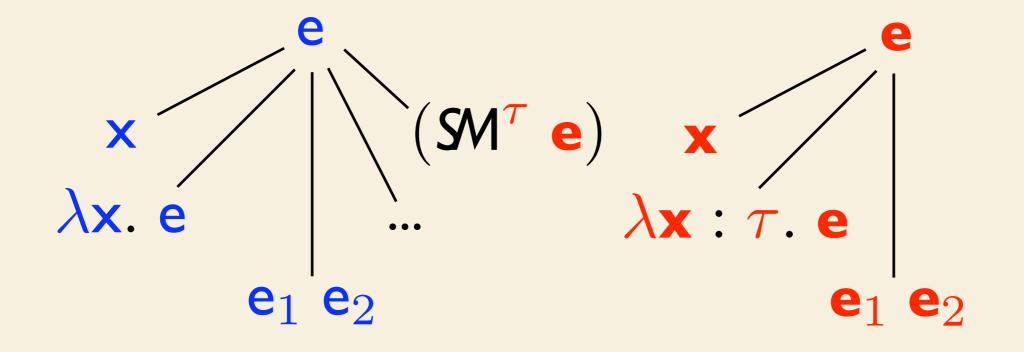
- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews & Findler, 2007):



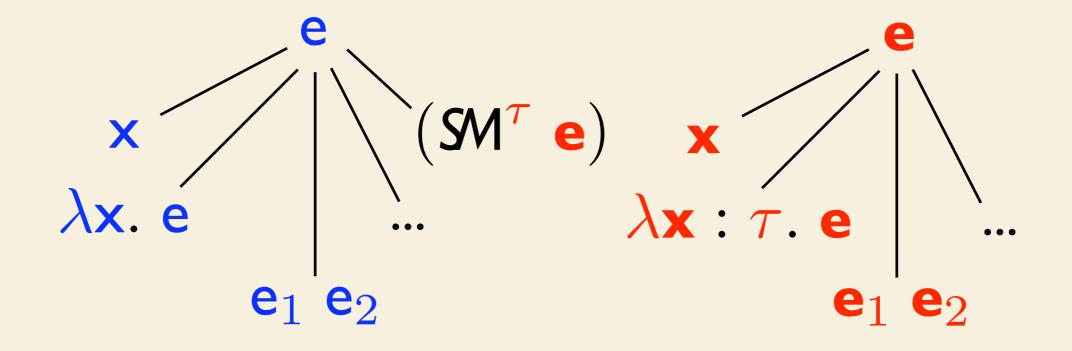
- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews & Findler, 2007):



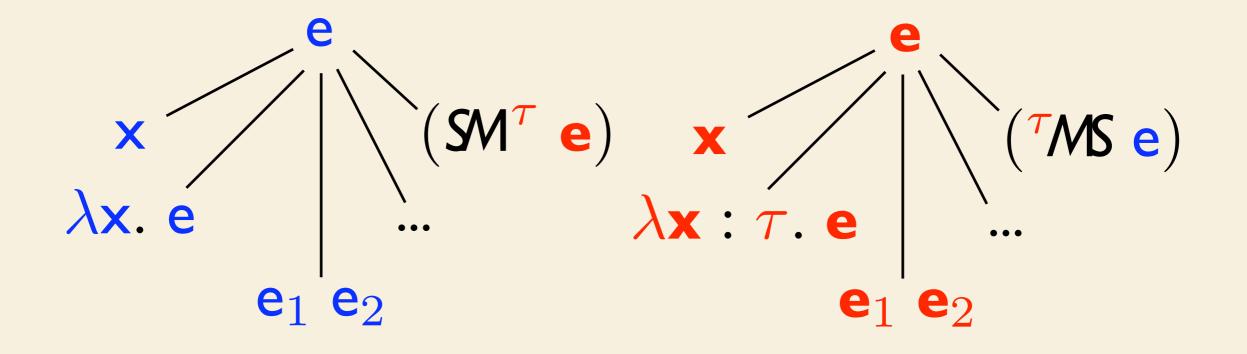
- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews & Findler, 2007):



- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews & Findler, 2007):



- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews & Findler, 2007):



 $(\tau_1 \rightarrow \tau_2 MS (\lambda \mathbf{x}. \mathbf{e}))$ 

have to choose some type at which to embed the procedure

 $(\tau_1 \rightarrow \tau_2 MS (\lambda x. e))$ 

have to choose some type at which to embed the procedure

 $({}^{\tau_1} \to {}^{\tau_2}MS (\lambda x. e)) \longmapsto (\lambda x : \tau_1.$ 

have to choose some type at which to embed the procedure

 $\left( {}^{\tau_1 \to \tau_2} M\!\!\!\mathsf{S} \left( \lambda_{\mathbf{X}} . \mathbf{e} \right) \right) \longmapsto \left( \lambda_{\mathbf{X}} : \tau_1 . \left( {}^{\tau_2} M\!\!\!\mathsf{S} \left( \lambda_{\mathbf{X}} . \mathbf{e} \right) \left( M\!\!\!\!\mathsf{S} {}^{\tau_1} \mathbf{x} \right) \right) \right)$ 

have to choose some type at which to embed the procedure

 $({}^{\tau_1} \rightarrow {}^{\tau_2} \mathcal{M} S (\lambda \mathbf{x}. \mathbf{e})) \longmapsto (\lambda \mathbf{x} : \tau_1. ({}^{\tau_2} \mathcal{M} S (\lambda \mathbf{x}. \mathbf{e}) (\mathcal{M} {}^{\tau_1} \mathbf{x})))$ 

direction of conversion reverses for arguments

 $(\forall \alpha \cdot \tau MS (\lambda x. e))$ 

 embedding a Scheme procedure in ML at a universal type

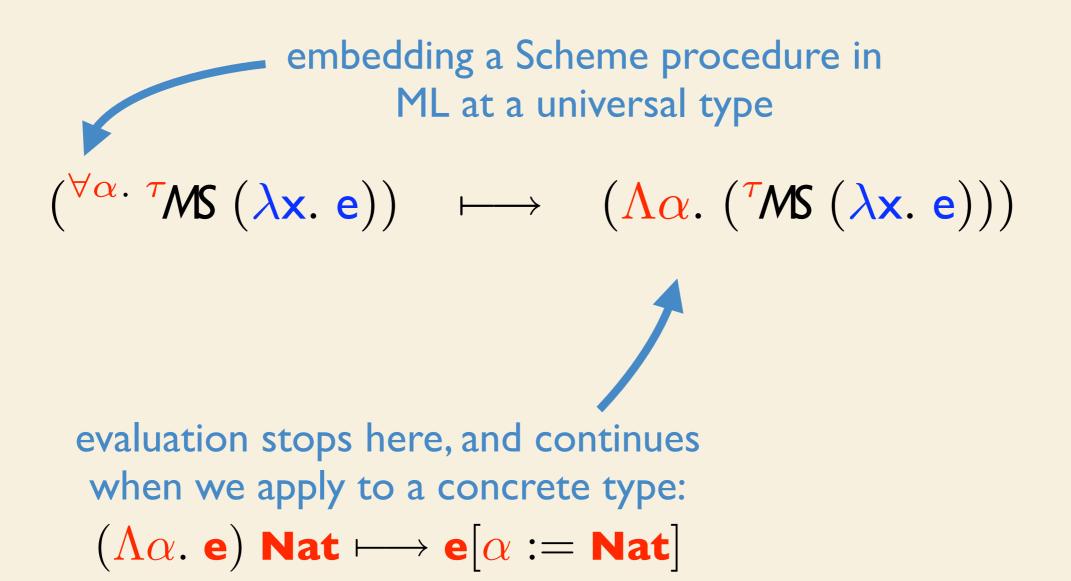


 embedding a Scheme procedure in ML at a universal type

 $(\overset{\forall \alpha}{} \overset{\tau}{MS} (\lambda x. e)) \longmapsto (\Lambda \alpha.$ 

 embedding a Scheme procedure in ML at a universal type

 $(\forall \alpha \cdot \tau MS(\lambda x. e)) \longmapsto (\Lambda \alpha \cdot (\tau MS(\lambda x. e)))$ 



 $(\forall \alpha. \ \alpha \rightarrow \alpha MS (\lambda x. x))$  Nat  $\overline{3}$ 

$$(\forall \alpha. \ \alpha \rightarrow \alpha MS (\lambda x. x))$$
 Nat  $\overline{3}$ 

 $\longrightarrow (\Lambda \alpha. (\stackrel{\alpha \to \alpha}{\longrightarrow} MS (\lambda x. x)) \operatorname{Nat} \overline{3}$ 

$$(\stackrel{\forall \alpha. \alpha \to \alpha}{\longrightarrow} MS (\lambda x. x)) \operatorname{Nat} \overline{3}$$
$$\longrightarrow (\Lambda \alpha. (\stackrel{\alpha \to \alpha}{\longrightarrow} MS (\lambda x. x)) \operatorname{Nat} \overline{3}$$
$$\longrightarrow (\operatorname{Nat} \to \operatorname{Nat} MS (\lambda x. x)) \overline{3}$$

$$(\stackrel{\forall \alpha. \alpha \to \alpha}{\mathsf{MS}} (\lambda \mathbf{x}. \mathbf{x})) \operatorname{Nat} \overline{3}$$

$$\longrightarrow (\Lambda \alpha. (\stackrel{\alpha \to \alpha}{\mathsf{MS}} (\lambda \mathbf{x}. \mathbf{x})) \operatorname{Nat} \overline{3}$$

$$\longrightarrow (\stackrel{\operatorname{Nat} \to \operatorname{Nat}}{\mathsf{MS}} (\lambda \mathbf{x}. \mathbf{x})) \overline{3}$$

$$\longrightarrow (\lambda \mathbf{y} : \operatorname{Nat}. (\stackrel{\operatorname{Nat}}{\mathsf{MS}} (\lambda \mathbf{x}. \mathbf{x}) (\operatorname{SM}^{\operatorname{Nat}} \mathbf{y}))) \overline{3}$$

$$(\stackrel{\forall \alpha. \alpha \to \alpha}{\mathsf{MS}} (\lambda \mathbf{x}. \mathbf{x})) \operatorname{Nat} \overline{3}$$

$$\longrightarrow (\Lambda \alpha. (\stackrel{\alpha \to \alpha}{\mathsf{MS}} (\lambda \mathbf{x}. \mathbf{x})) \operatorname{Nat} \overline{3}$$

$$\longrightarrow (\stackrel{\operatorname{Nat} \to \operatorname{Nat}}{\mathsf{MS}} (\lambda \mathbf{x}. \mathbf{x})) \overline{3}$$

$$\longrightarrow (\lambda \mathbf{y} : \operatorname{Nat}. (\stackrel{\operatorname{Nat}}{\mathsf{MS}} (\lambda \mathbf{x}. \mathbf{x}) (\operatorname{SM}^{\operatorname{Nat}} \mathbf{y}))) \overline{3}$$

$$\longrightarrow (\stackrel{\operatorname{Nat}}{\mathsf{MS}} (\lambda \mathbf{x}. \mathbf{x}) (\operatorname{SM}^{\operatorname{Nat}} \overline{3}))$$

$$(\forall \alpha. \alpha \rightarrow \alpha MS (\lambda x. x)) \text{ Nat } \overline{3}$$

$$\longrightarrow (\Lambda \alpha. (\alpha \rightarrow \alpha MS (\lambda x. x)) \text{ Nat } \overline{3}$$

$$\longrightarrow (^{\text{Nat} \rightarrow \text{Nat}}MS (\lambda x. x)) \overline{3}$$

$$\longrightarrow (\lambda y: \text{ Nat. } (^{\text{Nat}}MS (\lambda x. x) (SM^{\text{Nat}} y))) \overline{3}$$

$$\longrightarrow (^{\text{Nat}}MS (\lambda x. x) (SM^{\text{Nat}} \overline{3}))$$
first-order values are assumed to be convertible

$$( {}^{\forall \alpha. \ \alpha \to \alpha} MS (\lambda x. x) ) \text{ Nat } \overline{3}$$

$$\rightarrow (\Lambda \alpha. ( {}^{\alpha \to \alpha} MS (\lambda x. x) ) \text{ Nat } \overline{3}$$

$$\rightarrow ( {}^{\text{Nat} \to \text{Nat}} MS (\lambda x. x) ) \overline{3}$$

$$\rightarrow ( \lambda y : \text{ Nat. } ( {}^{\text{Nat}} MS (\lambda x. x) ( SM^{\text{Nat}} y) ) ) \overline{3}$$

$$\rightarrow ( {}^{\text{Nat}} MS (\lambda x. x) ( SM^{\text{Nat}} \overline{3} ) )$$

$$\rightarrow ( {}^{\text{Nat}} MS (\lambda x. x) \overline{3} )$$

$$first-order values are assumed to be convertible$$

$$( \overset{\forall \alpha. \ \alpha \to \alpha}{MS} (\lambda x. x)) \operatorname{Nat} \overline{3}$$

$$\longrightarrow (\Lambda \alpha. ( \overset{\alpha \to \alpha}{MS} (\lambda x. x)) \operatorname{Nat} \overline{3}$$

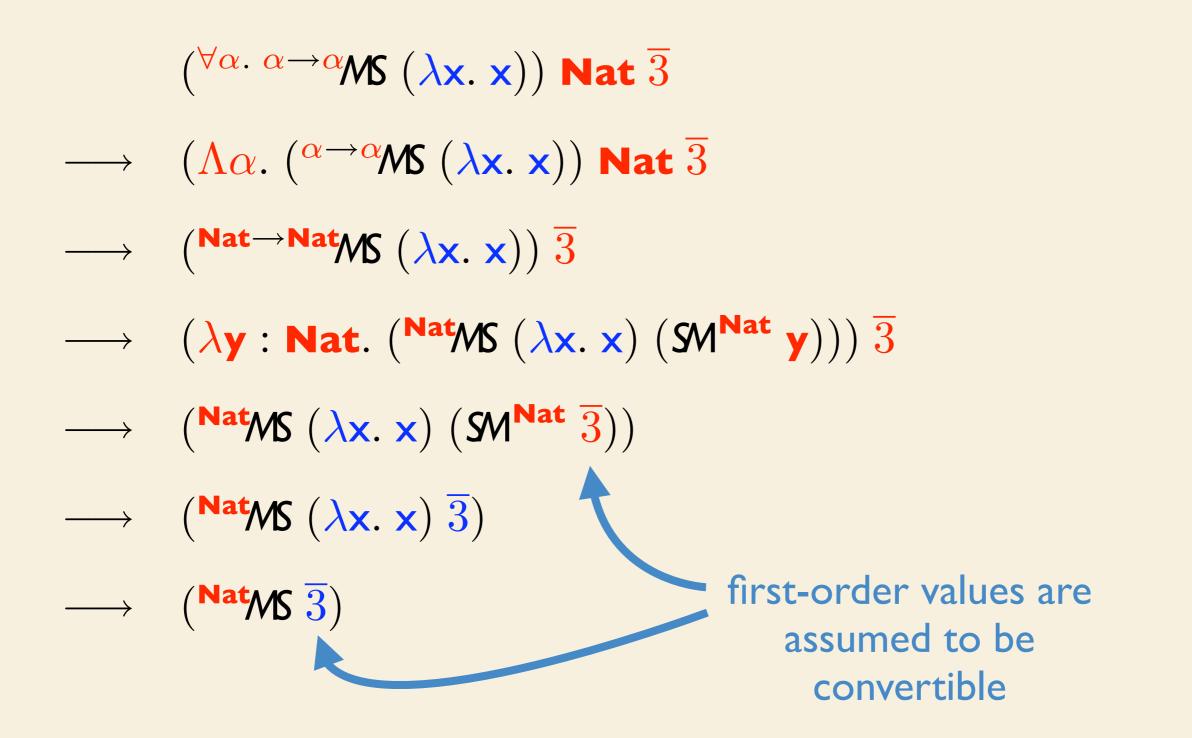
$$\longrightarrow ( \overset{\operatorname{Nat} \to \operatorname{Nat}}{MS} (\lambda x. x)) \overline{3}$$

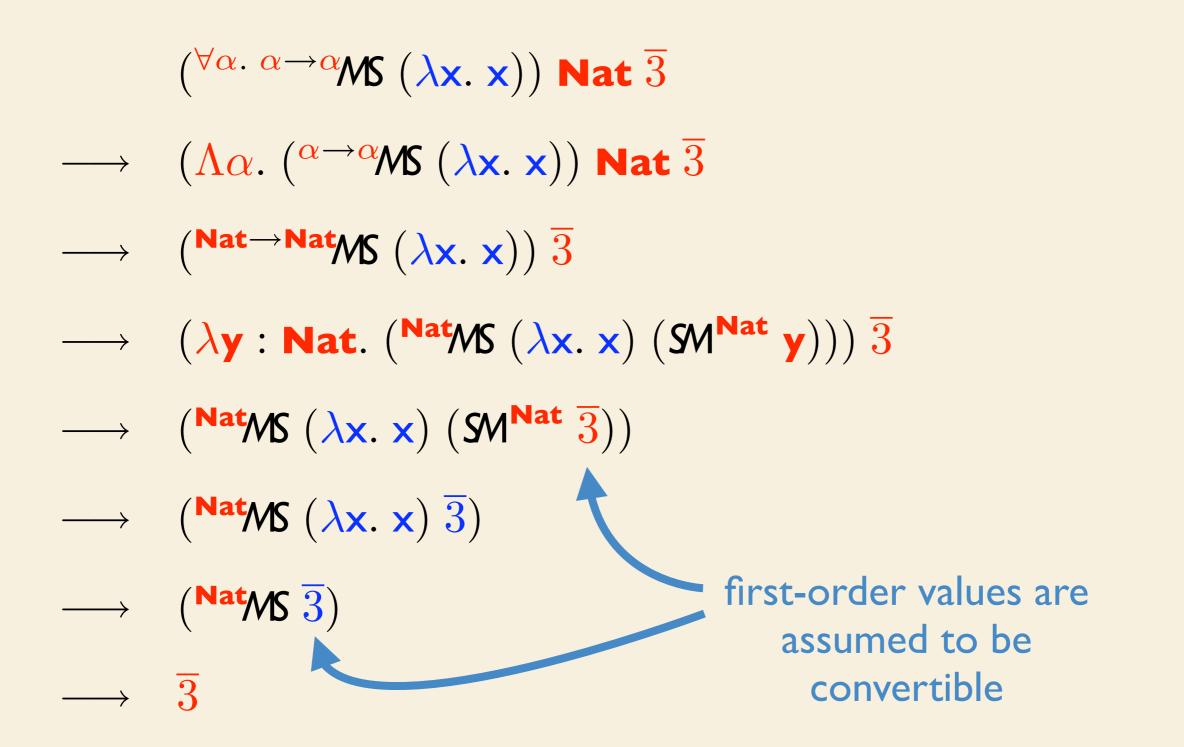
$$\longrightarrow ( \lambda y : \operatorname{Nat.} ( \overset{\operatorname{Nat}}{MS} (\lambda x. x) ( \overset{\operatorname{SM}}{Mat} y))) \overline{3}$$

$$\longrightarrow ( \overset{\operatorname{Nat}}{MS} (\lambda x. x) ( \overset{\operatorname{SM}}{Mat} \overline{3}))$$

$$\longrightarrow ( \overset{\operatorname{Nat}}{MS} (\lambda x. x) \overline{3})$$

$$\longrightarrow ( \overset{\operatorname{Nat}}{MS} \overline{3})$$
first-order values are assumed to be convertible





#### $(\forall \alpha . \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$ Nat

- well-typed expression of type  $\forall \alpha. \alpha \rightarrow \alpha$ 

 $(\forall \alpha . \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  Nat

well-typed expression of type  $\forall \alpha. \alpha \rightarrow \alpha$ 

- $(\forall \alpha \cdot \alpha \rightarrow \alpha MS(\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  Nat
- $\longrightarrow (\Lambda \alpha. (\stackrel{\alpha \to \alpha}{\longrightarrow} MS (\lambda x. (ifO (nat? x) (+ x \overline{1}) x)))) Nat$

well-typed expression of type  $\forall \alpha. \alpha \rightarrow \alpha$ 

 $(\stackrel{\forall \alpha. \alpha \to \alpha}{\text{MS}} (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))) \text{ Nat}) \rightarrow (\Lambda \alpha. (\stackrel{\alpha \to \alpha}{\text{MS}} (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))) \text{ Nat}) \rightarrow (\stackrel{\text{Nat} \to \text{Nat}}{\text{MS}} (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))))$ 

- well-typed expression of type  $\forall \alpha. \alpha \rightarrow \alpha$ 

 $\begin{pmatrix} \forall \alpha. \ \alpha \to \alpha MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ x))) \text{ Nat} \\ \longrightarrow \ (\Lambda \alpha. \ (^{\alpha \to \alpha}MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ x)))) \text{ Nat} \\ \longrightarrow \ (^{\text{Nat} \to \text{Nat}}MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ x)))) \\ \longrightarrow \ (\lambda y: \text{ Nat. } (^{\text{Nat}}MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ x))) \ (SM^{\text{Nat}} \ y)))$ 

well-typed expression of type  $\forall \alpha. \alpha \rightarrow \alpha$  $(\forall \alpha . \alpha \rightarrow \alpha MS(\lambda x. (ifO(nat? x)(+ x \overline{1}) x)))$  Nat  $\longrightarrow (\Lambda \alpha. (\stackrel{\alpha \to \alpha}{\longrightarrow} MS(\lambda x. (if0 (nat? x) (+ x \overline{1}) x))))$  Nat  $\longrightarrow (^{\text{Nat} \rightarrow \text{Nat}}MS(\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  $\longrightarrow$  ( $\lambda \mathbf{y} : \mathbf{Nat}. (\mathbf{^{Nat}MS} (\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat}? \mathbf{x}) (+ \mathbf{x} \overline{1}) \mathbf{x})) (\mathbf{M^{Nat} y})))$  $\equiv (\lambda \mathbf{y} : \mathbf{Nat}. (\mathsf{Nat}MS(\lambda \mathbf{x}. (+ \mathbf{x} \overline{1})) (\mathsf{SM}^{\mathbf{Nat}} \mathbf{y})))$ 

well-typed expression of type  $\forall \alpha. \alpha \rightarrow \alpha$  $(\forall \alpha . \ \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  Nat  $\longrightarrow (\Lambda \alpha. (\alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x 1) x))))$  Nat  $\longrightarrow (\text{Nat} \rightarrow \text{Nat} MS(\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  $\longrightarrow (\lambda \mathbf{y} : \mathbf{Nat}. (\mathsf{Nat}MS(\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat}? \mathbf{x}) (+ \mathbf{x} \overline{1}) \mathbf{x})) (\mathsf{SM}^{\mathbf{Nat}} \mathbf{y})))$  $\equiv (\lambda \mathbf{y} : \mathbf{Nat}. (\mathsf{Nat}MS(\lambda \mathbf{x}. (+ \mathbf{x} \overline{1})) (\mathsf{SM}^{\mathbf{Nat}} \mathbf{y})))$ not the identity function!

# What went wrong?

 $(\forall \alpha . \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  Nat  $\longrightarrow (\Lambda \alpha. (\alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))))$  Nat  $\longrightarrow$  (Nat $\rightarrow$ NatMS ( $\lambda x$ . (if0 (nat? x) (+ x  $\overline{1}$ ) x)))  $\longrightarrow (\lambda \mathbf{y} : \mathbf{Nat}. (\mathbf{^{Nat}MS} (\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat}? \mathbf{x}) (+ \mathbf{x} \overline{1}) \mathbf{x})) (\mathbf{M^{Nat} y})))$  $\equiv (\lambda \mathbf{y} : \mathbf{Nat}. (\mathsf{Nat}MS(\lambda \mathbf{x}. (+ \mathbf{x} \overline{1})) (\mathsf{SM}^{\mathbf{Nat}} \mathbf{y})))$ not the identity function! The problem: Scheme is able to observe the concrete choice of type for  $\alpha$  and behave accordingly.

# **Restoring parametricity**

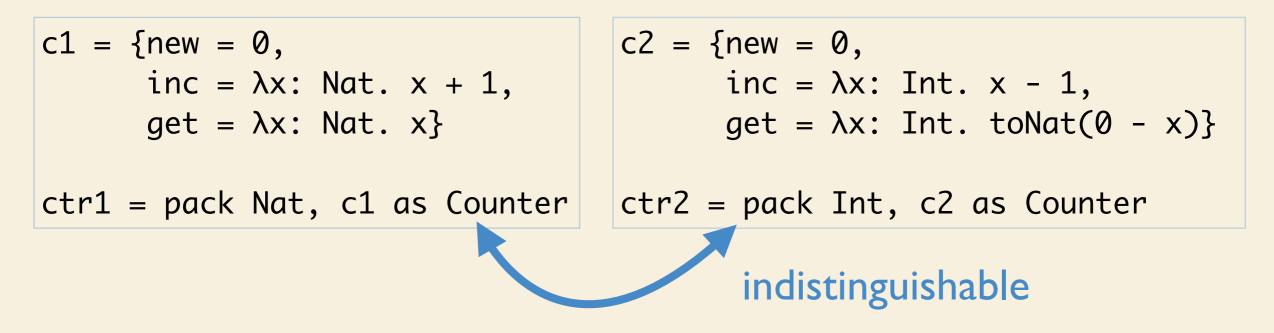
#### Data abstraction, revisited

#### Data abstraction, revisited

 Using type abstraction to enforce data abstraction is a static, compile-time approach

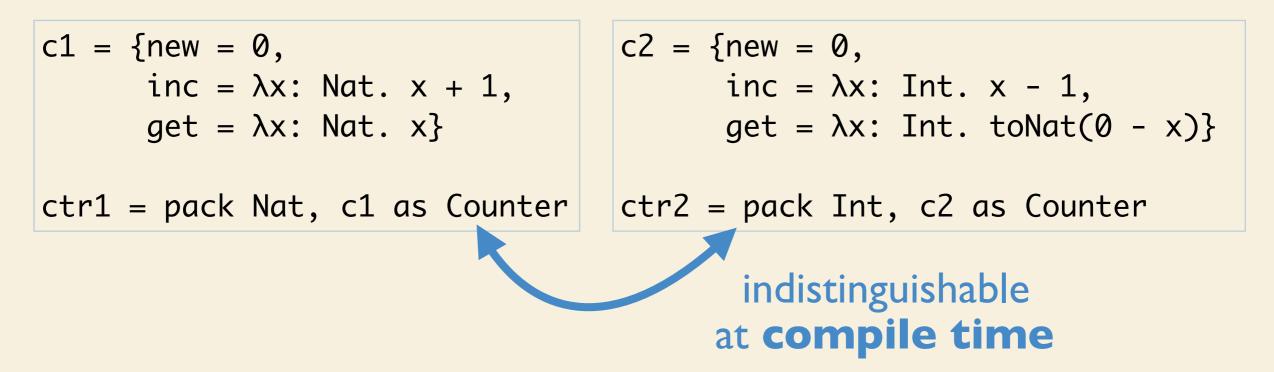
#### Data abstraction, revisited

 Using type abstraction to enforce data abstraction is a static, compile-time approach



# Data abstraction, revisited

 Using type abstraction to enforce data abstraction is a static, compile-time approach



Programs can create unique seals in their local scope and hand out opaque, sealed values to clients

 Programs can create unique seals in their local scope and hand out opaque, sealed values to clients

```
(define create-seal) (gensym))
(define (seal-value v seal)
  (lambda (s)
    (if (eq? s seal)
        v
        (error ...))))
(define (unseal sealed-v seal)
      (sealed-v seal))
```

 Programs can create unique seals in their local scope and hand out opaque, sealed values to clients

```
(define create-seal) (gensym))
(define (seal-value v seal)
  (lambda (s)
     (if (eq? s seal)
        v
        (error ...))))
(define (unseal sealed-v seal)
```

(sealed-v seal))

sealed value I client

 Programs can create unique seals in their local scope and hand out opaque, sealed values to clients

```
(define create-seal) (gensym))
(define (seal-value v seal)
  (lambda (s)
    (if (eq? s seal)
        v
        (error ...))))
(define (unseal sealed-v seal)
```

(sealed-v seal))

/ seal)
indistinguishable
at run-time

sealed

sealed

value 2

Thursday, February 24, 2011

 Operational semantics defined not just on expressions, but on configurations that include a seal store

. . \_

 Operational semantics defined not just on expressions, but on configurations that include a seal store

 $\psi \mid (\Lambda \alpha. \mathbf{e}) \tau$ 

Thursday, February 24, 2011

 Operational semantics defined not just on expressions, but on configurations that include a seal store

> contains all seals generated during evaluation so far



 Operational semantics defined not just on expressions, but on configurations that include a seal store

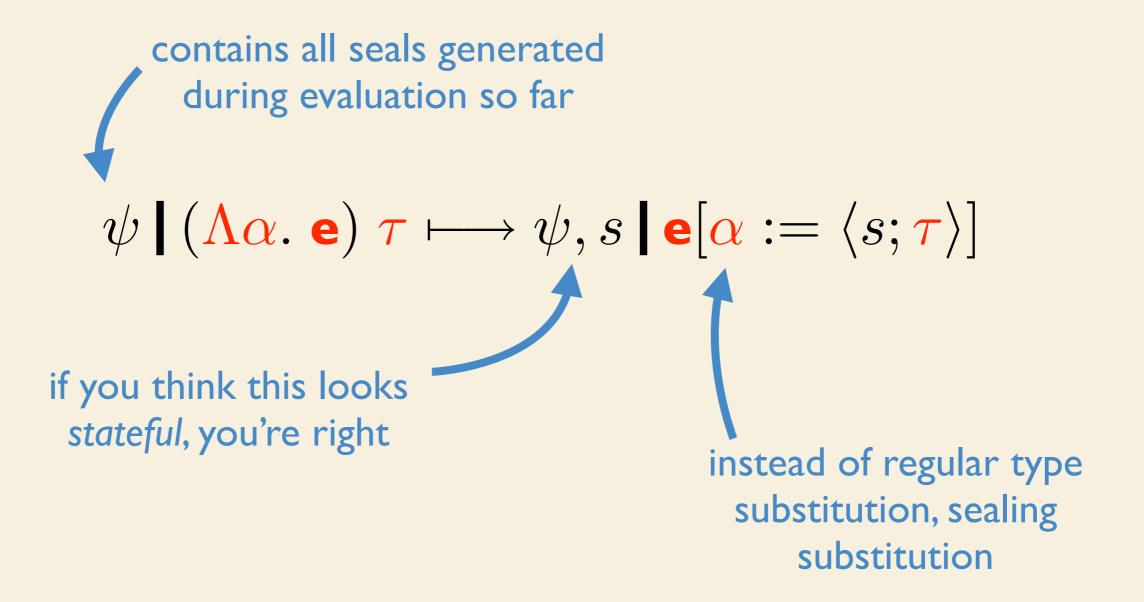
> contains all seals generated during evaluation so far

 $\psi \mid (\Lambda \alpha. \mathbf{e}) \ \tau \longmapsto \psi, s \mid \mathbf{e}[\alpha := \langle s; \tau \rangle]$ 

 Operational semantics defined not just on expressions, but on configurations that include a seal store

> contains all seals generated during evaluation so far  $\psi \mid (\Lambda \alpha. e) \tau \longmapsto \psi, s \mid e[\alpha := \langle s; \tau \rangle]$ instead of regular type substitution, sealing substitution

 Operational semantics defined not just on expressions, but on configurations that include a seal store



 $(\forall \alpha. \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  Nat

well-typed expression of type  $\forall \alpha. \alpha \rightarrow \alpha$  $(\forall \alpha. \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  Nat

 $(\forall \alpha. \alpha \rightarrow \alpha \text{MS} (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))) \text{Nat})$  $\longrightarrow (\Lambda \alpha. (\alpha \rightarrow \alpha \text{MS} (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))) \text{Nat})$ 

 $(\forall \alpha. \alpha \rightarrow \alpha \land \forall \alpha. \alpha \rightarrow \alpha \land (\forall \alpha. \alpha \rightarrow \alpha \land \forall \alpha \land (\forall \alpha. \alpha \rightarrow \alpha \land \forall \beta \land (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))))$ Nat $\rightarrow (\langle a \Rightarrow \alpha \land \forall \beta \land (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))))$ Nat $\rightarrow (\langle a \Rightarrow a \land \forall \beta \land (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))))$ 

 $(\forall \alpha. \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))) \text{ Nat})$   $\rightarrow (\Lambda \alpha. (\alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))) \text{ Nat})$   $\rightarrow (\langle s; \text{Nat} \rangle \rightarrow \langle s; \text{Nat} \rangle MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))))$   $\rightarrow (\lambda y: \text{ Nat. } (\langle s; \text{ Nat} \rangle MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$ 

well-typed expression of type  $\forall \alpha. \alpha \rightarrow \alpha$  $(\forall \alpha. \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  Nat  $\longrightarrow (\Lambda \alpha. (\alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))))$  Nat  $\longrightarrow (\langle s; \mathbf{Nat} \rangle \rightarrow \langle s; \mathbf{Nat} \rangle \mathcal{MS} (\lambda \mathbf{x}. (if0 (nat? \mathbf{x}) (+ \mathbf{x} \overline{1}) \mathbf{x})))$  $\longrightarrow (\lambda \mathbf{y} : \mathbf{Nat}. (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat}? \mathbf{x}) (+ \mathbf{x} \overline{1}) \mathbf{x})) (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \mathbf{y})))$ opaque value

• well-typed expression of type  $\forall \alpha. \alpha \rightarrow \alpha$  $(\forall \alpha . \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  Nat  $\longrightarrow (\Lambda \alpha. (\alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))))$  Nat  $\longrightarrow (\langle s; \mathbf{Nat} \rangle \rightarrow \langle s; \mathbf{Nat} \rangle \mathcal{MS} (\lambda \mathbf{x}. (if0 (nat? \mathbf{x}) (+ \mathbf{x} \overline{1}) \mathbf{x})))$  $\longrightarrow (\lambda \mathbf{y} : \mathbf{Nat}. (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat}? \mathbf{x}) (+ \mathbf{x} \overline{1}) \mathbf{x})) (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \mathbf{y})))$  $\equiv (\lambda \mathbf{y} : \mathbf{Nat}. (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \mathbf{y})))$ opaque value

• well-typed expression of type  $\forall \alpha. \alpha \rightarrow \alpha$  $(\forall \alpha . \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  Nat  $\longrightarrow (\Lambda \alpha. (\alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x))))$  Nat  $\longrightarrow (\langle s; \mathsf{Nat} \rangle \rightarrow \langle s; \mathsf{Nat} \rangle \mathcal{MS} (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  $\longrightarrow (\lambda \mathbf{y} : \mathbf{Nat}. (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat}? \mathbf{x}) (+ \mathbf{x} \overline{1}) \mathbf{x})) (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \mathbf{y})))$  $\equiv (\lambda \mathbf{y} : \mathbf{Nat}. (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \mathbf{y})))$  $\longrightarrow$  ( $\lambda y$  : Nat. y) opaque value

• well-typed expression of type  $\forall \alpha. \alpha \rightarrow \alpha$  $(\forall \alpha \cdot \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  Nat  $\longrightarrow (\Lambda \alpha. (\stackrel{\alpha \to \alpha}{\longrightarrow} MS(\lambda x. (if0 (nat? x) (+ x \overline{1}) x))))$  Nat  $\longrightarrow (\langle s; \mathsf{Nat} \rangle \rightarrow \langle s; \mathsf{Nat} \rangle MS(\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  $\longrightarrow (\lambda \mathbf{y} : \mathbf{Nat}. (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat}? \mathbf{x}) (+ \mathbf{x} \overline{1}) \mathbf{x})) (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \mathbf{y})))$  $\equiv (\lambda \mathbf{y} : \mathbf{Nat}. (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \mathbf{y})))$  $\longrightarrow$  ( $\lambda y$  : Nat. y) opaque value the identity function! :D

#### $(\forall \alpha . \ \alpha \rightarrow \alpha MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2})))$ Nat $\overline{5}$

· · ·

# $\begin{pmatrix} \forall \alpha. \ \alpha \to \alpha \\ MS \ (\lambda \mathbf{x}. \ (if0 \ (nat? \mathbf{x}) \ (+ \mathbf{x} \ \overline{1}) \ \overline{2}))) \text{ Nat } \overline{5} \\ \rightarrow \qquad (\Lambda \alpha. \ (\alpha \to \alpha \\ MS \ (\lambda \mathbf{x}. \ (if0 \ (nat? \mathbf{x}) \ (+ \mathbf{x} \ \overline{1}) \ \overline{2})))) \text{ Nat } \overline{5}$

、 、 、 、

 $\begin{pmatrix} \forall \alpha. \ \alpha \to \alpha \\ MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2})) \end{pmatrix} \text{ Nat } \overline{5} \\ (\Lambda \alpha. \ (\alpha \to \alpha \\ MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2})))) \text{ Nat } \overline{5} \\ (\langle s; \mathbf{Nat} \rangle \to \langle s; \mathbf{Nat} \rangle \\ MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2}))) \overline{5} \end{cases}$ 

 $\begin{pmatrix} \forall \alpha. \ \alpha \rightarrow \alpha \text{MS} \ (\lambda x. \ (\text{if0} \ (\text{nat}? x) \ (+ x \ \overline{1}) \ \overline{2}))) \text{ Nat } \overline{5} \\ (\Lambda \alpha. \ (\alpha \rightarrow \alpha \text{MS} \ (\lambda x. \ (\text{if0} \ (\text{nat}? x) \ (+ x \ \overline{1}) \ \overline{2})))) \text{ Nat } \overline{5} \\ (\langle s; \text{Nat} \rangle \rightarrow \langle s; \text{Nat} \rangle \text{MS} \ (\lambda x. \ (\text{if0} \ (\text{nat}? x) \ (+ x \ \overline{1}) \ \overline{2}))) \ \overline{5} \\ (\lambda y: \text{ Nat. } (\langle s; \text{Nat} \rangle \text{MS} \ (\lambda x. \ (\text{if0} \ (\text{nat}? x) \ (+ x \ \overline{1}) \ \overline{2}))) \ \overline{5} \end{pmatrix}$ 

· ·

 $\begin{pmatrix} \forall \alpha. \ \alpha \rightarrow \alpha MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2}))) \text{ Nat } \overline{5} \\ \rightarrow \quad (\Lambda \alpha. \ (\alpha \rightarrow \alpha MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2})))) \text{ Nat } \overline{5} \\ \rightarrow \quad (\langle s; \mathsf{Nat} \rangle \rightarrow \langle s; \mathsf{Nat} \rangle MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2}))) \ \overline{5} \\ \rightarrow \quad (\lambda y: \text{ Nat. } (\langle s; \mathsf{Nat} \rangle MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2})) \ (SM^{\langle s; \mathsf{Nat} \rangle} \ y))) \ \overline{5} \\ \rightarrow \quad (\langle s; \mathsf{Nat} \rangle MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2})) \ (SM^{\langle s; \mathsf{Nat} \rangle} \ y))) \ \overline{5} \\ \rightarrow \quad (\langle s; \mathsf{Nat} \rangle MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2})) \ (SM^{\langle s; \mathsf{Nat} \rangle} \ y))) \ \overline{5}$ 

· ·

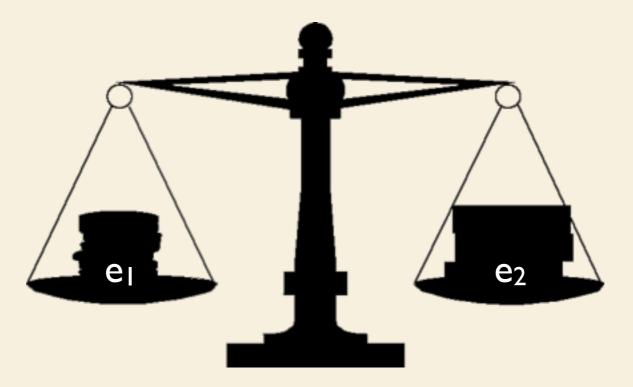
 $\begin{pmatrix} \forall \alpha. \ \alpha \rightarrow \alpha MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2}))) \text{ Nat } \overline{5} \\ \longrightarrow \ (\Lambda \alpha. \ (\alpha \rightarrow \alpha MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2})))) \text{ Nat } \overline{5} \\ \longrightarrow \ (\langle s; \mathsf{Nat} \rangle \rightarrow \langle s; \mathsf{Nat} \rangle MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2}))) \ \overline{5} \\ \longrightarrow \ (\lambda y: \text{ Nat. } (\langle s; \mathsf{Nat} \rangle MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2})) \ (SM^{\langle s; \mathsf{Nat} \rangle} \ y))) \ \overline{5} \\ \longrightarrow \ (\langle s; \mathsf{Nat} \rangle MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2})) \ (SM^{\langle s; \mathsf{Nat} \rangle} \ y))) \ \overline{5} \\ \longrightarrow \ (\langle s; \mathsf{Nat} \rangle MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ \overline{2})) \ (SM^{\langle s; \mathsf{Nat} \rangle} \ \overline{5})) \\ \longrightarrow^* \ (\langle s; \mathsf{Nat} \rangle MS \ \overline{2})$ 

 $(\forall \alpha . \ \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) \overline{2})))$  Nat  $\overline{5}$  $(\Lambda \alpha. (\alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) \overline{2}))))$  Nat  $\overline{5}$  $(\langle s; \mathbf{Nat} \rangle \rightarrow \langle s; \mathbf{Nat} \rangle MS(\lambda x. (if0 (nat? x) (+ x \overline{1}) \overline{2}))) \overline{5}$  $(\lambda \mathbf{y} : \mathbf{Nat}. (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat}? \mathbf{x}) (+ \mathbf{x} \overline{1}) \overline{2})) (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \mathbf{y}))) \overline{5}$  $(\langle s; \mathsf{Nat} \rangle \mathcal{MS} (\lambda x. (\mathsf{if0} (\mathsf{nat}? x) (+ x \overline{1}) \overline{2})) (\mathcal{M}^{\langle s; \mathsf{Nat} \rangle} \overline{5}))$  $\longrightarrow^* (\langle s; \mathsf{Nat} \rangle \mathcal{MS} \overline{2}) \blacktriangleleft$ can't unseal something that isn't a seal

 $(\forall \alpha. \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) \overline{2})))$  Nat  $\overline{5}$  $(\Lambda \alpha. (\alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) \overline{2}))))$  Nat  $\overline{5}$  $(\langle s; \mathbf{Nat} \rangle \rightarrow \langle s; \mathbf{Nat} \rangle MS(\lambda x. (if0 (nat? x) (+ x \overline{1}) \overline{2}))) \overline{5}$  $(\lambda \mathbf{y} : \mathbf{Nat}. (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat}? \mathbf{x}) (+ \mathbf{x} \overline{1}) \overline{2})) (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \mathbf{y}))) \overline{5}$  $(\langle s; \mathbf{Nat} \rangle MS(\lambda x. (if0 (nat? x) (+ x \overline{1}) \overline{2})) (M \langle s; \mathbf{Nat} \rangle \overline{5}))$  $(\langle s; \mathsf{Nat} \rangle MS \overline{2})$  $\longrightarrow^*$ can't unseal something **Error**: bad value that isn't a seal

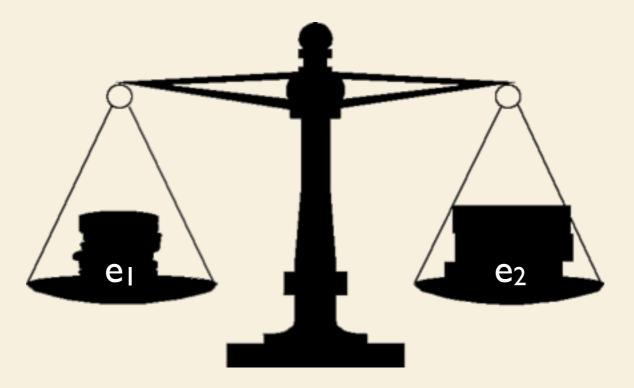
# **Proving parametricity**

# When are two expressions indistinguishable?



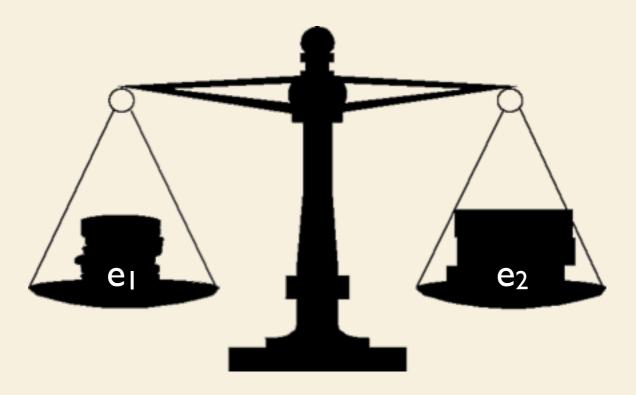
The property we really want is contextual equivalence: e1 and e2, when dropped into the same context, have the same observable behavior.

# When are two expressions indistinguishable?



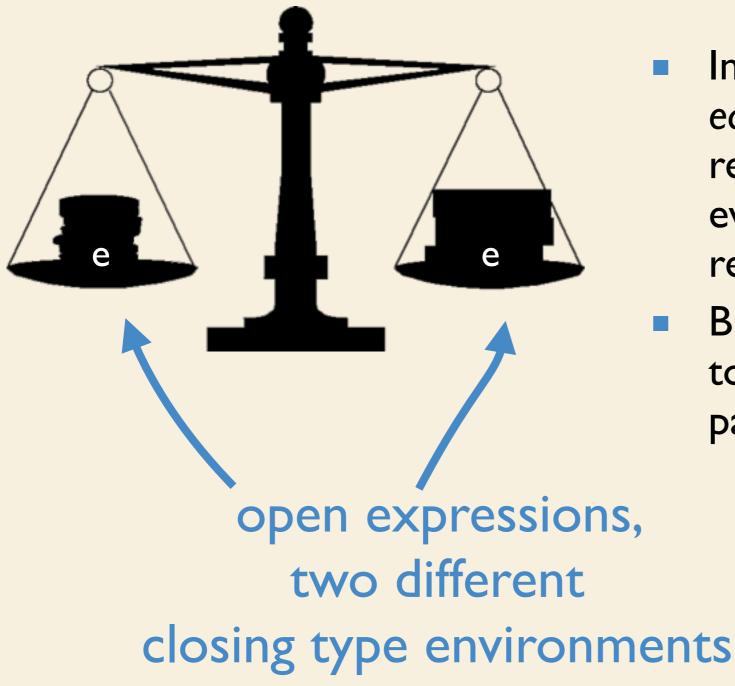
The property we really want is contextual equivalence: e<sub>1</sub> and e<sub>2</sub>, when dropped into the same context, have the same observable behavior.

# A different notion of equivalence



- Because contextual equivalence is hard to show directly, we need a different notion of equivalence.
- We'll define our own equivalence relation and show that it is sound with respect to contextual equivalence.

# Reflexivity: the Fundamental Property



- In order to be an equivalence relation, our relation has to be reflexive: every expression must be related to itself.
- But this corresponds nicely to what we mean by parametricity anyway!

# What's "logical" about it?

• The relation we're defining is called a logical relation. Why?

| Two values of type | are related if |
|--------------------|----------------|
|                    |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |

# What's "logical" about it?

• The relation we're defining is called a logical relation. Why?

| Two values of type | are related if |
|--------------------|----------------|
| Nat                |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |

The relation we're defining is called a logical relation. Why?

| Two values of type | are related if |
|--------------------|----------------|
| Nat                | they're equal  |
|                    |                |
|                    |                |
|                    |                |
|                    |                |
|                    |                |

The relation we're defining is called a logical relation. Why?

| Two values of type  | are related if |
|---------------------|----------------|
| Nat                 | they're equal  |
| $	au_1 	imes 	au_2$ |                |
|                     |                |

• The relation we're defining is called a logical relation. Why?

| Two values of type  | are related if                                                      |
|---------------------|---------------------------------------------------------------------|
| Nat                 | they're equal                                                       |
| $	au_1 	imes 	au_2$ | their first components are related at type <b>T</b> I<br><b>and</b> |
|                     | their second components are related at type $T_2$                   |

• The relation we're defining is called a logical relation. Why?

| Two values of type       | are related if                                                                                                     |
|--------------------------|--------------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                      |
| $	au_1 	imes 	au_2$      | their first components are related at type $\tau_1$<br>and<br>their second components are related at type $\tau_2$ |
| $	au_1  ightarrow 	au_2$ |                                                                                                                    |

The relation we're defining is called a logical relation. Why?

| Two values of type       | are related if                                                                                                       |
|--------------------------|----------------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                        |
| $	au_1 	imes 	au_2$      | their first components are related at type T <sub>I</sub><br><b>and</b>                                              |
|                          | their second components are related at type $\tau_2$                                                                 |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type T <sub>1</sub><br>they <b>produce</b> expressions related at type T <sub>2</sub> |

The relation we're defining is called a logical relation. Why?

| Two values of type       | are related if                                                                                     |
|--------------------------|----------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                      |
| $	au_1 	imes 	au_2$      | their first components are related at type $T_{I}$ and                                             |
|                          | their second components are related at type $\tau_2$                                               |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type $T_1$<br>they <b>produce</b> expressions related at type $T_2$ |

A logical relation "respects the actions of the logical operators...that correspond to the language's type constructors" (Crary, 2005)

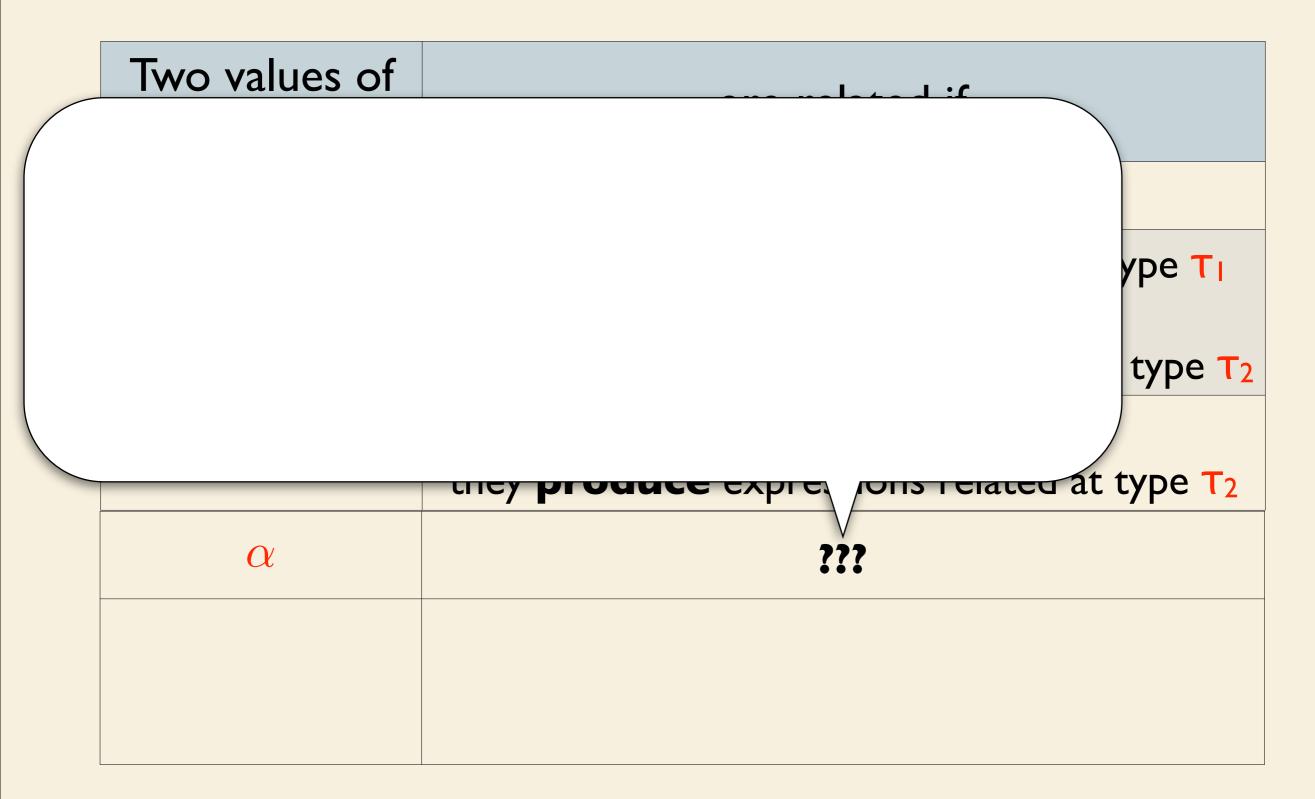
| Two values of type       | are related if                                                                                     |
|--------------------------|----------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                      |
| $	au_1 	imes 	au_2$      | their first components are related at type <b>T</b> I<br><b>and</b>                                |
|                          | their second components are related at type $\tau_2$                                               |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type $T_1$<br>they <b>produce</b> expressions related at type $T_2$ |

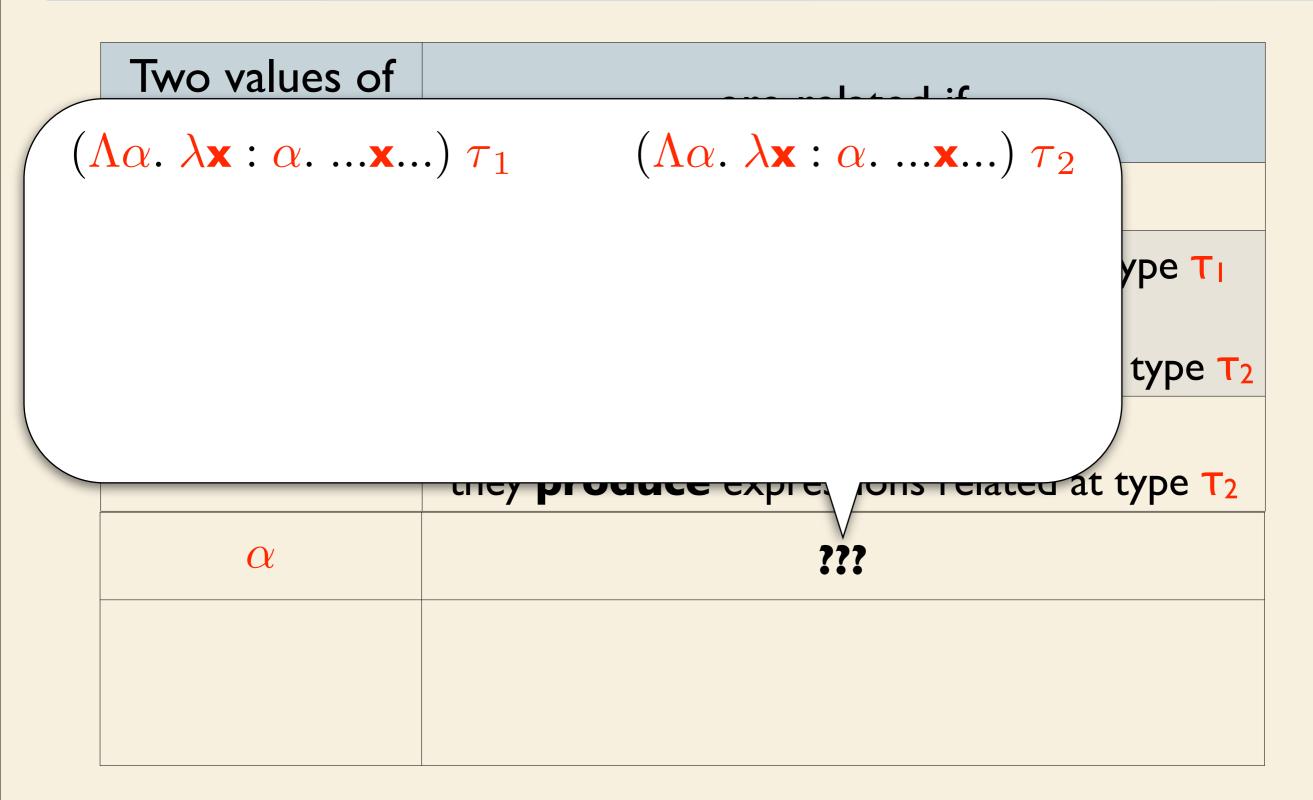
| Two values of type       | are related if                                                                                               |
|--------------------------|--------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                |
| $	au_1 	imes 	au_2$      | their first components are related at type τ <sub>ι</sub><br><b>and</b>                                      |
|                          | their second components are related at type $T_2$                                                            |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type <b>T</b> 1<br>they <b>produce</b> expressions related at type <b>T</b> 2 |

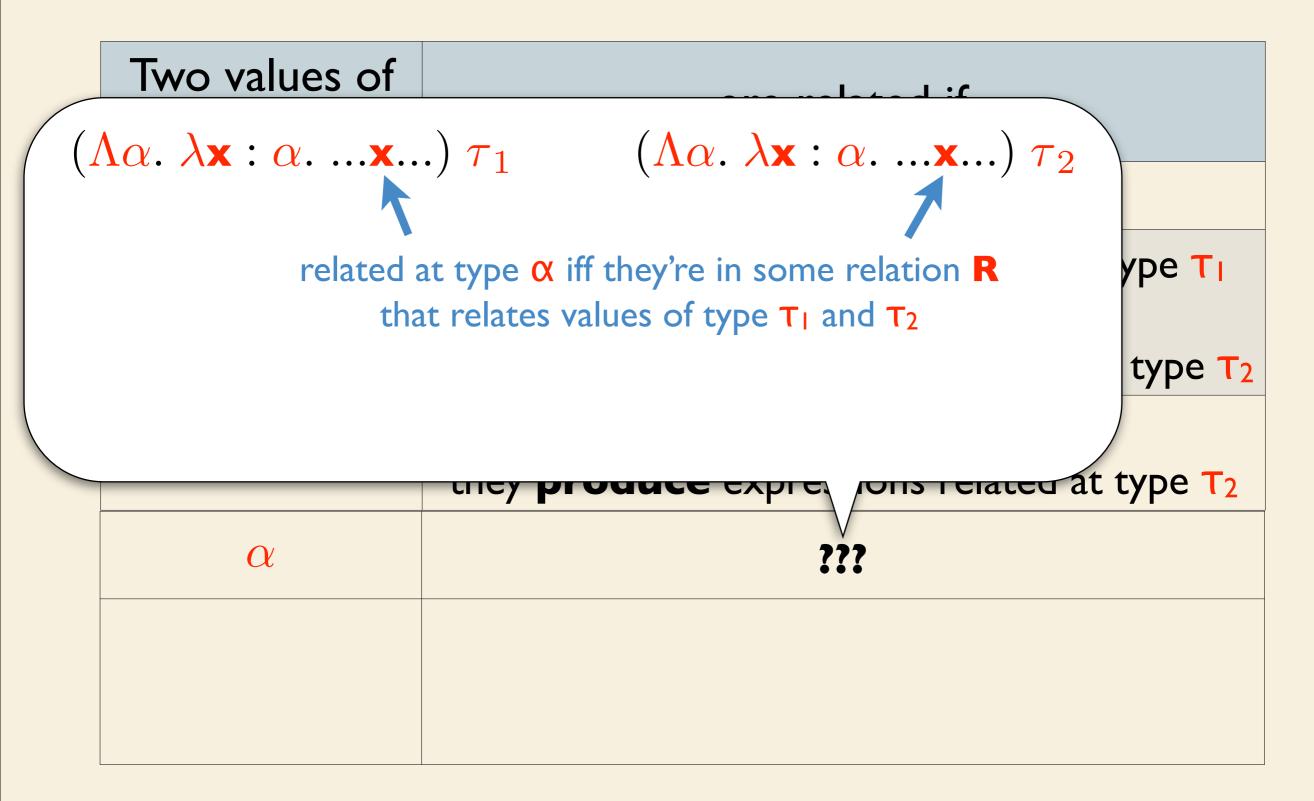
| Two values of type       | are related if                                                                                                                        |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                                         |
| $	au_1 	imes 	au_2$      | their first components are related at type T <sub>1</sub><br><b>and</b><br>their second components are related at type T <sub>2</sub> |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type T <sub>1</sub><br>they <b>produce</b> expressions related at type T <sub>2</sub>                  |
|                          |                                                                                                                                       |
|                          |                                                                                                                                       |

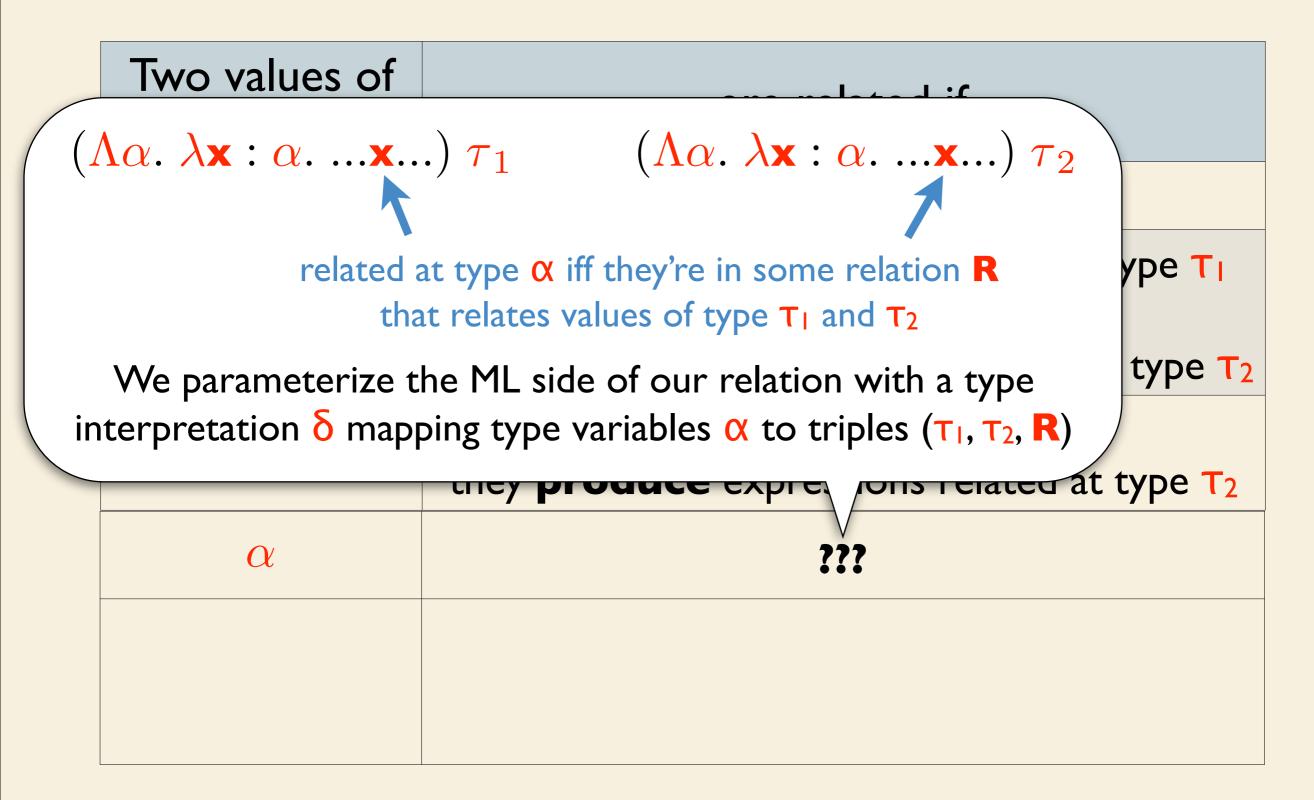
| Two values of type       | are related if                                                                                                                        |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                                         |
| $	au_1 	imes 	au_2$      | their first components are related at type T <sub>1</sub><br><b>and</b><br>their second components are related at type T <sub>2</sub> |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type $T_1$<br>they <b>produce</b> expressions related at type $T_2$                                    |
| $\alpha$                 |                                                                                                                                       |
|                          |                                                                                                                                       |

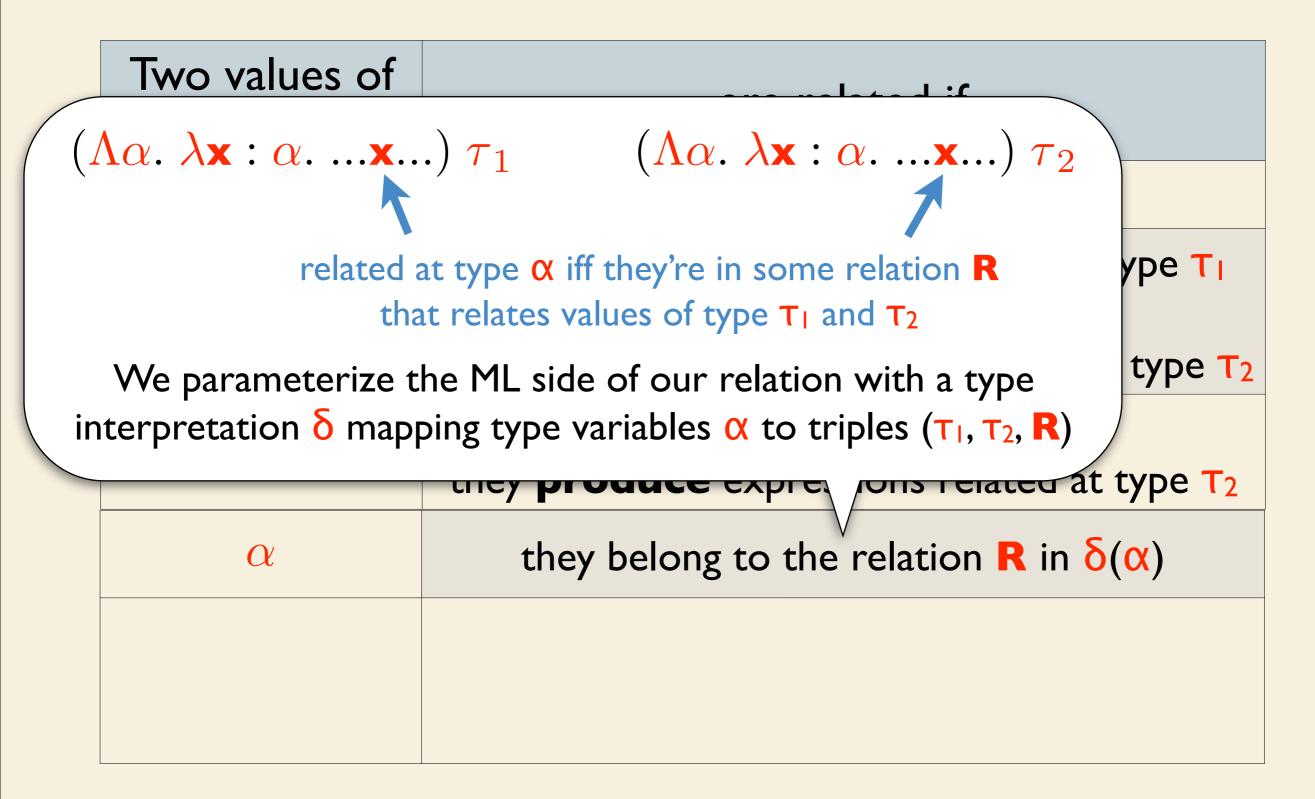
| Two values of<br>type    | are related if                                                                                                     |
|--------------------------|--------------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                      |
| $	au_1 	imes 	au_2$      | their first components are related at type $\tau_1$<br>and<br>their second components are related at type $\tau_2$ |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type $T_1$<br>they <b>produce</b> expressions related at type $T_2$                 |
| $\alpha$                 | ???                                                                                                                |
|                          |                                                                                                                    |











| Two values of type       | are related if                                                                                                       |
|--------------------------|----------------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                        |
| $	au_1 	imes 	au_2$      | their first components are related at type $\tau_1$<br>and<br>their second components are related at type $\tau_2$   |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type T <sub>1</sub><br>they <b>produce</b> expressions related at type T <sub>2</sub> |
| $\alpha$                 | they belong to the relation <b>R</b> in $\delta(\alpha)$                                                             |
|                          |                                                                                                                      |

| Two values of type       | are related if                                                                                               |
|--------------------------|--------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                |
| $	au_1 	imes 	au_2$      | their first components are related at type $T_1$<br>and<br>their second components are related at type $T_2$ |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type <b>T</b> 1<br>they <b>produce</b> expressions related at type <b>T</b> 2 |
| $\alpha$                 | they belong to the relation <b>R</b> in $\delta(\alpha)$                                                     |
| orall lpha. $	au$        |                                                                                                              |

| Two values of<br>type    | are related if                                                                                                                     |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                                      |
| $	au_1 	imes 	au_2$      | their first components are related at type $T_1$<br>and<br>their second components are related at type $T_2$                       |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type <b>T</b> <sub>1</sub><br>they <b>produce</b> expressions related at type <b>T</b> <sub>2</sub> |
| $\alpha$                 | they belong to the relation <b>R</b> in $\delta(\alpha)$                                                                           |
| orall lpha. $	au$        | ???                                                                                                                                |

| Two values of type       | are related if                                                                                                                                                                                                 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                                                                                                                  |
| $	au_1 	imes 	au_2$      | their first components are related at type $T_1$<br>and<br>their second components are related at type $T_2$                                                                                                   |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type <b>T</b> <sub>1</sub><br>they <b>produce</b> expressions related at type <b>T</b> <sub>2</sub>                                                                             |
| $\alpha$                 | they belong to the relation <b>R</b> in $\delta(\alpha)$                                                                                                                                                       |
| orall lpha. $	au$        | <b>given</b> types $\tau_1$ and $\tau_2$ and a relation <b>R</b><br>they <b>produce</b> expressions related at type $\tau$<br>under a $\delta$ extended with $\alpha \rightarrow (\tau_1, \tau_2, \mathbf{R})$ |

| Two values of type       | are related if                                                                                                                                                                                                 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                                                                                                                  |
| $	au_1 	imes 	au_2$      | their first components are related at type $T_1$<br>and<br>their second components are related at type $T_2$                                                                                                   |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type <b>T</b> 1<br>they <b>produce</b> expressions related at type <b>T</b> 2                                                                                                   |
| $\alpha$                 | they belong to the relation <b>R</b> in $\delta(\alpha)$                                                                                                                                                       |
| orall lpha. $	au$        | <b>given</b> types $\tau_1$ and $\tau_2$ and a relation <b>R</b><br>they <b>produce</b> expressions related at type $\tau$<br>under a $\delta$ extended with $\alpha \rightarrow (\tau_1, \tau_2, \mathbf{R})$ |

## Would something like this work for Scheme?

| Two values of type       | are related if                                                                                                                                                                                                 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                                                                                                                  |
| $	au_1 	imes 	au_2$      | their first components are related at type τ <sub>1</sub><br><b>and</b><br>their second components are related at type τ <sub>2</sub>                                                                          |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type $T_1$<br>they <b>produce</b> expressions related at type $T_2$                                                                                                             |
| $\alpha$                 | they belong to the relation <b>R</b> in $\delta(\alpha)$                                                                                                                                                       |
| orall lpha. 	au          | <b>given</b> types $\tau_1$ and $\tau_2$ and a relation <b>R</b><br>they <b>produce</b> expressions related at type $\tau$<br>under a $\delta$ extended with $\alpha \rightarrow (\tau_1, \tau_2, \mathbf{R})$ |

## Would something like this work for Scheme?

| Two values of type       | are related if                                                                                                                                                                                                 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nat                      | they're equal                                                                                                                                                                                                  |
| $	au_1 	imes 	au_2$      | their first components are related at type τ <sub>1</sub><br><b>and</b><br>their second components are related at type τ <sub>2</sub>                                                                          |
| $	au_1  ightarrow 	au_2$ | <b>given</b> values related at type $T_1$<br>they <b>produce</b> expressions related at type $T_2$                                                                                                             |
| $\alpha$                 | they belong to the relation <b>R</b> in $\delta(\alpha)$                                                                                                                                                       |
| orall lpha. 	au          | <b>given</b> types $\tau_1$ and $\tau_2$ and a relation <b>R</b><br>they <b>produce</b> expressions related at type $\tau$<br>under a $\delta$ extended with $\alpha \rightarrow (\tau_1, \tau_2, \mathbf{R})$ |

Since Scheme only has one (static) type, a relation defined inductively on the structure of types would be ill-founded

## Would something like this work for Scheme?



Since Scheme only has one (static) type, a relation defined inductively on the structure of types would be ill-founded

| Values of the syntactic form | are related for <i>j</i> steps if |
|------------------------------|-----------------------------------|
|                              |                                   |
|                              |                                   |
|                              |                                   |
|                              |                                   |
|                              |                                   |

| Values of the syntactic form | are related for <i>j</i> steps if |
|------------------------------|-----------------------------------|
| $\overline{n}$               |                                   |
|                              |                                   |
|                              |                                   |
|                              |                                   |
|                              |                                   |

| Values of the syntactic form | are related for <i>j</i> steps if |
|------------------------------|-----------------------------------|
| $\overline{n}$               | they're equal                     |
|                              |                                   |
|                              |                                   |
|                              |                                   |
|                              |                                   |

| Values of the syntactic form                      | are related for <i>j</i> steps if |
|---------------------------------------------------|-----------------------------------|
| $\overline{n}$                                    | they're equal                     |
| $(\operatorname{cons} \mathbf{v}_1 \mathbf{v}_2)$ |                                   |
|                                                   |                                   |

| Values of the syntactic form    | are related for <i>j</i> steps if                                                                                             |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\overline{n}$                  | they're equal                                                                                                                 |
| $(\operatorname{cons} v_1 v_2)$ | their first components are related for <i>j</i> steps<br><b>and</b><br>their second components are related for <i>j</i> steps |
|                                 |                                                                                                                               |

| Values of the syntactic form       | are related for <i>j</i> steps if                                                                                             |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\overline{n}$                     | they're equal                                                                                                                 |
| $(cons v_1 v_2)$                   | their first components are related for <i>j</i> steps<br><b>and</b><br>their second components are related for <i>j</i> steps |
| $(\lambda \mathbf{x}. \mathbf{e})$ |                                                                                                                               |

| Values of the syntactic form                      | are related for <i>j</i> steps if                                                                                             |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| $\overline{n}$                                    | they're equal                                                                                                                 |  |
| $(\operatorname{cons} \mathbf{v}_1 \mathbf{v}_2)$ | their first components are related for <i>j</i> steps<br><b>and</b><br>their second components are related for <i>j</i> steps |  |
| $(\lambda \mathbf{x}. \mathbf{e})$                | ???                                                                                                                           |  |

## **Examples of related Scheme values**

| ۷I | ٧2 | Related (indistinguishable) for |
|----|----|---------------------------------|
| 5  |    |                                 |
|    |    |                                 |
|    |    |                                 |

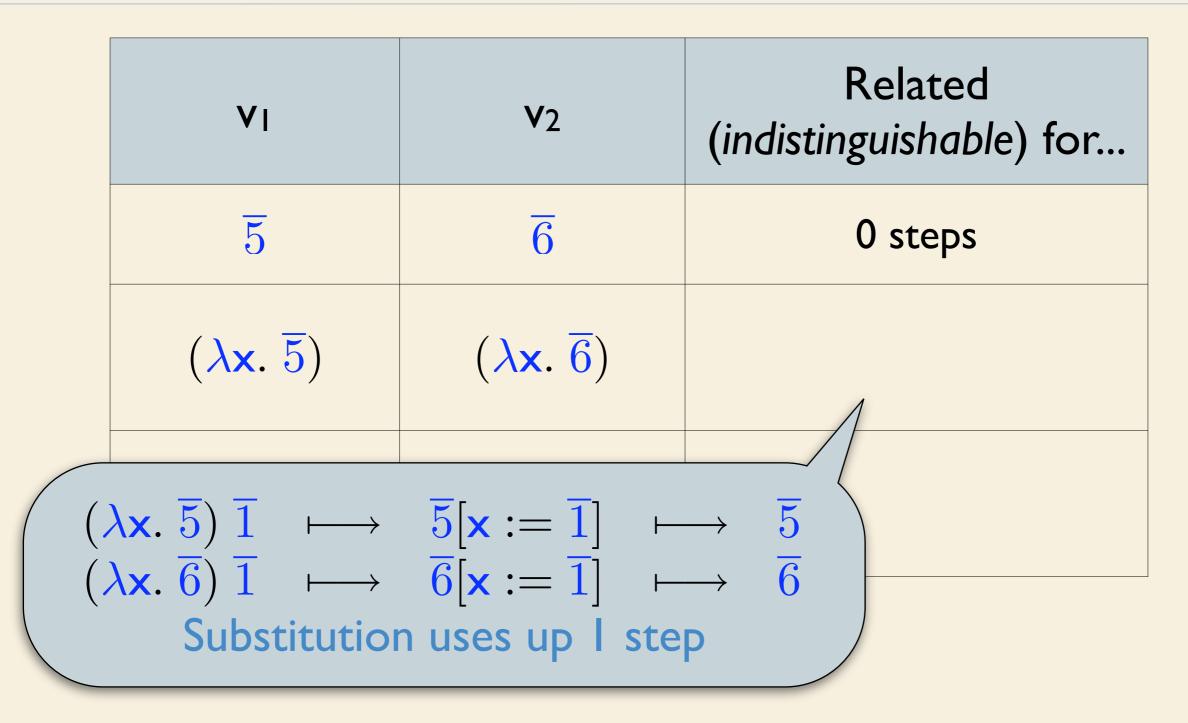
### **Examples of related Scheme values**

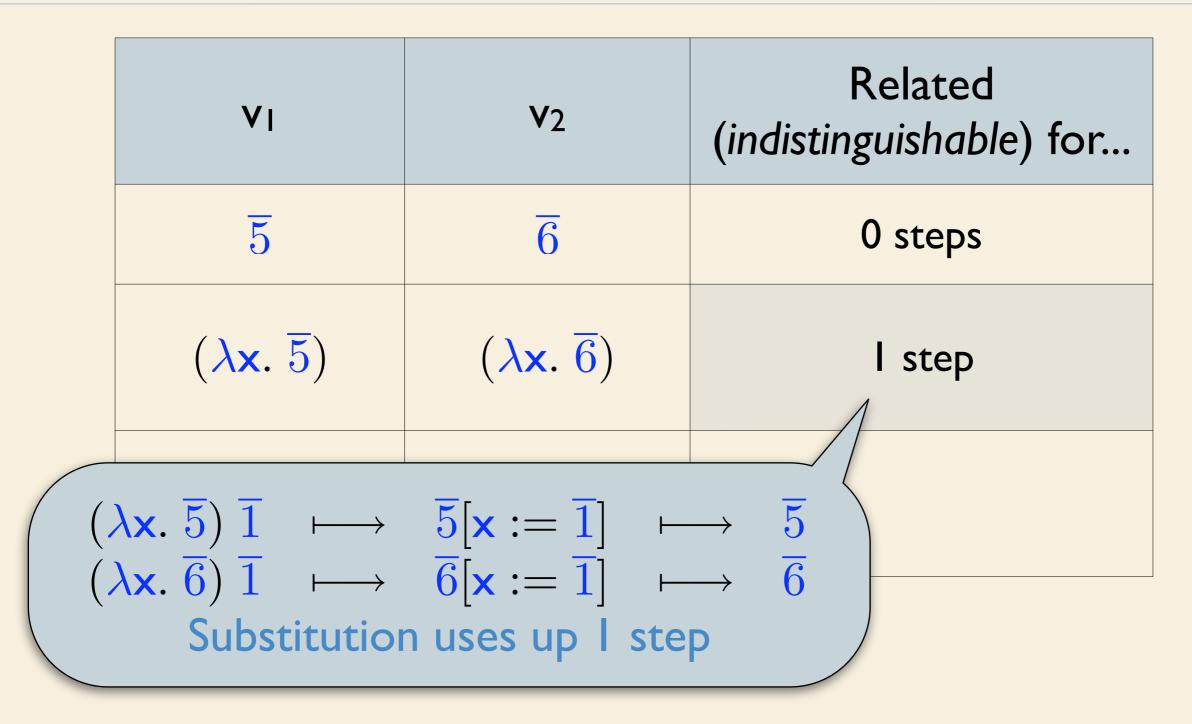
| ۷I | ٧2             | Related (indistinguishable) for |
|----|----------------|---------------------------------|
| 5  | $\overline{6}$ |                                 |
|    |                |                                 |
|    |                |                                 |

### **Examples of related Scheme values**

| ۷I | ٧2             | Related (indistinguishable) for |
|----|----------------|---------------------------------|
| 5  | $\overline{6}$ | 0 steps                         |
|    |                |                                 |
|    |                |                                 |

| ۷I                                   | ٧2                                     | Related (indistinguishable) for |
|--------------------------------------|----------------------------------------|---------------------------------|
| 5                                    | 6                                      | 0 steps                         |
| $(\lambda \mathbf{x}. \overline{5})$ | $(\lambda \mathbf{x}. \ \overline{6})$ |                                 |
|                                      |                                        |                                 |



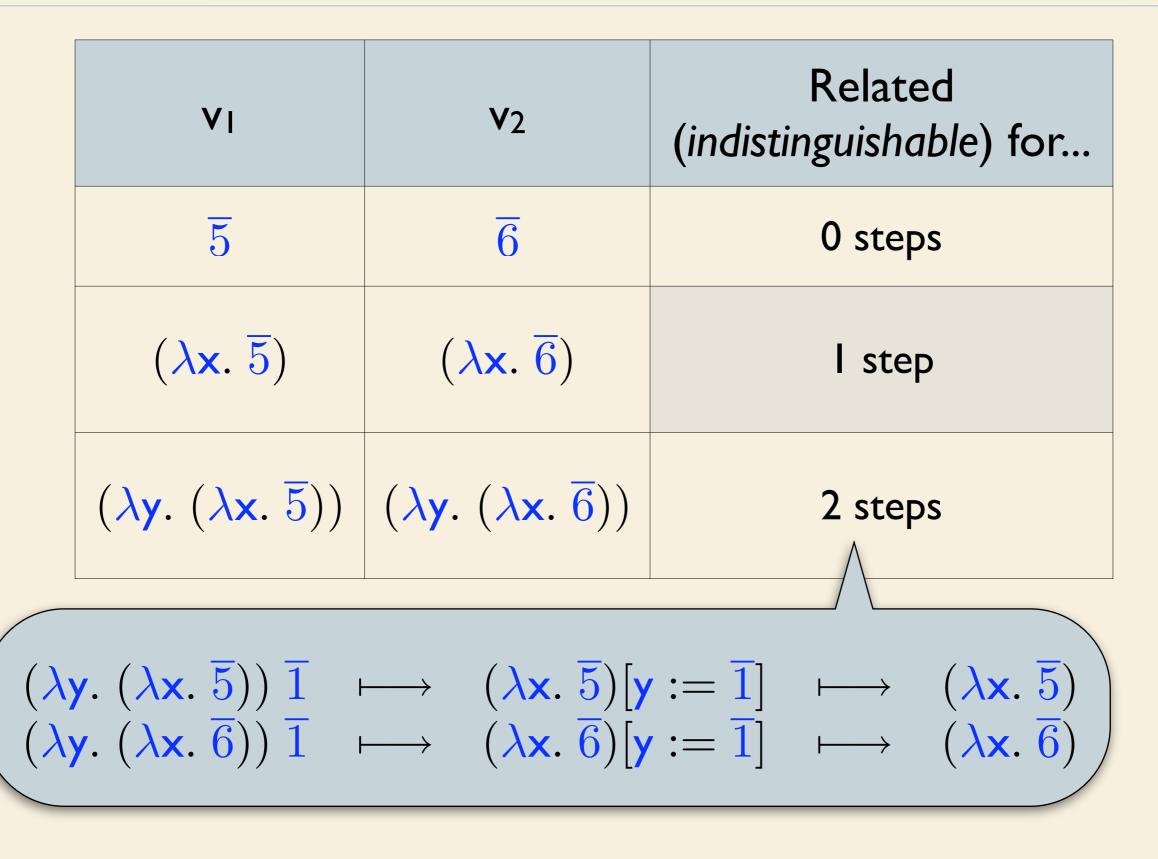


| ۷I                                     | ٧2                                     | Related (indistinguishable) for |
|----------------------------------------|----------------------------------------|---------------------------------|
| 5                                      | <u>6</u>                               | 0 steps                         |
| $(\lambda \mathbf{x}. \ \overline{5})$ | $(\lambda \mathbf{x}. \ \overline{6})$ | l step                          |
|                                        |                                        |                                 |

| ٧I                                       | ٧2                                     | Related (indistinguishable) for |
|------------------------------------------|----------------------------------------|---------------------------------|
| 5                                        | <u>6</u>                               | 0 steps                         |
| $(\lambda \mathbf{x}. \ \overline{5})$   | $(\lambda \mathbf{x}. \ \overline{6})$ | l step                          |
| $(\lambda y. (\lambda x. \overline{5}))$ |                                        |                                 |

| ۷I                                                         | ٧2                                                         | Related (indistinguishable) for |
|------------------------------------------------------------|------------------------------------------------------------|---------------------------------|
| 5                                                          | 6                                                          | 0 steps                         |
| $(\lambda \mathbf{x}. \ \overline{5})$                     | $(\lambda \mathbf{x}. \ \overline{6})$                     | l step                          |
| $(\lambda \mathbf{y}. (\lambda \mathbf{x}. \overline{5}))$ | $(\lambda \mathbf{y}. (\lambda \mathbf{x}. \overline{6}))$ |                                 |

|                       | ۷I                                                                                               | <b>V</b> 2                                                                                                                                                       | Related (indistinguishable) for                                                                                    |
|-----------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                       | $\overline{5}$                                                                                   | <u>6</u>                                                                                                                                                         | 0 steps                                                                                                            |
|                       | $(\lambda \mathbf{x}. \ \overline{5})$                                                           | $(\lambda \mathbf{x}. \ \overline{6})$                                                                                                                           | l step                                                                                                             |
|                       | $(\lambda \mathbf{y}. (\lambda \mathbf{x}. \overline{5}))$                                       | $(\lambda \mathbf{y}. (\lambda \mathbf{x}. \overline{6}))$                                                                                                       |                                                                                                                    |
| $\lambda y \lambda y$ | y. $(\lambda x. \overline{5})) \overline{1}$ +<br>y. $(\lambda x. \overline{6})) \overline{1}$ + | $ \longrightarrow (\lambda \mathbf{x} \cdot \mathbf{\overline{5}})[\mathbf{y}] \\ \longrightarrow (\lambda \mathbf{x} \cdot \mathbf{\overline{6}})[\mathbf{y}] $ | $   x := \overline{1} \mapsto (\lambda x, \overline{5}) \\   x := \overline{1} \mapsto (\lambda x, \overline{6}) $ |



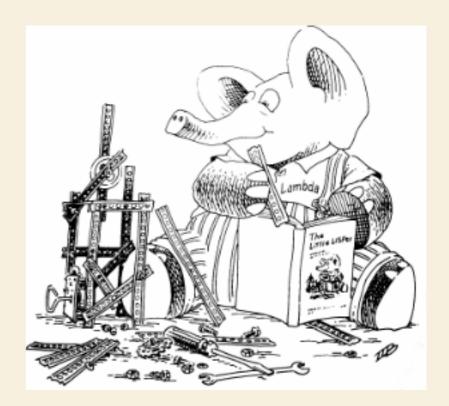
| ۷I                                                             | ٧2                                                             | Related (indistinguishable) for |
|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------|
| 5                                                              | <u>6</u>                                                       | 0 steps                         |
| $(\lambda \mathbf{x}. \ \overline{5})$                         | $(\lambda \mathbf{x}. \overline{6})$                           | l step                          |
| $(\lambda \mathbf{y}. \ (\lambda \mathbf{x}. \ \overline{5}))$ | $(\lambda \mathbf{y}. \ (\lambda \mathbf{x}. \ \overline{6}))$ | 2 steps                         |

| ۷ı                                       | ٧2                                                             | Related (indistinguishable) for |
|------------------------------------------|----------------------------------------------------------------|---------------------------------|
| 5                                        | 6                                                              | 0 steps                         |
| $(\lambda \mathbf{x}. \ \overline{5})$   | $(\lambda \mathbf{x}. \overline{6})$                           | l step                          |
| $(\lambda y. (\lambda x. \overline{5}))$ | $(\lambda \mathbf{y}. \ (\lambda \mathbf{x}. \ \overline{6}))$ | 2 steps                         |

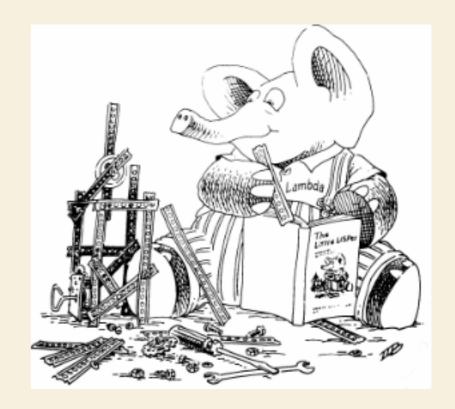
 Intuitively, wrapping layers of λ around values makes them indistinguishable for 1 more step

| Two values of<br>the syntactic<br>form | are related for <i>j</i> steps if                                                                                             |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\overline{n}$                         | they're equal                                                                                                                 |
| $(cons v_1 v_2)$                       | their first components are related for <i>j</i> steps<br><b>and</b><br>their second components are related for <i>j</i> steps |
| $(\lambda \mathbf{x}. \mathbf{e})$     | ???                                                                                                                           |

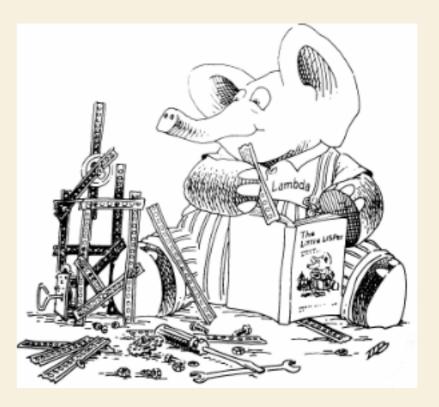
| Two values of<br>the syntactic<br>form | are related for <i>j</i> steps if                                                                                             |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\overline{n}$                         | they're equal                                                                                                                 |
| $(cons v_1 v_2)$                       | their first components are related for <i>j</i> steps<br><b>and</b><br>their second components are related for <i>j</i> steps |
| $(\lambda \mathbf{x}. \mathbf{e})$     | <b>given</b> values related for <i>i</i> < <i>j</i> steps<br>they <b>produce</b> expressions related for <i>i</i> steps       |



Chapter 9 of The Little Schemer gives examples of functions length<sub>0</sub>, length<sub>≤1</sub>, length<sub>≤2</sub>, and so on



- Chapter 9 of The Little Schemer gives examples of functions length<sub>0</sub>, length<sub>≤1</sub>, length<sub>≤2</sub>, and so on
- Iength≤j takes a list and returns the length of that list, as long as that length is ≤j; otherwise, length≤j goes into an infinite loop

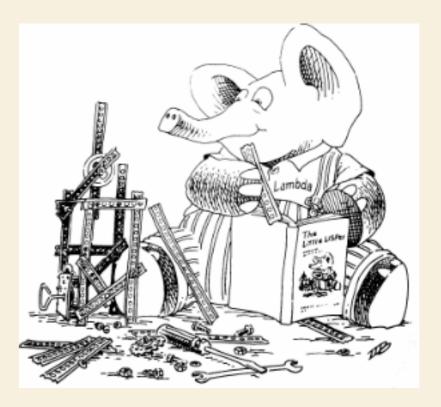


- Chapter 9 of The Little Schemer gives examples of functions length<sub>0</sub>, length<sub>≤1</sub>, length<sub>≤2</sub>, and so on
- length ≤<sub>j</sub> takes a list and returns the length of that list, as long as that length is ≤<sub>j</sub>;
   otherwise, length ≤<sub>j</sub> goes into an infinite loop



Think of the subscript  $\leq j$  as a behavioral contract guaranteeing that **length** $\leq_j$  belongs to a certain type for up to *j* steps of execution

- Chapter 9 of The Little Schemer gives examples of functions length<sub>0</sub>, length<sub>≤1</sub>, length<sub>≤2</sub>, and so on
- length ≤<sub>j</sub> takes a list and returns the length of that list, as long as that length is ≤<sub>j</sub>; otherwise, length ≤<sub>j</sub> goes into an infinite loop



- Think of the subscript  $\leq j$  as a behavioral contract guaranteeing that **length** $\leq_j$  belongs to a certain type for up to *j* steps of execution
- This is exactly the intuition behind the step-indexed model of recursive types (Appel & McAllester, 2001)

| Two values of<br>the syntactic<br>form | are related for <i>j</i> steps if                                                                                             |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\overline{n}$                         | they're equal                                                                                                                 |
| $(cons \ v_1 \ v_2)$                   | their first components are related for <i>j</i> steps<br><b>and</b><br>their second components are related for <i>j</i> steps |
| $(\lambda \mathbf{x}. \mathbf{e})$     | <b>given</b> values related for <i>i</i> < <i>j</i> steps<br>they <b>produce</b> expressions related for <i>i</i> steps       |
|                                        |                                                                                                                               |

| Two values of<br>the syntactic<br>form           | are related for <i>j</i> steps if                                                                                             |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\overline{n}$                                   | they're equal                                                                                                                 |
| $(cons v_1 v_2)$                                 | their first components are related for <i>j</i> steps<br><b>and</b><br>their second components are related for <i>j</i> steps |
| $(\lambda \mathbf{x}. \mathbf{e})$               | <b>given</b> values related for <i>i</i> < <i>j</i> steps<br>they <b>produce</b> expressions related for <i>i</i> steps       |
| $(\mathbf{S} (\mathbf{S} (s; \tau) \mathbf{V}))$ |                                                                                                                               |

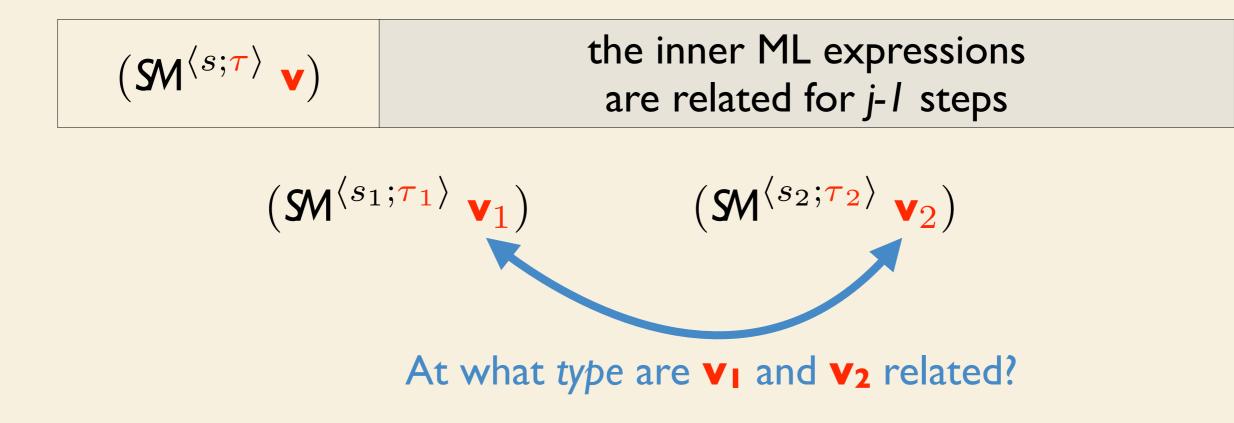
| Two values of<br>the syntactic<br>form                                     | are related for <i>j</i> steps if                                                                                             |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\overline{n}$                                                             | they're equal                                                                                                                 |
| $(cons v_1 v_2)$                                                           | their first components are related for <i>j</i> steps<br><b>and</b><br>their second components are related for <i>j</i> steps |
| $(\lambda \mathbf{x}. \mathbf{e})$                                         | <b>given</b> values related for <i>i</i> < <i>j</i> steps<br>they <b>produce</b> expressions related for <i>i</i> steps       |
| $(\mathbf{S\!M}^{\langle s; \boldsymbol{	au} \rangle} \mathbf{	extbf{v}})$ | ???                                                                                                                           |

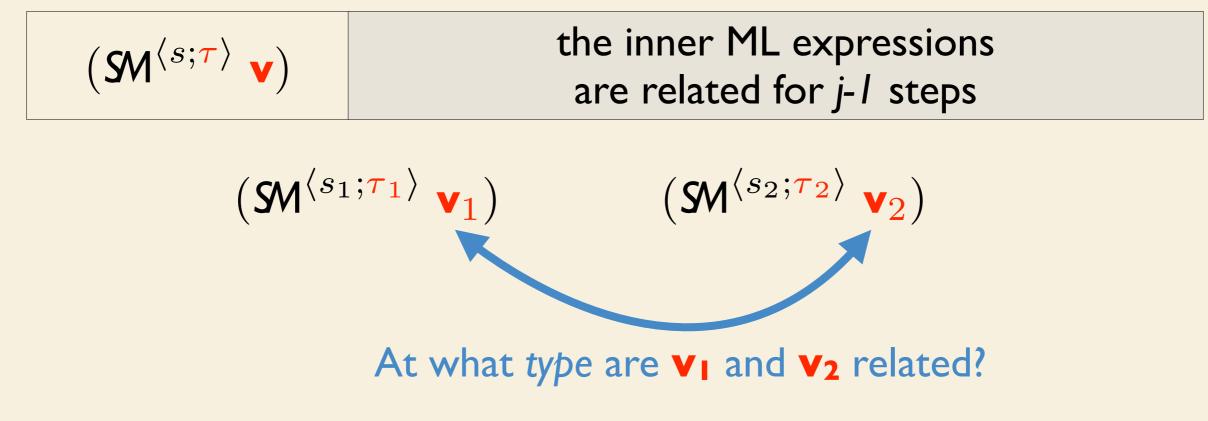
| Two values of<br>the syntactic<br>form                                    | are related for <i>j</i> steps if                                                                                             |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\overline{n}$                                                            | they're equal                                                                                                                 |
| $(cons v_1 v_2)$                                                          | their first components are related for <i>j</i> steps<br><b>and</b><br>their second components are related for <i>j</i> steps |
| $(\lambda \mathbf{x}. \mathbf{e})$                                        | <b>given</b> values related for <i>i</i> < <i>j</i> steps<br>they <b>produce</b> expressions related for <i>i</i> steps       |
| $(\mathbf{S\!M}^{\langle s; \boldsymbol{	au}  angle} \mathbf{	extbf{v}})$ | the inner ML expressions<br>are related for <i>j-1</i> steps                                                                  |

| Two values of<br>the syntactic<br>form           | are related for <i>j</i> steps if                                                                                             |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\overline{n}$                                   | they're equal                                                                                                                 |
| $(\mathbf{cons} \ \mathbf{v}_1 \ \mathbf{v}_2)$  | their first components are related for <i>j</i> steps<br><b>and</b><br>their second components are related for <i>j</i> steps |
| $(\lambda x. e)$                                 | <b>given</b> values related for <i>i</i> < <i>j</i> steps<br>they <b>produce</b> expressions related for <i>i</i> steps       |
| $(\mathbf{S} (\mathbf{S} (s; \tau) \mathbf{v}))$ | the inner ML expressions are related for <i>j-1</i> steps                                                                     |
| step indices "leak" back into the ML relation    |                                                                                                                               |

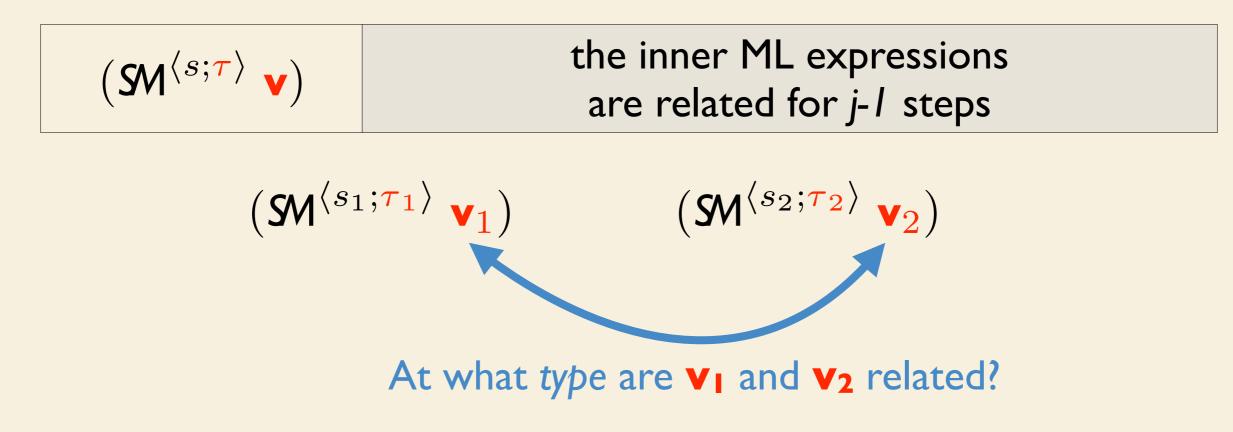
$$(\mathbf{SM}^{\langle s; \tau \rangle} \mathbf{v})$$
 the inner ML expressions are related for *j*-1 steps

| $(\mathbf{S} \langle s; \tau \rangle \mathbf{v})$ | the inner ML expressions          |
|---------------------------------------------------|-----------------------------------|
|                                                   | are related for <i>j</i> -1 steps |



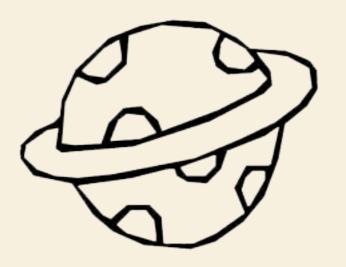


The type of these sealed values was originally a type variable...



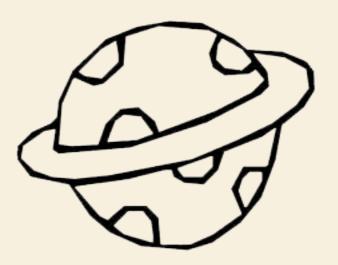
- The type of these sealed values was originally a type variable...
- We need a dynamic counterpart to  $\delta$

#### Possible worlds

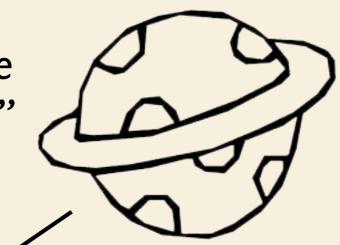


- An idea from modal logic (Kripke, 1963)
- Useful for reasoning about properties that only hold under certain conditions

"Meanwhile, in the world where **e**<sub>1</sub> and **e**<sub>2</sub> are related..."



"Meanwhile, in the world where **e**<sub>1</sub> and **e**<sub>2</sub> are related..."



seals s<sub>1</sub> generated during evaluation of **e**1

"..." "Meanwhile, in the world where **e**<sub>1</sub> and **e**<sub>2</sub> are related..."

seals s<sub>1</sub> generated during evaluation of **e**<sub>1</sub>

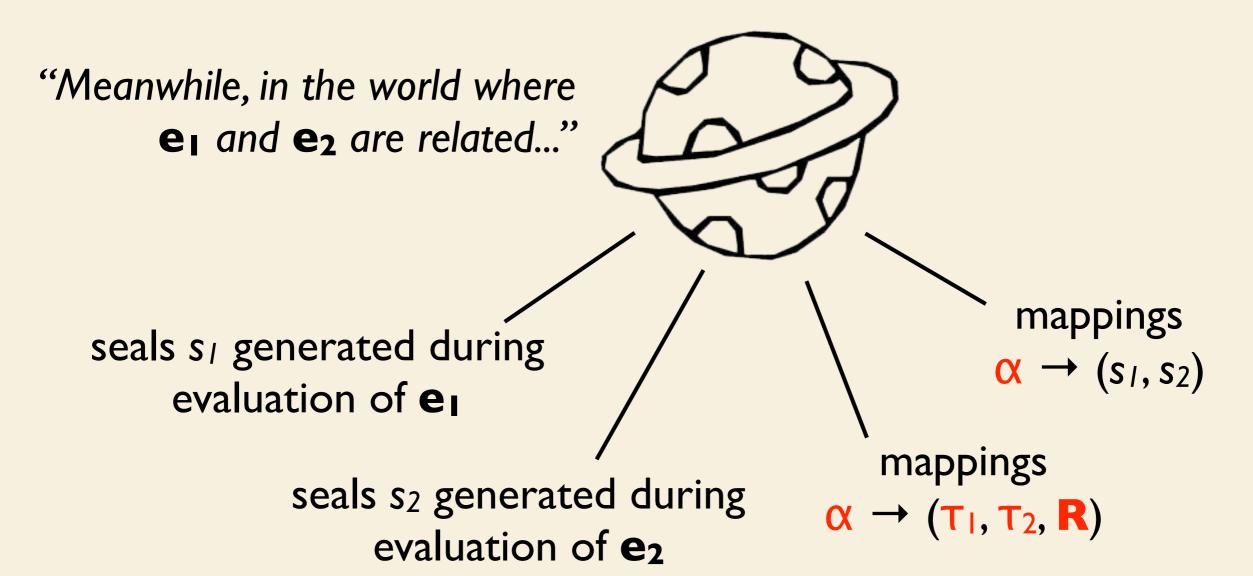
seals s<sub>2</sub> generated during evaluation of **e**<sub>2</sub>

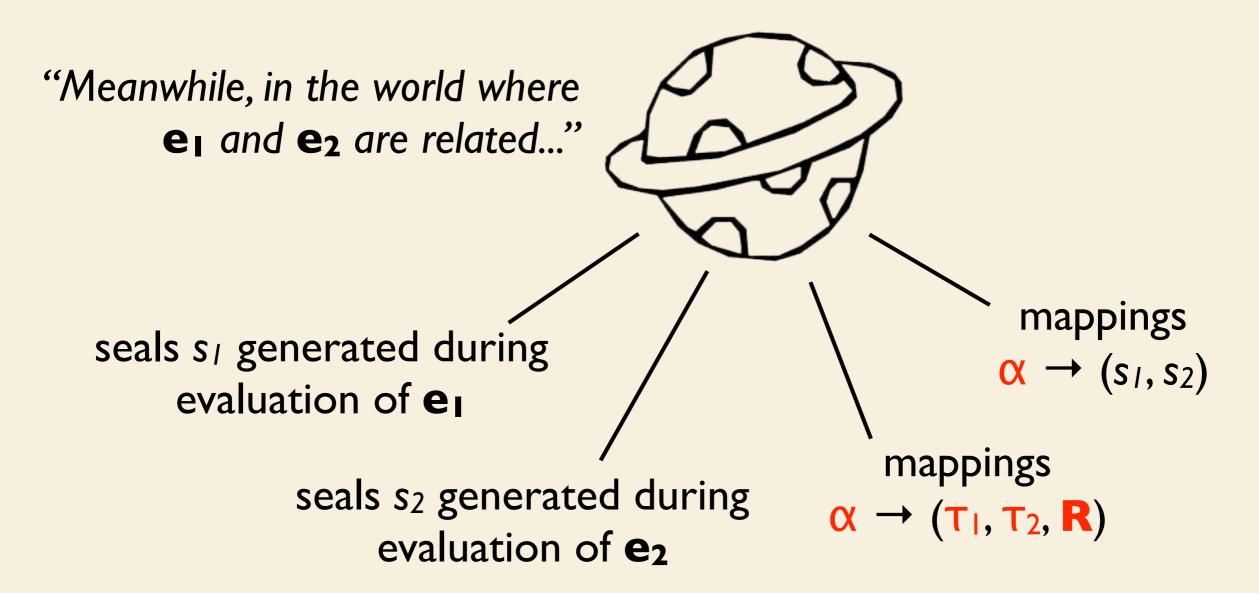
"..." "Meanwhile, in the world where **e**<sub>1</sub> and **e**<sub>2</sub> are related..."

> mappings  $\alpha \rightarrow (s_1, s_2)$

seals s<sub>1</sub> generated during evaluation of **e**<sub>1</sub>

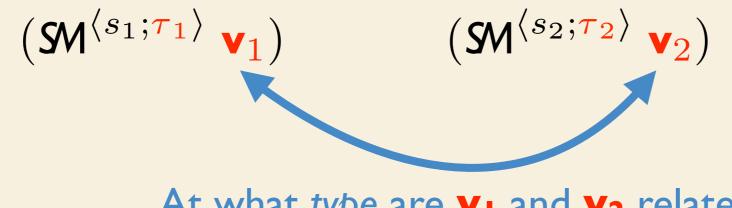
seals s<sub>2</sub> generated during evaluation of **e**<sub>2</sub>





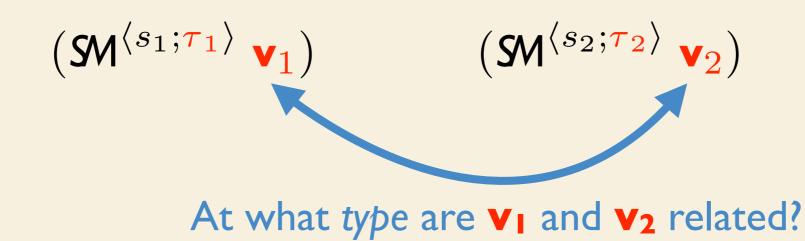
 Worlds capture the relationship between static type variables and dynamic seals

#### Relatedness in a world



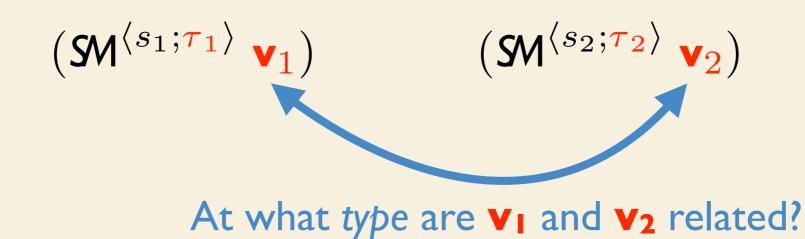
At what type are  $V_1$  and  $V_2$  related?

#### Relatedness in a world



The answer: V<sub>1</sub> and V<sub>2</sub> must belong to a relation R that relates values of type T<sub>1</sub> and T<sub>2</sub>

#### Relatedness in a world



- The answer: V<sub>1</sub> and V<sub>2</sub> must belong to a relation R that relates values of type T<sub>1</sub> and T<sub>2</sub>
- We can find R in the current world

Expressions are now related at a type, for a given number of steps, and in a world

- Expressions are now related at a type, for a given number of steps, and in a world
- Whenever we do type application, we extend the current world with new seals s<sub>1</sub> and s<sub>2</sub> and new bindings for C

- Expressions are now related at a type, for a given number of steps, and in a world
- Whenever we need to determine relatedness of sealed values, we consult the current world to find the R that would relate them

- Expressions are now related at a type, for a given number of steps, and in a world
- Whenever we need to determine relatedness of sealed values, we consult the current world to find the R that would relate them
- Upshot of all this: now we can prove parametricity!

# Sage advice

# Sage advice



# When in doubt, add another environment to your relation. **#typesystemprotips**

30 Mar via TweetDeck 🖕 Unfavorite 📭 Retweet 👆 Reply

- The bridge lemma:
  - I. For all  $e_1$  and  $e_2$ ,

 $\begin{array}{l} \text{if } (j, w, \mathbf{e_1}, \mathbf{e_2}) \in \mathcal{V}_S \\ \text{then } (j, w, ({}^{\delta_1(\tau)} \mathcal{M} \mathbf{S} \ \mathbf{e_1}), ({}^{\delta_2(\tau)} \mathcal{M} \mathbf{S} \ \mathbf{e_2})) \in \mathcal{V}_M[\![\tau]\!] \delta. \end{array}$ 

The bridge lemma: I. For all  $\mathbf{e}_1$  and  $\mathbf{e}_2$ , if  $(j, w, \mathbf{e}_1, \mathbf{e}_2) \in \mathcal{V}_S$ then  $(j, w, (^{\delta_1(\tau)}MS \mathbf{e}_1), (^{\delta_2(\tau)}MS \mathbf{e}_2)) \in \mathcal{V}_M[[\tau]]\delta$ .

- The bridge lemma:
- carries relatedness between languages
- I. For all  $\mathbf{e}_1$  and  $\mathbf{e}_2$ , if  $(j, w, \mathbf{e}_1, \mathbf{e}_2) \in \mathcal{V}_S$ then  $(j, w, (^{\delta_1(\tau)}MS \mathbf{e}_1), (^{\delta_2(\tau)}MS \mathbf{e}_2)) \in \mathcal{V}_M[\![\tau]\!]\delta$ .
- 2. For all  $\mathbf{e}_1$  and  $\mathbf{e}_2$ , if  $(j, w, \mathbf{e}_1, \mathbf{e}_2) \in \mathcal{V}_M[\![\tau]\!]\delta$ then  $(j, w, (\mathfrak{M}^{\delta_1(\tau)} \mathbf{e}_1), (\mathfrak{M}^{\delta_2(\tau)} \mathbf{e}_2)) \in \mathcal{V}_S$ .

- carries relatedness between languages
- I. For all  $\mathbf{e}_1$  and  $\mathbf{e}_2$ , if  $(j, w, \mathbf{e}_1, \mathbf{e}_2) \in \mathcal{V}_S$ then  $(j, w, ({}^{\delta_1(\tau)}M\!\!\mathsf{S}\,\mathbf{e}_1), ({}^{\delta_2(\tau)}M\!\!\mathsf{S}\,\mathbf{e}_2)) \in \mathcal{V}_M[\![\tau]\!]\delta$ .
- 2. For all  $\mathbf{e}_1$  and  $\mathbf{e}_2$ , if  $(j, w, \mathbf{e}_1, \mathbf{e}_2) \in \mathcal{V}_M[\![\tau]\!]\delta$ then  $(j, w, (\mathfrak{M}^{\delta_1(\tau)} \mathbf{e}_1), (\mathfrak{M}^{\delta_2(\tau)} \mathbf{e}_2)) \in \mathcal{V}_S$ .
- From there we can show the Fundamental Property:

- carries relatedness between languages
- I. For all  $\mathbf{e}_1$  and  $\mathbf{e}_2$ , if  $(j, w, \mathbf{e}_1, \mathbf{e}_2) \in \mathcal{V}_S$ then  $(j, w, (^{\delta_1(\tau)}MS \mathbf{e}_1), (^{\delta_2(\tau)}MS \mathbf{e}_2)) \in \mathcal{V}_M[[\tau]]\delta$ .
- 2. For all  $\mathbf{e}_1$  and  $\mathbf{e}_2$ , if  $(j, w, \mathbf{e}_1, \mathbf{e}_2) \in \mathcal{V}_M[\![\tau]\!]\delta$ then  $(j, w, (\mathfrak{M}^{\delta_1(\tau)} \mathbf{e}_1), (\mathfrak{M}^{\delta_2(\tau)} \mathbf{e}_2)) \in \mathcal{V}_S$ .
- From there we can show the Fundamental Property: I. If  $\Delta; \Gamma \vdash_M \mathbf{e} : \tau$ , then  $\Delta; \Gamma \vdash_M \mathbf{e} \lesssim_M \mathbf{e} : \tau$ .

- carries relatedness between languages
- I. For all  $\mathbf{e}_1$  and  $\mathbf{e}_2$ , if  $(j, w, \mathbf{e}_1, \mathbf{e}_2) \in \mathcal{V}_S$ then  $(j, w, (^{\delta_1(\tau)}MS \mathbf{e}_1), (^{\delta_2(\tau)}MS \mathbf{e}_2)) \in \mathcal{V}_M[[\tau]]\delta$ .
- 2. For all  $\mathbf{e}_1$  and  $\mathbf{e}_2$ , if  $(j, w, \mathbf{e}_1, \mathbf{e}_2) \in \mathcal{V}_M[\![\tau]\!]\delta$ then  $(j, w, (\mathfrak{M}^{\delta_1(\tau)} \mathbf{e}_1), (\mathfrak{M}^{\delta_2(\tau)} \mathbf{e}_2)) \in \mathcal{V}_S$ .
- From there we can show the Fundamental Property: I. If  $\Delta; \Gamma \vdash_M \mathbf{e} : \tau$ , then  $\Delta; \Gamma \vdash_M \mathbf{e} \leq_M \mathbf{e} : \tau$ .
  - 2. If  $\Delta; \Gamma \vdash_S \mathbf{e} : \mathbf{TST}$ , then  $\Delta; \Gamma \vdash_S \mathbf{e} \lesssim_S \mathbf{e} : \mathbf{TST}$ .

One way to enforce a contract T on a Scheme expression is by exporting it into ML at the type T and then importing it back into Scheme...

One way to enforce a contract T on a Scheme expression is by exporting it into ML at the type T and then importing it back into Scheme...

$$\mathbf{e}^{\tau} = (\mathbf{S} \mathbf{M}^{\tau} \ (\mathbf{T} \mathbf{M} \mathbf{S} \ \mathbf{e}))$$

One way to enforce a contract T on a Scheme expression is by exporting it into ML at the type T and then importing it back into Scheme...

$$\mathbf{e}^{\tau} = (\mathbf{S} \mathbf{M}^{\tau} \ (\mathbf{T} \mathbf{M} \mathbf{S} \ \mathbf{e}))$$

 ...so we can leverage our parametricity result to immediately show that contracted Scheme terms behave parametrically too

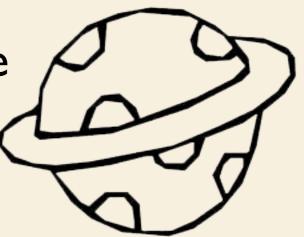
# Conclusion

 Aside from giving us free theorems, parametricity makes existential-style data abstraction possible.



- Aside from giving us free theorems, parametricity makes existential-style data abstraction possible.
- Parametricity breaks when we incorporate dynamically typed code into otherwise statically typed programs, but we can restore it using dynamic seal generation.

- Aside from giving us free theorems, parametricity makes existential-style data abstraction possible.
- Parametricity breaks when we incorporate dynamically typed code into otherwise statically typed programs, but we can restore it using dynamic seal generation.
- Seal generation is a stateful notion akin to dynamic memory allocation, so we can use **possible worlds** to reason about the semantics of seals in order to prove parametricity.



# Thanks!

Email: lkuper@cs.indiana.edu Web: www.cs.indiana.edu/~lkuper Research group: lambda.soic.indiana.edu



Thursday, February 24, 2011

#### Detailed non-parametricity example

| $(\forall \alpha. \ \alpha \rightarrow \alpha MS$ | $(\lambda \mathbf{x}.$ | ( <b>if0</b> | (nat? | <b>x</b> ) (+ | $\times \overline{1})$ | <b>x</b> ))) | Nat $\overline{5}$ |
|---------------------------------------------------|------------------------|--------------|-------|---------------|------------------------|--------------|--------------------|
|---------------------------------------------------|------------------------|--------------|-------|---------------|------------------------|--------------|--------------------|

- $\longrightarrow (\Lambda \alpha. \ (\stackrel{\alpha \to \alpha}{\longrightarrow} MS \ (\lambda x. \ (if0 \ (nat? x) \ (+ x \ \overline{1}) \ x)))) \text{ Nat } \overline{5}$
- $\longrightarrow \quad \left( \overset{\mathbf{Nat} \to \mathbf{Nat}}{\mathcal{MS}} \left( \lambda \mathbf{x}. \left( \mathsf{if0} \left( \mathsf{nat?} \mathbf{x} \right) \left( + \mathbf{x} \ \overline{1} \right) \mathbf{x} \right) \right) \right) \overline{5}$
- $\longrightarrow \quad (\lambda \mathbf{y} : \mathbf{Nat}. \ (\overset{\mathbf{Nat}}{\mathsf{MS}} (\lambda \mathbf{x}. \ (\mathbf{if0} \ (\mathbf{nat}? \mathbf{x}) \ (+ \mathbf{x} \ \overline{1}) \ \mathbf{x})) \ (\mathbf{M}^{\mathbf{Nat}} \ \mathbf{y}))) \ \overline{5}$
- $\longrightarrow \quad \left( \overset{\mathbf{Nat}}{\mathcal{MS}} \left( \lambda \mathbf{x}. \left( \mathsf{if0} \left( \mathsf{nat?} \mathbf{x} \right) \left( + \mathbf{x} \ \overline{1} \right) \mathbf{x} \right) \right) \left( \overset{\mathbf{Nat}}{\mathcal{SM}} \overset{\mathbf{Nat}}{\overline{5}} \right) \right)$
- $\longrightarrow \quad (\overset{\text{Nat}}{\longrightarrow} (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)) \overline{5})$
- $\longrightarrow \quad (\overset{\texttt{Nat}}{\longrightarrow} ( \text{if0} ( \texttt{nat}? \ \overline{5}) \ (+ \ \overline{5} \ \overline{1}) \ \overline{5}))$
- $\longrightarrow \quad (\overset{\text{Nat}}{\longrightarrow} (\text{if0 } \overline{0} \ (+ \ \overline{5} \ \overline{1}) \ \overline{5}))$
- $\longrightarrow \quad \left( \overset{\text{Nat}}{\longrightarrow} \left( + \ \overline{5} \ \overline{1} \right) \right)$
- $\longrightarrow (\text{Nat}MS \overline{6})$

# Detailed dynamic sealing example

 $(\forall \alpha. \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) x)))$  Nat 5  $\longrightarrow (\Lambda \alpha. (\stackrel{\alpha \to \alpha}{\longrightarrow} MS (\lambda x. (if0 (nat? x) (+ x 1) x)))) \text{ Nat } 5$  $\longrightarrow (\langle s; \mathsf{Nat} \rangle \rightarrow \langle s; \mathsf{Nat} \rangle MS(\lambda x. (\mathsf{if0}(\mathsf{nat}? x)(+ x \overline{1})x))) 5$  $\longrightarrow (\lambda \mathbf{y} : \mathbf{Nat}. (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat}? \mathbf{x}) (+ \mathbf{x} \overline{1}) \mathbf{x})) (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \mathbf{y}))) \overline{5}$  $\longrightarrow (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat}? \mathbf{x}) (+ \mathbf{x} \overline{1}) \mathbf{x})) (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \overline{5}))$  $\longrightarrow (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat? x}) (+ \mathbf{x} \overline{1}) \mathbf{x})) (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \overline{5}))$  $\longrightarrow (\langle s; \mathsf{Nat} \rangle \mathcal{MS} (\mathsf{if0} (\mathsf{nat}? (\mathcal{M}^{\langle s; \mathsf{Nat} \rangle} \overline{5})) (+ (\mathcal{M}^{\langle s; \mathsf{Nat} \rangle} \overline{5}) \overline{1}) (\mathcal{M}^{\langle s; \mathsf{Nat} \rangle} \overline{5})))$  $\longrightarrow (\langle s; \mathbf{Nat} \rangle \mathcal{M} S (ifO \overline{1} (+ (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \overline{5}) \overline{1}) (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \overline{5})))$  $\longrightarrow (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \overline{5}))$  $\longrightarrow \overline{5}$ 

#### Another detailed dynamic sealing example

 $(\forall \alpha . \ \alpha \rightarrow \alpha MS (\lambda x. (if0 (nat? x) (+ x \overline{1}) \overline{2})))$  Nat  $\overline{5}$  $\longrightarrow (\Lambda \alpha. (\stackrel{\alpha \to \alpha}{\longrightarrow} MS (\lambda x. (if0 (nat? x) (+ x 1) 2)))) \text{ Nat } 5$  $\longrightarrow (\langle s; \mathsf{Nat} \rangle \rightarrow \langle s; \mathsf{Nat} \rangle \mathcal{MS} (\lambda x. (\mathsf{if0} (\mathsf{nat}? x) (+ x \overline{1}) \overline{2}))) 5$  $\longrightarrow (\lambda \mathbf{y} : \mathbf{Nat}. (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\lambda \mathbf{x}. (\mathbf{if0} (\mathbf{nat}? \mathbf{x}) (+ \mathbf{x} \overline{1}) \overline{2})) (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \mathbf{y}))) \overline{5}$  $\longrightarrow (\langle s; \mathsf{Nat} \rangle \mathcal{MS} (\lambda x. (\mathsf{if0} (\mathsf{nat}? x) (+ x \overline{1}) \overline{2})) (\mathcal{M}^{\langle s; \mathsf{Nat} \rangle} \overline{5}))$  $\longrightarrow (\langle s; \mathsf{Nat} \rangle \mathcal{MS} (\lambda x. (\mathsf{if0} (\mathsf{nat}? x) (+ x \overline{1}) \overline{2})) (\mathcal{M}^{\langle s; \mathsf{Nat} \rangle} \overline{5}))$  $\longrightarrow (\langle s; \mathsf{Nat} \rangle \mathcal{MS} (\mathsf{ifO} (\mathsf{nat}? (\mathcal{M}^{\langle s; \mathsf{Nat} \rangle} \overline{5})) (+ (\mathcal{M}^{\langle s; \mathsf{Nat} \rangle} \overline{5}) \overline{1}) \overline{2}))$  $\longrightarrow (\langle s; \mathbf{Nat} \rangle \mathcal{MS} (\mathbf{if0} \ \overline{1} \ (+ (\mathcal{M}^{\langle s; \mathbf{Nat} \rangle} \ \overline{5}) \ \overline{1}) \ \overline{2}))$  $\longrightarrow (\langle s; \mathsf{Nat} \rangle \mathsf{MS} \overline{2})$ 

 $\longrightarrow$  **Error**: bad value