Parametric Polymorphism Through Run-time Sealing

 or, Theorems for Low, Low Prices!

Northeastern University Programming Languages Seminar February 23, 2011

What is parametricity?

Data abstraction

Data abstraction

Separation of implementation and interface

Data abstraction

Separation of implementation and interface

$$
\begin{aligned}
& \text { Counter }=\exists \alpha .\{\text { new }: \alpha, \\
& \text { inc }: \alpha \rightarrow \alpha, \\
&\text { get }: \alpha \rightarrow \text { Nat }\}
\end{aligned}
$$

Data abstraction

Separation of implementation and interface

$$
\begin{aligned}
\text { Counter }=\exists \alpha . & \{\text { new }: \alpha, \\
& \text { inc }: \alpha \rightarrow \alpha, \\
& \text { get }: \alpha \rightarrow \text { Nat }\}
\end{aligned}
$$

$$
\begin{aligned}
c 1= & \{\text { new }=0, \\
& \text { inc }=\lambda x: \text { Nat. } x+1, \\
& \text { get }=\lambda x: \text { Nat. } x\} \\
\text { ctr1 }= & \text { pack Nat, c1 as Counter }
\end{aligned}
$$

Data abstraction

Separation of implementation and interface

$$
\begin{aligned}
& \text { Counter }=\exists \alpha \text {. \{new : } \alpha \text {, } \\
& \text { inc : } \alpha \rightarrow \alpha \text {, } \\
& \text { get : } \alpha \rightarrow \text { Nat }\} \\
& \text { c1 }=\text { \{new }=0, \\
& \text { inc }=\lambda x \text { : Nat. } x+1 \text {, } \\
& \text { get }=\lambda x \text { : Nat. } x\} \\
& \text { ctr1 = pack Nat, c1 as Counter } \\
& \text { c2 }=\text { \{new }=0 \text {, } \\
& \text { inc }=\lambda x \text { : Int. } x-1 \text {, } \\
& \text { get }=\lambda x \text { : Int. } \operatorname{toNat}(0-x)\} \\
& \text { ctr2 = pack Int, c2 as Counter }
\end{aligned}
$$

Data abstraction

Separation of implementation and interface

$$
\begin{aligned}
& \text { Counter = } \exists \alpha .\{n e w: \alpha, \\
& \text { inc : } \alpha \rightarrow \alpha \text {, } \\
& \text { get : } \alpha \rightarrow \text { Nat }\} \\
& \text { c1 }=\text { \{new }=0, \\
& \text { inc }=\lambda x \text { : Nat. } x+1 \text {, } \\
& \text { get }=\lambda x \text { : Nat. } x\} \\
& \text { ctr1 = pack Nat, c1 as Counter } \\
& \text { c2 }=\text { \{new }=0 \text {, } \\
& \text { inc }=\lambda x \text { : Int. } x-1 \text {, } \\
& \text { get }=\lambda x \text { : Int. } \operatorname{toNat}(0-x)\} \\
& \text { ctr2 = pack Int, c2 as Counter } \\
& \text { indistinguishable }
\end{aligned}
$$

Existential types...

$$
\begin{aligned}
c 1=\{\text { new } & =0, \\
\text { inc } & =\lambda x: \text { Nat. } x+1, \\
\text { get } & =\lambda x: \text { Nat. } x\}
\end{aligned}
$$

ctr1 = pack Nat, c1 as Counter

$$
\begin{aligned}
c 2= & \{\text { new }=0, \\
& \text { inc }=\lambda x: \text { Int. } x-1, \\
& \text { get }=\lambda x: \text { Int. toNat }(0-x)\} \\
\text { ctr2 }= & \text { pack Int, c2 as Counter } \\
& \text { indistinguishable }
\end{aligned}
$$

Existential types...

$$
\begin{aligned}
c 1=\{\text { new } & =0, \\
\text { inc } & =\lambda x: \text { Nat. } x+1, \\
\text { get } & =\lambda x: \text { Nat. } x\}
\end{aligned}
$$

ctr1 = pack Nat, c1 as Counter
c2 $=$ \{new $=0$, inc $=\lambda x$: Int. $x-1$, get $=\lambda x$: Int. toNat(0 - x) \}
ctr2 = pack Int, c2 as Counter indistinguishable

- If two expressions have the same existential type, no program context can distinguish them.

Existential types...

$$
\begin{aligned}
c 1=\{\text { new } & =0, \\
\text { inc } & =\lambda x: \text { Nat. } x+1, \\
\text { get } & =\lambda x: \text { Nat. } x\}
\end{aligned}
$$

ctr1 = pack Nat, c1 as Counter

$$
\begin{aligned}
c 2=\{\text { new } & =0, \\
\text { inc } & =\lambda x: \text { Int. } x-1, \\
\text { get } & =\lambda x: \text { Int. toNat }(0-x)\}
\end{aligned}
$$

ctr2 = pack Int, c2 as Counter

indistinguishable

- If two expressions have the same existential type, no program context can distinguish them.

Existential types...and their dual, universal types

- If two expressions have the same existential type, no program context can distinguish them.

- No two program contexts (instantiations) can cause an expression of type $\forall \alpha$. T to behave differently.

- No two program contexts (instantiations) can cause an expression of type $\forall \alpha$. T to behave differently.

...and their dual, universal types

$$
f: \forall \alpha . \alpha \rightarrow \alpha
$$

- No two program contexts (instantiations) can cause an expression of type $\forall \alpha$. T to behave differently.

...and their dual, universal types

$$
f: \forall \alpha . \alpha \rightarrow \alpha
$$

Nat

- No two program contexts (instantiations) can cause an expression of type $\forall \alpha$. T to behave differently.

...and their dual, universal types

$$
f: \forall \alpha . \alpha \rightarrow \alpha
$$

Nat
Int

- No two program contexts (instantiations) can cause an expression of type $\forall \alpha$. T to behave differently.

...and their dual, universal types

$$
f: \forall \alpha . \alpha \rightarrow \alpha
$$

Nat Int

- No two program contexts (instantiations) can cause an expression of type $\forall \alpha$. T to behave differently.

...and their dual, universal types

$$
f: \forall \alpha . \alpha \rightarrow \alpha
$$

- No two program contexts (instantiations) can cause an expression of type $\forall \alpha$. T to behave differently.

...and their dual, universal types

$$
f: \forall \alpha . \alpha \rightarrow \alpha
$$

- No two program contexts (instantiations) can cause an expression of type $\forall \alpha$.T to behave differently.

...and their dual, universal types

$$
\begin{aligned}
& f: \forall \alpha . \quad \alpha \rightarrow \alpha \\
& f=\Lambda \alpha . \quad \lambda x: \alpha . \quad x
\end{aligned}
$$

- No two program contexts (instantiations) can cause an expression of type $\forall \alpha$. T to behave differently.

Existential types...and their dual, universal types

Existential types...and their dual, universal types

Breaking parametricity

How to break parametricity in one easy step

$$
\begin{array}{r}
\wedge \alpha \cdot \lambda x: \alpha \cdot(\text { if }(\text { nat? } x) \\
(+x 1) \\
x)
\end{array}
$$

How to break parametricity in one easy step

How to break parametricity in one easy step

$$
\Lambda \alpha . \lambda x: \alpha \text {. (if (nat? } x \text {) } \begin{aligned}
& (+x 1) \\
& x)
\end{aligned} \begin{aligned}
& \text { behaves differently at } \\
& \text { run-time depending on } \\
& \text { how } \alpha \text { is instantiated }
\end{aligned}
$$

Putting dynamically typed code in an otherwise statically typed program provides a way to
"smuggle values past the type system"
(Abadi et al., I989)

A two-language system

A two-language system

- How can we assign a type to a program that's written in two languages?

A two-language system

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews \& Findler, 2007):

A two-language system

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews \& Findler, 2007):

> e
e

A two-language system

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews \& Findler, 2007):

e

A two-language system

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews \& Findler, 2007):

e

A two-language system

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews \& Findler, 2007):

$$
e_{1} e_{2}
$$

e

A two-language system

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews \& Findler, 2007):

$$
e_{1} e_{2}
$$

e

A two-language system

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews \& Findler, 2007):

A two-language system

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews \& Findler, 2007):

A two-language system

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews \& Findler, 2007):

A two-language system

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews \& Findler, 2007):

A two-language system

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews \& Findler, 2007):

A two-language system

- How can we assign a type to a program that's written in two languages?
- We'll combine a minimal "Scheme" and a minimal "ML" in a multi-language embedding (Matthews \& Findler, 2007):

Using a Scheme procedure in ML

$\left({ }^{\tau_{1} \rightarrow \tau_{2}} \operatorname{MS}(\lambda \mathrm{x} . \mathrm{e})\right)$

Using a Scheme procedure in ML

have to choose some type at which to embed the procedure
$\left(\tau_{1} \rightarrow \tau_{2}\right.$ MS $(\lambda$ x. e) $)$

Using a Scheme procedure in ML

have to choose some type at which to embed the procedure
$\left(\tau_{1} \rightarrow \tau_{2}\right.$ MS $\left.(\lambda \mathbf{x} . \mathbf{e})\right) \longmapsto\left(\lambda \mathbf{x}: \tau_{1}\right.$.

Using a Scheme procedure in ML

> have to choose some type at which to embed the procedure
> $\left({ }^{\tau_{1} \rightarrow \tau_{2}} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{e})\right) \longmapsto\left(\lambda \mathbf{x}: \tau_{1} \cdot\left({ }^{\tau_{2}} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{e})\left(\mathbf{S M}^{\tau_{1}} \mathbf{x}\right)\right)\right)$

Using a Scheme procedure in ML

$\left({ }^{\tau_{1} \rightarrow \tau_{2}} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{e})\right) \longmapsto\left(\lambda \mathbf{x}: \tau_{1} \cdot\left({ }^{\tau_{2}} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{e})\left(\mathbf{S M}^{\tau_{1}} \mathbf{x}\right)\right)\right)$
direction of conversion reverses for arguments

A first attempt at polymorphism

$\left({ }^{\forall \alpha \cdot}{ }^{\tau} \operatorname{MS}(\lambda \mathrm{x} . \mathrm{e})\right)$

A first attempt at polymorphism

embedding a Scheme procedure in ML at a universal type
 $\left({ }^{\forall \alpha \cdot}{ }^{\tau} \mathbf{M S}(\lambda \mathrm{x} . \mathrm{e})\right)$

A first attempt at polymorphism

embedding a Scheme procedure in ML at a universal type

)

A first attempt at polymorphism

$$
\begin{gathered}
\text { embedding a Scheme procedure in } \\
\text { ML at a universal type } \\
\left({ }^{\left.\forall \alpha \cdot{ }^{\tau} \mathrm{MS}(\lambda \mathrm{x} . \mathrm{e})\right) \quad \longmapsto \quad\left(\Lambda \alpha \cdot\left({ }^{\tau} \mathbf{M S}(\lambda \mathrm{x} . \mathrm{e})\right)\right)}\right. \text {) }
\end{gathered}
$$

A first attempt at polymorphism

$$
\begin{aligned}
& \text { embedding a Scheme procedure in } \\
& \text { ML at a universal type } \\
& \left({ }^{\forall \alpha \cdot \tau} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{e})\right) \quad\left(\Lambda \alpha \cdot\left({ }^{\tau} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{e})\right)\right) \\
& \text { evaluation stops here, and continues } \\
& \text { when we apply to a concrete type: } \\
& (\Lambda \alpha . \mathbf{e}) \mathbf{N a t} \longmapsto \mathbf{e}[\alpha:=\mathbf{N a t}]
\end{aligned}
$$

A first attempt at polymorphism: example

$$
(\forall \alpha . \alpha \rightarrow \alpha \text { MS }(\lambda \mathbf{x} . \mathbf{x})) \text { Nat } \overline{3}
$$

A first attempt at polymorphism: example

$(\forall \alpha . \alpha \rightarrow \alpha$ MS $(\lambda \mathbf{x} . \mathbf{x}))$ Nat $\overline{3}$
$\longrightarrow \quad\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} \operatorname{MS}(\lambda \mathbf{x} . \mathbf{x})\right)\right.$ Nat $\overline{3}$

A first attempt at polymorphism: example

$(\forall \alpha . \alpha \rightarrow \alpha$ MS $(\lambda \mathbf{x} . \mathbf{x}))$ Nat $\overline{3}$
$\longrightarrow \quad\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{x})\right)\right.$ Nat $\overline{3}$
$\longrightarrow \quad\left({ }^{\text {Nat } \rightarrow \text { Nat }} \mathbf{M S}(\lambda \mathrm{x} . \mathrm{x})\right) \overline{3}$

A first attempt at polymorphism: example

$(\forall \alpha . \alpha \rightarrow \alpha$ MS $(\lambda \mathbf{x} . \mathbf{x}))$ Nat $\overline{3}$
$\longrightarrow \quad\left(\Lambda \alpha .\left({ }^{\alpha \rightarrow \alpha}\right.\right.$ MS $\left.(\lambda \mathbf{x} . \mathbf{x})\right)$ Nat $\overline{3}$
$\longrightarrow \quad\left({ }^{\text {Nat } \rightarrow \text { Nat }} \mathbf{M S}(\lambda x . x)\right) \overline{3}$
$\longrightarrow\left(\lambda \mathbf{y}:\right.$ Nat. $\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{x})\left(\right.\right.$ SM $\left.\left.\left.^{\text {Nat }} \mathbf{y}\right)\right)\right) \overline{3}$

A first attempt at polymorphism: example

$(\forall \alpha . \alpha \rightarrow \alpha$ MS $(\lambda \mathbf{x} . \mathbf{x}))$ Nat $\overline{3}$
$\longrightarrow \quad\left(\Lambda \alpha .\left({ }^{\alpha \rightarrow \alpha} \operatorname{MS}(\lambda \mathbf{x} . \mathbf{x})\right)\right.$ Nat $\overline{3}$
$\longrightarrow \quad\left({ }^{\text {Nat } \rightarrow \text { Nat }} \mathbf{M S}(\lambda x . x)\right) \overline{3}$
$\longrightarrow\left(\lambda \mathbf{y}:\right.$ Nat. $\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{x})\left(\right.\right.$ SM $\left.\left.\left.^{\text {Nat }} \mathbf{y}\right)\right)\right) \overline{3}$
$\longrightarrow\left({ }^{\text {Nat }} \mathbf{M S}(\lambda x . x)\left(S^{\text {Nat }} \overline{3}\right)\right)$

A first attempt at polymorphism: example

$$
\begin{aligned}
& (\forall \alpha . \alpha \rightarrow \alpha \text { MS }(\lambda \mathbf{x} . \mathbf{x})) \text { Nat } \overline{3} \\
& \longrightarrow \quad\left(\Lambda \alpha .\left({ }^{\alpha \rightarrow \alpha} \text { MS }(\lambda \mathbf{x} . \mathbf{x})\right) \text { Nat } \overline{3}\right. \\
& \longrightarrow \quad\left({ }^{\text {Nat } \rightarrow \text { Nat }} \mathbf{M S}(\lambda x . x)\right) \overline{3} \\
& \longrightarrow \quad\left(\lambda \mathbf{y}: \text { Nat. }\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{x})\left(\text { SM }^{\text {Nat }} \mathbf{y}\right)\right)\right) \overline{3} \\
& \longrightarrow\left({ }^{\text {Nat }} M \mathbf{M}(\lambda \mathrm{x} . \mathrm{x})\left(\mathrm{SM}^{\text {Nat }} \overline{3}\right)\right) \\
& \text { first-order values are } \\
& \text { assumed to be } \\
& \text { convertible }
\end{aligned}
$$

A first attempt at polymorphism: example

$$
\begin{aligned}
& (\forall \alpha . \alpha \rightarrow \alpha \text { MS }(\lambda \mathbf{x} . \mathbf{x})) \text { Nat } \overline{3} \\
& \longrightarrow \quad\left(\Lambda \alpha .\left({ }^{\alpha \rightarrow \alpha} \text { MS }(\lambda \mathbf{x} . \mathbf{x})\right) \text { Nat } \overline{3}\right. \\
& \longrightarrow \quad\left({ }^{\text {Nat } \rightarrow \text { Nat }} \mathbf{M S}(\lambda x . x)\right) \overline{3} \\
& \longrightarrow \quad\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{x})\left(\mathbf{S M}^{\mathrm{Nat}} \mathbf{y}\right)\right)\right) \overline{3} \\
& \longrightarrow\left({ }^{\text {Nat }} \text { MS }(\lambda \mathrm{x} . \mathrm{x})\left(\text { SM }^{\text {Nat }} \overline{3}\right)\right) \\
& \longrightarrow \quad\left({ }^{\text {Nat }} \mathbf{M S}(\lambda x . x) \overline{3}\right) \\
& \text { first-order values are } \\
& \text { assumed to be } \\
& \text { convertible }
\end{aligned}
$$

A first attempt at polymorphism: example

$$
\begin{aligned}
& \left({ }^{\forall \alpha . \alpha \rightarrow \alpha} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{x})\right) \text { Nat } \overline{3} \\
& \longrightarrow \quad\left(\Lambda \alpha .\left({ }^{\alpha \rightarrow \alpha} \text { MS }(\lambda \mathbf{x} . \mathbf{x})\right) \text { Nat } \overline{3}\right. \\
& \longrightarrow \quad\left({ }^{\text {Nat } \rightarrow \text { Nat }} \mathbf{M S}(\lambda x . x)\right) \overline{3} \\
& \longrightarrow \quad\left(\lambda \mathbf{y}: \text { Nat. }\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{x})\left(\text { SM }^{\text {Nat }} \mathbf{y}\right)\right)\right) \overline{3} \\
& \longrightarrow\left({ }^{\text {Nat }} \text { MS }(\lambda \mathrm{x} . \mathrm{x})\left(\text { SM }^{\text {Nat }} \overline{3}\right)\right) \\
& \longrightarrow \quad\left({ }^{\text {Nat }} \mathbf{M S}(\lambda x . x) \overline{3}\right) \\
& \longrightarrow \quad\left({ }^{\text {Nat }} \mathrm{MS} \overline{3}\right) \\
& \text { first-order values are } \\
& \text { assumed to be } \\
& \text { convertible }
\end{aligned}
$$

A first attempt at polymorphism: example

$$
\begin{aligned}
& (\forall \alpha . \alpha \rightarrow \alpha \text { MS }(\lambda \mathbf{x} . \mathbf{x})) \text { Nat } \overline{3} \\
& \longrightarrow \quad\left(\Lambda \alpha .\left({ }^{\alpha \rightarrow \alpha} \text { MS }(\lambda \mathbf{x} . \mathbf{x})\right) \text { Nat } \overline{3}\right. \\
& \longrightarrow \quad\left({ }^{\text {Nat } \rightarrow \text { Nat }} \mathbf{M S}(\lambda x . x)\right) \overline{3} \\
& \longrightarrow\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{x})\left(\mathbf{S M}^{\text {Nat }} \mathbf{y}\right)\right)\right) \overline{3} \\
& \longrightarrow \quad\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{x})\left(S^{\text {Nat }} \overline{3}\right)\right) \\
& \longrightarrow \quad\left({ }^{\text {Nat }} \text { MS }(\lambda x . x) \overline{3}\right) \\
& \longrightarrow \quad\left({ }^{\text {Nat }} \mathrm{MS} \overline{3}\right) \\
& \text { first-order values are } \\
& \text { assumed to be } \\
& \text { convertible }
\end{aligned}
$$

A first attempt at polymorphism: example

$$
\begin{aligned}
& \left({ }^{\forall \alpha . \alpha \rightarrow \alpha} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{x})\right) \text { Nat } \overline{3} \\
& \longrightarrow \quad\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{x})\right) \text { Nat } \overline{3}\right. \\
& \longrightarrow \quad\left({ }^{\text {Nat } \rightarrow \text { Nat }} \mathbf{M S}(\lambda x . x)\right) \overline{3} \\
& \longrightarrow \quad\left(\lambda \mathbf{y}: \text { Nat. }\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathbf{x} . \mathbf{x})\left(\text { SM }^{\text {Nat }} \mathbf{y}\right)\right)\right) \overline{3} \\
& \longrightarrow\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathrm{x} . \mathrm{x})\left(\text { SM }^{\text {Nat }} \overline{3}\right)\right) \\
& \longrightarrow \quad\left({ }^{\text {Nat }} \text { MS }(\lambda x . x) \overline{3}\right) \\
& \longrightarrow \quad\left({ }^{\mathrm{Nat}} \mathrm{MS} \overline{3}\right) \\
& \longrightarrow \quad \overline{3} \\
& \text { assumed to be } \\
& \text { convertible }
\end{aligned}
$$

How parametricity breaks

$$
\left({ }^{\forall \alpha \cdot \alpha \rightarrow \alpha} \mathbf{M S}(\lambda \mathbf{x} .(\text { if0 }(\text { nat? } \mathbf{x})(+x \overline{1}) \mathbf{x}))\right) \mathbf{N a t}
$$

How parametricity breaks

How parametricity breaks

How parametricity breaks

$$
\begin{aligned}
& \text { well-typed expression of type } \forall \alpha . \alpha \rightarrow \alpha \\
& (\forall \alpha . \alpha \rightarrow \alpha \text { MS }(\lambda x \text {. (if0 }(\text { nat? } x)(+x \overline{1}) x))) \text { Nat } \\
& \left.\longrightarrow\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} M S(\lambda x \text {. (if0 }(\text { nat? } x)(+x \overline{1}) x)\right)\right)\right) \text { Nat } \\
& \longrightarrow\left({ }^{\text {Nat } \rightarrow N^{2}} \mathbf{M S}(\lambda x .(\text { if0 }(\text { nat? } x)(+x \overline{1}) x))\right)
\end{aligned}
$$

How parametricity breaks

$$
\begin{aligned}
& \text { well-typed expression of type } \forall \alpha . \alpha \rightarrow \alpha \\
& \left.\left.\left({ }^{\forall \alpha \cdot \alpha \rightarrow \alpha} \mathbf{M S}(\lambda \mathbf{x} \text {. (if0 (nat? } \mathbf{x})(+\mathbf{x} \overline{1}) \mathbf{x}\right)\right)\right) \text { Nat } \\
& \left.\longrightarrow\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} M S(\lambda x \text {. (if0 }(\text { nat? } x)(+x \overline{1}) x)\right)\right)\right) \text { Nat } \\
& \longrightarrow\left({ }^{\text {Nat } \rightarrow N a t} M S(\lambda x .(\text { if0 }(\text { nat? } x)(+x \overline{1}) x))\right) \\
& \longrightarrow \quad\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathbf{x} .(\text { if0 }(\text { nat? } \mathbf{x})(+x \overline{1}) \mathbf{x}))\left(S^{\text {Nat }} \mathbf{y}\right)\right)\right)
\end{aligned}
$$

How parametricity breaks

$$
\begin{aligned}
& \text { well-typed expression of type } \forall \alpha . \alpha \rightarrow \alpha \\
& \left.\left.\left({ }^{\forall \alpha \cdot \alpha \rightarrow \alpha} \operatorname{MS}(\lambda \mathbf{x} \text {. (ifs (nat? } \mathbf{x})(+\mathbf{x} \overline{1}) \mathbf{x}\right)\right)\right) \text { Nat } \\
& \left.\longrightarrow\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} M S(\lambda x \text {. (ifs }(\text { nat? } x)(+x \overline{1}) x)\right)\right)\right) \text { Nat } \\
& \longrightarrow\left({ }^{\text {Nat } \rightarrow N^{2 t}} \mathbf{M S}(\lambda x .(\text { ifs }(\text { nat } ? ~ x)(+x \overline{1}) x))\right) \\
& \longrightarrow \quad\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\mathbf{N a t}^{2}} \mathbf{M S}(\lambda \mathbf{x} .(\text { ifs }(\text { nat } ? \mathbf{x})(+\mathbf{x} \overline{1}) \mathbf{x}))\left(\mathbf{S M}^{\text {Nat }} \mathbf{y}\right)\right)\right) \\
& \equiv \quad\left(\lambda \mathbf{y}: \mathbf{N a t} \cdot\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathrm{x} .(+\mathrm{x} \overline{1}))\left(\mathbf{S M}^{\mathrm{Nat}} \mathbf{y}\right)\right)\right)
\end{aligned}
$$

How parametricity breaks

$$
\begin{aligned}
& \begin{array}{l}
\text { well-typed expression of type } \forall \alpha . \alpha \rightarrow \alpha \\
(\forall \alpha \cdot \alpha \rightarrow \alpha \text { MS }(\lambda x .(\text { if0 }(\text { nat? } \mathbf{x})(+\mathbf{x} \overline{1}) \mathbf{x}))) \text { Nat }
\end{array} \\
& \left.\longrightarrow\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} M S(\lambda x \text {. (if0 }(\text { nat? } x)(+x \overline{1}) x)\right)\right)\right) \text { Nat } \\
& \longrightarrow\left({ }^{\text {Nat } \rightarrow N^{2}} \mathbf{M S}(\lambda x .(\text { if0 }(\text { nat? } x)(+x \overline{1}) x))\right) \\
& \longrightarrow \quad\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\mathbf{N a t}^{2} M S}(\lambda \mathbf{x} .(\text { if0 }(\text { nat? } \mathbf{x})(+\mathbf{x} \overline{1}) \mathbf{x}))\left(\operatorname{SM}^{\text {Nat }} \mathbf{y}\right)\right)\right) \\
& \equiv \quad\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \times .(+x \overline{1}))\left(\text { SM }^{\text {Nat }} \mathbf{y}\right)\right)\right)
\end{aligned}
$$

not the identity function!

What went wrong?

$$
\begin{aligned}
& \left.\left.\left({ }^{\forall \alpha \cdot \alpha \rightarrow \alpha} \operatorname{MS}(\lambda \times \text {. (if0 (nat? } \mathbf{x})(+x \overline{1}) \mathbf{x}\right)\right)\right) \text { Nat } \\
& \left.\longrightarrow\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} M S(\lambda x \text {. (if0 }(\text { nat? } x)(+x \overline{1}) \mathbf{x})\right)\right)\right) \text { Nat } \\
& \longrightarrow\left({ }^{\text {Nat } \rightarrow N^{2 t}} \mathbf{M S}(\lambda x .(\text { if0 }(\text { nat? } x)(+x \overline{1}) x))\right) \\
& \longrightarrow \quad\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathbf{x} .(\text { if0 }(\text { nat? } \mathbf{x})(+x \overline{1}) \mathbf{x}))\left(S^{\text {Nat }} \mathbf{y}\right)\right)\right) \\
& \equiv \quad\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathbf{x} .(+\mathrm{x} \overline{1}))\left(\mathbf{S M}^{\text {Nat }} \mathbf{y}\right)\right)\right)
\end{aligned}
$$

-not the identity function!

The problem:

Scheme is able to observe the concrete choice of type for α and behave accordingly.

Restoring parametricity

Data abstraction, revisited

Data abstraction, revisited

- Using type abstraction to enforce data abstraction is a static, compile-time approach

Data abstraction, revisited

- Using type abstraction to enforce data abstraction is a static, compile-time approach

$$
\begin{aligned}
c 1=\{\text { new } & =0, \\
\text { inc } & =\lambda x: \text { Nat. } x+1, \\
\text { get } & =\lambda x: \text { Nat. } x\}
\end{aligned}
$$

ctr1 = pack Nat, c1 as Counter

$$
\begin{aligned}
c 2=\{\text { new } & =0, \\
\text { inc } & =\lambda x: \text { Int. } x-1, \\
\text { get } & =\lambda x: \text { Int. toNat }(0-x)\}
\end{aligned}
$$

ctr2 = pack Int, c2 as Counter indistinguishable

Data abstraction, revisited

- Using type abstraction to enforce data abstraction is a static, compile-time approach

$$
\begin{aligned}
c 1=\{\text { new } & =0, \\
\text { inc } & =\lambda x: \text { Nat. } x+1, \\
\text { get } & =\lambda x: \text { Nat. } x\}
\end{aligned}
$$

ctr1 = pack Nat, c1 as Counter

$$
c 2=\{\text { new }=0
$$

$$
\text { inc }=\lambda x: \text { Int. } x-1
$$

$$
\text { get }=\lambda x: \text { Int. toNat }(0-x)\}
$$

ctr2 = pack Int, c2 as Counter
indistinguishable at compile time

Another approach to data abstraction

Another approach to data abstraction

- Programs can create unique seals in their local scope and hand out opaque, sealed values to clients

Another approach to data abstraction

- Programs can create unique seals in their local scope and hand out opaque, sealed values to clients

```
(define create-seal) (gensym))
(define (seal-value v seal)
    Clambda (s)
    (if (eq? s seal)
        v
        (error ...))))
(define (unseal sealed-v seal)
    (sealed-v seal))
```


Another approach to data abstraction

- Programs can create unique seals in their local scope and hand out opaque, sealed values to clients
(define create-seal) (gensym))
(define (seal-value v seal)
(lambda (s)
(if (eq? s seal)
v
$($ error ...))))

(define (unseal sealed-v seal) (sealed-v seal))

Another approach to data abstraction

- Programs can create unique seals in their local scope and hand out opaque, sealed values to clients
(define create-seal) (gensym))
(define (seal-value v seal)
(lambda (s)
(if (eq? s seal)
v
$($ error ...))))
(define (unseal sealed-v seal) (sealed-v seal))

Updating our system to use dynamic sealing

- Operational semantics defined not just on expressions, but on configurations that include a seal store

Updating our system to use dynamic sealing

- Operational semantics defined not just on expressions, but on configurations that include a seal store
$\psi \mid(\Lambda \alpha . \mathbf{e}) \tau$

Updating our system to use dynamic sealing

- Operational semantics defined not just on expressions, but on configurations that include a seal store

$$
\begin{aligned}
& \begin{array}{c}
\text { contains all seals generated } \\
\text { during evaluation so far }
\end{array} \\
& \psi \|(\Lambda \alpha \cdot \mathbf{e}) \tau
\end{aligned}
$$

Updating our system to use dynamic sealing

- Operational semantics defined not just on expressions, but on configurations that include a seal store

$$
\begin{aligned}
& \begin{array}{c}
\text { contains all seals generated } \\
\text { during evaluation so far }
\end{array} \\
& \psi|(\Lambda \alpha \cdot \mathbf{e}) \tau \longmapsto \psi, s| \mathbf{e}[\alpha:=\langle s ; \tau\rangle]
\end{aligned}
$$

Updating our system to use dynamic sealing

- Operational semantics defined not just on expressions, but on configurations that include a seal store

Updating our system to use dynamic sealing

- Operational semantics defined not just on expressions, but on configurations that include a seal store

Back to our example...

$$
(\forall \alpha \cdot \alpha \rightarrow \alpha \text { MS }(\lambda x \text {. (if0 }(\text { nat? } x)(+x \overline{1}) x))) \text { Nat }
$$

Back to our example...

$$
\begin{aligned}
& \text { well-typed expression of type } \forall \alpha . \alpha \rightarrow \alpha \\
& (\forall \alpha \cdot \alpha \rightarrow \alpha M S(\lambda x \text {. (if0 }(\text { nat? } x)(+x \overline{1}) x))) \text { Nat }
\end{aligned}
$$

Back to our example...

$$
\begin{aligned}
& \text { well-typed expression of type } \forall \alpha . \alpha \rightarrow \alpha \\
& \left({ }^{\forall \alpha \cdot \alpha \rightarrow \alpha} \operatorname{MS}(\lambda x .(\text { ifO }(\text { nat? } x)(+x \overline{1}) x))\right) \text { Nat } \\
\longrightarrow \quad & \left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} M S(\lambda x .(\text { ifO }(\text { nat? } x)(+x \overline{1}) x))\right)\right) \text { Nat }
\end{aligned}
$$

Back to our example...

$$
\begin{aligned}
& \text { well-typed expression of type } \forall \alpha . \alpha \rightarrow \alpha \\
& (\forall \alpha \cdot \alpha \rightarrow \alpha \text { MS }(\lambda x .(\text { if0 }(\text { nat? } x)(+x \overline{1}) x))) \text { Nat } \\
\longrightarrow & \left(\Lambda \alpha .\left({ }^{\alpha \rightarrow \alpha} M S(\lambda x .(\text { if0 }(\text { nat? } x)(+x \overline{1}) x))\right)\right) \text { Nat } \\
\longrightarrow & (\langle s ; \text { Nat }\rangle \rightarrow\langle s ; \text { Nat }\rangle M S(\lambda x .(\text { if0 }(\text { nat? } x)(+x \overline{1}) x)))
\end{aligned}
$$

Back to our example...

$$
\begin{aligned}
& \text { well-typed expression of type } \forall \alpha . \alpha \rightarrow \alpha \\
& (\forall \alpha . \alpha \rightarrow \alpha \text { MS }(\lambda x \text {. (if0 }(\text { nat? } x)(+x \overline{1}) x))) \text { Nat } \\
& \left.\left.\left(\Lambda \alpha .\left({ }^{\alpha \rightarrow \alpha} M S(\lambda x \text {. (if0 (nat? } x)(+x \overline{1}) x\right)\right)\right)\right) \mathbf{N a t} \\
& \longrightarrow(\langle s ; \text { Nat }\rangle \rightarrow\langle s ; \text { Nat }\rangle M S(\lambda x \text {. (if0 }(\text { nat? } x)(+x \overline{1}) x))) \\
& \longrightarrow\left(\lambda y: N a t .\left({ }^{\langle s ; \text { Nat }\rangle} M S(\lambda x .(\text { if0 }(\text { nat? } x)(+x \overline{1}) x))\left(S M^{\langle s ; N a t\rangle} y\right)\right)\right)
\end{aligned}
$$

Back to our example...

Back to our example...

$$
\begin{aligned}
& \text { well-typed expression of type } \forall \alpha . \alpha \rightarrow \alpha \\
& (\forall \alpha . \alpha \rightarrow \alpha \text { MS }(\lambda x \text {. (if0 }(\text { nat? } x)(+x \overline{1}) x))) \text { Nat } \\
& \left.\left.\longrightarrow\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} M S(\lambda x \text {. (if0 (nat? } \mathrm{x})(+\mathrm{x} \overline{1}) \mathrm{x}\right)\right)\right)\right) \text { Nat } \\
& \longrightarrow(\langle s ; \text { Nat }\rangle \rightarrow\langle s ; \text { Nat }\rangle M S(\lambda x \text {. (if0 }(\text { nat? } x)(+x \overline{1}) x))) \\
& \longrightarrow\left(\lambda \boldsymbol{y}: \operatorname{Nat} .\left({ }^{\langle s ; \text { Nat }\rangle} \mathbf{M S}(\lambda x \text {. }(\text { if0 }(\text { nat? } \mathbf{x})(+x \overline{1}) x))\left(S M^{\langle s ; \text { Nat }\rangle} \mathbf{y}\right)\right)\right) \\
& \equiv \quad\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\langle s ; \text { Nat }\rangle} \mathbf{M S}\left(\mathbf{S M}^{\langle s ; \text { Nat }\rangle} \mathbf{y}\right)\right)\right) \\
& \text { opaque value }
\end{aligned}
$$

Back to our example...

Back to our example...

Another example

$$
\left.\left({ }^{\forall \alpha . \alpha \rightarrow \alpha} \text { MS }(\lambda \times \text {. (if0 }(\text { nat? } x)(+x \overline{1}) \overline{2})\right)\right) \text { Nat } \overline{5}
$$

Another example

$(\forall \alpha . \alpha \rightarrow \alpha$ MS $(\lambda x .($ if0 $($ nat? $x)(+x \overline{1}) \overline{2})))$ Nat $\overline{5}$
$\left(\Lambda \alpha .\left({ }^{\alpha \rightarrow \alpha} \operatorname{MS}(\lambda x .(\right.\right.$ if0 $($ nat? $\left.\left.\times)(+x \overline{1}) \overline{2}))\right)\right)$ Nat $\overline{5}$

Another example

$$
\begin{array}{ll}
& \left({ }^{\forall \alpha \cdot \alpha \rightarrow \alpha} \text { MS }(\lambda \mathrm{x} .(\text { if0 }(\text { nat? } \mathrm{x})(+\mathrm{x} \overline{1}) \overline{2}))\right) \text { Nat } \overline{5} \\
\longrightarrow \quad & \left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} \text { MS }(\lambda \mathrm{x} .(\text { if0 }(\text { nat? } \mathrm{x})(+\mathrm{x} \overline{1}) \overline{2}))\right)\right) \text { Nat } \overline{5} \\
\longrightarrow \quad & (\langle s ; \text { Nat }\rangle \rightarrow\langle s ; \text { Nat }\rangle \text { MS }(\lambda \mathrm{x} .(\text { if0 }(\text { nat? x) }(+\mathrm{x} \overline{1}) \overline{2}))) \overline{5}
\end{array}
$$

Another example

$$
\begin{aligned}
& \left.\left.\left({ }^{\forall \alpha . \alpha \rightarrow \alpha} \text { MS }(\lambda \times \text {. (if0 (nat? } \mathbf{x})(+x \overline{1}) \overline{2}\right)\right)\right) \text { Nat } \overline{5} \\
& \left.\left.\left(\Lambda \alpha .\left({ }^{\alpha \rightarrow \alpha} \text { MS }(\lambda x \text {. (if0 (nat? } \mathbf{x})(+x \overline{1}) \overline{2}\right)\right)\right)\right) \text { Nat } \overline{5} \\
& \longrightarrow \quad(\langle s ; \text { Nat }\rangle \rightarrow\langle s ; \text { Nat }\rangle M S(\lambda \times \text {. (if0 }(\text { nat? } \mathrm{x})(+\mathrm{x} \overline{1}) \overline{2}))) \overline{5} \\
& \longrightarrow \quad\left(\lambda \mathbf{y}: \operatorname{Nat} .\left({ }^{\langle s ; \text { Nat }\rangle} \mathbf{M S}(\lambda \mathbf{x} .(\text { if0 }(\text { nat? } \mathbf{x})(+\mathbf{x} \overline{1}) \overline{2}))\left(\mathbf{S M}^{\langle s ; \text { Nat }\rangle} \mathbf{y}\right)\right)\right) \overline{5}
\end{aligned}
$$

Another example

$\left({ }^{\forall \alpha . \alpha \rightarrow \alpha}\right.$ MS $(\lambda x$. (if0 (nat? x) $\left.\left.(+x \overline{1}) \overline{2})\right)\right)$ Nat $\overline{5}$
$\longrightarrow \quad\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} \mathcal{M S}(\lambda x\right.\right.$. (if0 (nat? $\left.\left.\left.\left.\mathbf{x})(+x \overline{1}) \overline{2}\right)\right)\right)\right) \mathbf{N a t} \overline{5}$
$\longrightarrow \quad(\langle s ;$ Nat $\rangle \rightarrow\langle s ;$ Nat \rangle MS $(\lambda x$. (fifO (nat? x) $(+\mathrm{x} \overline{1}) \overline{2}))) \overline{5}$
$\longrightarrow \quad\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\langle s ; \text { Nat }\rangle} \mathbf{M S}(\lambda \mathbf{x} .(\right.\right.$ if0 $($ nat? $\left.\left.\mathbf{x})(+\mathbf{x} \overline{1}) \overline{2}))\left(\mathbf{S M}^{\langle s ; \text { Nat }\rangle} \mathbf{y}\right)\right)\right) \overline{5}$
$\longrightarrow \quad(\langle s ;$ Nat $\rangle M S(\lambda \mathrm{x}$. (if0 $($ nat? x$\left.)(+\mathrm{x} \overline{1}) \overline{2}))\left(\mathrm{SM}^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right)$

Another example

$\left({ }^{\forall \alpha . \alpha \rightarrow \alpha} M S(\lambda x\right.$. (if0 $($ nat? x$\left.\left.)(+\mathrm{x} \overline{1}) \overline{2})\right)\right)$ Nat $\overline{5}$
$\longrightarrow \quad\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} \mathcal{M S}(\lambda x\right.\right.$. (if0 (nat? $\left.\left.\left.\left.\mathbf{x})(+x \overline{1}) \overline{2}\right)\right)\right)\right) \mathbf{N a t} \overline{5}$
$\longrightarrow \quad(\langle s ;$ Nat $\rangle \rightarrow\langle s ;$ Nat \rangle MS $(\lambda x$. (fifO (nat? x) $(+\mathrm{x} \overline{1}) \overline{2}))) \overline{5}$
$\longrightarrow \quad\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\langle s ; \text { Nat }\rangle} \mathbf{M S}(\lambda \mathbf{x} .(\right.\right.$ if0 $($ nat? $\left.\left.\mathbf{x})(+\mathbf{x} \overline{1}) \overline{2}))\left(\mathbf{S M}^{\langle s ; \text { Nat }\rangle} \mathbf{y}\right)\right)\right) \overline{5}$
$\longrightarrow \quad(\langle s ;$ Nat $\rangle M S(\lambda x$. (fifO $($ nat $\left.? ~ x)(+x \overline{1}) \overline{2}))\left(\operatorname{SM}^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right)$
$\longrightarrow^{*}(\langle s ;$ Nat $\rangle M S \overline{2})$

Another example

$$
\begin{aligned}
& \left.\left({ }^{\forall \alpha . \alpha \rightarrow \alpha} \text { MS }(\lambda \times \text {. (if0 }(\text { nat? } \times)(+x \overline{1}) \overline{2})\right)\right) \text { Nat } \overline{5} \\
& \left.\left.\longrightarrow \quad\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} \operatorname{MS}(\lambda x \text {. (if0 (nat? } \mathbf{x})(+x \overline{1}) \overline{2}\right)\right)\right)\right) \boldsymbol{N a t} \overline{5} \\
& \longrightarrow \quad(\langle s ; \text { Nat }\rangle \rightarrow\langle s ; \text { Nat }\rangle \text { MS }(\lambda x \text {. (if0 (nat? x) }(+x \overline{1}) \overline{2}))) \overline{5} \\
& \longrightarrow \quad\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\langle s ; \text { Nat }\rangle} \mathbf{M S}(\lambda \mathbf{x} .(\text { if0 }(\text { nat? } \mathbf{x})(+\mathbf{x} \overline{1}) \overline{2}))\left(\mathbf{S M}^{\langle s ; \text { Nat }\rangle} \mathbf{y}\right)\right)\right) \overline{5} \\
& \left.\longrightarrow \quad(\langle s ; \text { Nat }\rangle M S(\lambda x \text {. (ifO }(\text { nat } ? ~ x)(+x \overline{1}) \overline{2}))\left(\operatorname{SM}^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right) \\
& \longrightarrow{ }^{*}(\langle s ; \text { Nat }\rangle M S \overline{2}) \\
& \text { can't unseal something } \\
& \text { that isn't a seal }
\end{aligned}
$$

Another example

$\left({ }^{\forall \alpha . \alpha \rightarrow \alpha}\right.$ MS $(\lambda x$. (if0 (nat? x) $\left.\left.(+x \overline{1}) \overline{2})\right)\right)$ Nat $\overline{5}$
$\longrightarrow \quad\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} M S(\lambda x\right.\right.$. (if0 (nat? $\left.\left.\left.\left.\times)(+x \overline{1}) \overline{2}\right)\right)\right)\right) \mathbf{N a t} \overline{5}$
$\longrightarrow \quad(\langle s ;$ Nat $\rangle \rightarrow\langle s ;$ Nat $\rangle M S(\lambda \times$. (if0 $($ nat? x$)(+\mathrm{x} \overline{1}) \overline{2}))) \overline{5}$
$\longrightarrow \quad\left(\lambda \mathbf{y}: \mathbf{N a t} .\left({ }^{\langle s ; \text { Nat }\rangle} \mathbf{M S}(\lambda \mathbf{x} .(\right.\right.$ if0 $($ nat? $\left.\left.\mathbf{x})(+\mathbf{x} \overline{1}) \overline{2}))\left(\mathbf{S M}^{\langle s ; \text { Nat }\rangle} \mathbf{y}\right)\right)\right) \overline{5}$
$\longrightarrow \quad(\langle s ;$ Nat $\rangle M S(\lambda x$. (if0 $($ nat $\left.? x)(+x \overline{1}) \overline{2}))\left(\operatorname{SM}^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right)$
$\longrightarrow{ }^{*}(\langle s ;$ Nat $\rangle M S \overline{2})$
$\longrightarrow \quad$ Error: bad value
can't unseal something that isn't a seal

Proving parametricity

When are two expressions indistinguishable?

The property we really want is contextual equivalence: e_{1} and e_{2}, when dropped into the same context, have the same observable behavior.

When are two expressions indistinguishable?

The property we really want is contextual equivalence: e_{1} and e_{2}, when dropped into the same context, have the same observable behavior.

(if (> $\square 0)$	(if \square
5	5
$500)$	$500)$

A different notion of equivalence

- Because contextual equivalence is hard to show directly, we need a different notion of equivalence.
- We'll define our own equivalence relation and show that it is sound with respect to contextual equivalence.

Reflexivity: the Fundamental Property

- In order to be an equivalence relation, our relation has to be reflexive: every expression must be related to itself.
- But this corresponds nicely to what we mean by parametricity anyway!
open expressions, two different closing type environments

What's "logical" about it?

- The relation we're defining is called a logical relation. Why?

Two values of type...

What's "logical" about it?

- The relation we're defining is called a logical relation. Why?

Two values of type...	...are related if...
Nat	

What's "logical" about it?

- The relation we're defining is called a logical relation. Why?

Two values of type...	...are related if...
Nat	they're equal

What's "logical" about it?

- The relation we're defining is called a logical relation. Why?

Two values of type...	...are related if...
Nat	they're equal
$\tau_{1} \times \tau_{2}$	

What's "logical" about it?

- The relation we're defining is called a logical relation. Why?

Two values of type...	...are related if...
Nat	they're equal
$\tau_{1} \times \tau_{2}$	their first components are related at type T_{1} and their second components are related at type T_{2}

What's "logical" about it?

- The relation we're defining is called a logical relation. Why?
\(\left.$$
\begin{array}{|c|c|}\hline \begin{array}{c}\text { Two values of } \\
\text { type... }\end{array}
$$ \& ...are related if...

\hline Nat \& they're equal

\hline \tau_{1} \times \tau_{2} \& their first components are related at type \mathrm{T}_{1}

and\end{array}\right]\)| their second components are related at type T_{2} |
| :---: |
| $\tau_{1} \rightarrow \tau_{2}$ |

What's "logical" about it?

- The relation we're defining is called a logical relation. Why?

Two values of type...	...are related if...
Nat	they're equal
$\tau_{1} \times \tau_{2}$	their first components are related at type T_{I} and their second components are related at type T_{2}
$\tau_{1} \rightarrow \tau_{2}$	given values related at type T_{1} they produce expressions related at type T_{2}

What's "logical" about it?

- The relation we're defining is called a logical relation. Why?

Two values of type...	...are related if...
Nat	they're equal
$\tau_{1} \times \tau_{2}$	their first components are related at type T_{I} and their second components are related at type T_{2}
$\tau_{1} \rightarrow \tau_{2}$	given values related at type T_{1} they produce expressions related at type T_{2}

- A logical relation "respects the actions of the logical operators...that correspond to the language's type constructors" (Crary, 2005)

Two values of type...	...are related if...
Nat	they're equal
$\tau_{1} \times \tau_{2}$	their first components are related at type T_{1} and
$\tau_{1} \rightarrow \tau_{2}$	geir second components are related at type T_{2} they produce expressions related at type T_{2}

A type-indexed relation

Two values of type...
...are related if... Nat they're equal
their first components are related at type T_{1} and
their second components are related at type T_{2}
given values related at type T_{1}
they produce expressions related at type T_{2}

A type-indexed relation

Two values of type...
...are related if... Nat they're equal
their first components are related at type T_{1} and
their second components are related at type T_{2}
given values related at type $\mathrm{T}_{\text {I }}$
they produce expressions related at type T_{2}

A type-indexed relation

$\begin{array}{c}\text { Two values of } \\ \text { type... }\end{array}$...are related if...
Nat	$\begin{array}{c}\text { they're equal }\end{array}$
$\tau_{1} \times \tau_{2}$	$\begin{array}{c}\text { their first components are related at type } T_{1} \\ \text { and }\end{array}$
$\tau_{1} \rightarrow \tau_{2}$	$\begin{array}{c}\text { geir second components are related at type } T_{2} \\ \text { they produce expressions related at type } T_{2}\end{array}$
α	

A type-indexed relation

Two values of type...	...are related if...
Nat	they're equal
$\tau_{1} \times \tau_{2}$	their first components are related at type T_{1} and
$\tau_{1} \rightarrow \tau_{2}$	geir second components are related at type T_{2} they produce expressions related at type T_{2}
α	$? ? ?$

A type-indexed relation

Two values of
nicy pronuce exprig pors retace at type T_{2}

A type-indexed relation

Two values of

$$
(\Lambda \alpha . \lambda \mathbf{x}: \alpha . \ldots \mathbf{x} . . .) \tau_{1} \quad(\Lambda \alpha . \lambda \mathbf{x}: \alpha . \ldots \mathbf{x} . . .) \tau_{2}
$$

A type-indexed relation

Two values of
$(\Lambda \alpha . \lambda \mathbf{x}: \alpha \ldots \mathbf{\chi} \ldots) \tau_{1} \quad(\Lambda \alpha . \lambda \mathbf{x}: \alpha \ldots \mathbf{x} \ldots) \tau_{2}$
related at type α jiff they're in some relation \mathbf{R} that relates values of type T_{1} and T_{2}

A type-indexed relation

Two values of

$(\Lambda \alpha . \lambda \mathbf{x}: \alpha, \ldots \mathbf{x} . ..) \tau_{2}$ related at type α iff they're in some relation \mathbf{R} that relates values of type T_{1} and T_{2}

We parameterize the ML side of our relation with a type interpretation δ mapping type variables α to triples ($\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathbf{R}$)
ype T_{2}

A type-indexed relation

Two values of

$(\Lambda \alpha . \lambda \mathbf{x}: \alpha, \ldots \mathbf{x} . ..) \tau_{2}$ related at type α iff they're in some relation \mathbf{R} that relates values of type T_{1} and T_{2}

We parameterize the ML side of our relation with a type interpretation δ mapping type variables α to triples ($\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathbf{R}$)
they belong to the relation \mathbf{R} in $\delta(\alpha)$

A type-indexed relation

Two values of type... Nat
...are related if...
they're equal
their first components are related at type T_{1} and
their second components are related at type T_{2}
given values related at type $T_{\text {I }}$
they produce expressions related at type T_{2}
they belong to the relation \mathbf{R} in $\delta(\alpha)$

A type-indexed relation

Two values of type...
...are related if...
Nat
they're equal
their first components are related at type T_{1} and their second components are related at type T_{2} given values related at type $\mathrm{T}_{\text {I }}$ they produce expressions related at type T_{2}
they belong to the relation \mathbf{R} in $\delta(\alpha)$

A type-indexed relation

Two values of

type...

Nat
$\tau_{1} \times \tau_{2}$

$$
\tau_{1} \rightarrow \tau_{2}
$$

...are related if...
they're equal
their first components are related at type T_{1} and their second components are related at type T_{2} given values related at type T_{1} they produce expressions related at type T_{2} they belong to the relation \mathbf{R} in $\delta(\alpha)$

???

A type-indexed relation

Two values of type... ...are related if... Nat they're equal their first components are related at type $T_{।}$ and their second components are related at type T_{2} given values related at type $T_{\text {I }}$ they produce expressions related at type T_{2}
they belong to the relation \mathbf{R} in $\delta(\alpha)$
given types T_{1} and T_{2} and a relation \mathbf{R} they produce expressions related at type T
under a δ extended with $\alpha \rightarrow\left(\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{R}\right)$

Two values of type... ...are related if... Nat they're equal
their first components are related at type $T_{।}$ and their second components are related at type T_{2} given values related at type $\mathrm{T}_{\text {। }}$ they produce expressions related at type T_{2}
they belong to the relation \mathbf{R} in $\delta(\alpha)$
given types T_{1} and T_{2} and a relation \mathbf{R} they produce expressions related at type T
under a δ extended with $\alpha \rightarrow\left(T_{1}, T_{2}, R\right)$

Would something like this work for Scheme?

Two values of type...	...are related if...
Nat	they're equal
$\tau_{1} \times \tau_{2}$	their first components are related at type T_{1} and their second components are related at type T_{2}
$\tau_{1} \rightarrow \tau_{2}$	given values related at type T_{1} they produce expressions related at type T_{2}
α	they belong to the relation \mathbf{R} in $\delta(\alpha)$
$\forall \alpha . \tau$	given types T_{1} and T_{2} and a relation \mathbf{R} they produce expressions related at type T under $\mathrm{a} \delta$ extended with $\alpha \rightarrow\left(\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathbf{R}\right)$

Would something like this work for Scheme?

Two values of type...	...are related if...
Nat	they're equal
$\tau_{1} \times \tau_{2}$	their first components are related at type T_{1} and their second components are related at type T_{2}
$\tau_{1} \rightarrow \tau_{2}$	given values related at type T_{1} they produce expressions related at type T_{2}
α	they belong to the relation \mathbf{R} in $\delta(\alpha)$
$\forall \alpha . \tau$	given types T_{1} and T_{2} and a relation \mathbf{R} they produce expressions related at type T under $\mathrm{a} \delta$ extended with $\alpha \rightarrow\left(\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathbf{R}\right)$

- Since Scheme only has one (static) type, a relation defined inductively on the structure of types would be ill-founded

Would something like this work for Scheme?

- Since Scheme only has one (static) type, a relation defined inductively on the structure of types would be ill-founded

Solving the ill-foundedness problem

Solving the ill-foundedness problem

For Scheme values, index the relation by number of steps available for future computation

Solving the ill-foundedness problem

- For Scheme values, index the relation by number of steps available for future computation

Values of the syntactic form...
...are related for j steps if...

Solving the ill-foundedness problem

- For Scheme values, index the relation by number of steps available for future computation

Values of the syntactic form...
...are related for j steps if...

Solving the ill-foundedness problem

- For Scheme values, index the relation by number of steps available for future computation

Values of the syntactic form...
...are related for j steps if...
\bar{n} they're equal

Solving the ill-foundedness problem

- For Scheme values, index the relation by number of steps available for future computation

Values of the syntactic form...
...are related for j steps if...
\bar{n} they're equal
(cons $\mathrm{v}_{1} \mathrm{v}_{2}$)

Solving the ill-foundedness problem

- For Scheme values, index the relation by number of steps available for future computation

Values of the syntactic form...
...are related for j steps if...
(cons $\mathrm{v}_{1} \mathrm{v}_{2}$) they're equal their first components are related for j steps and
their second components are related for j steps

Solving the ill-foundedness problem

- For Scheme values, index the relation by number of steps available for future computation

Values of the syntactic form...
...are related for j steps if...
(cons $\mathrm{v}_{1} \mathrm{v}_{2}$) they're equal
their first components are related for j steps and
their second components are related for j steps
($\lambda \mathrm{x} . \mathrm{e}$)

Solving the ill-foundedness problem

- For Scheme values, index the relation by number of steps available for future computation

Values of the syntactic form...
...are related for j steps if...
(cons $\mathrm{v}_{1} \mathrm{v}_{2}$) they're equal
their first components are related for j steps and
their second components are related for j steps
($\lambda \mathrm{x} . \mathrm{e}$)
??!

Examples of related Scheme values

v_{1}	v_{2}	Related (indistinguishable) for...
$\overline{5}$		

Examples of related Scheme values

v_{1}	v_{2}	Related (indistinguishable) for...
$\overline{5}$	$\overline{6}$	

Examples of related Scheme values

v_{1}	\mathbf{v}_{2}	Related (indistinguishable) for...
$\overline{5}$	$\overline{6}$	0 steps

Examples of related Scheme values

v_{1}	v_{2}	Related (indistinguishable) for...
$\overline{5}$	$\overline{6}$	0 steps
$(\lambda \times . \overline{5})$	$(\lambda \times . \overline{6})$	

Examples of related Scheme values

Examples of related Scheme values

Examples of related Scheme values

v_{1}	v_{2}	Related (indistinguishable) for...
$\overline{5}$	$\overline{6}$	0 steps
$(\lambda \times . \overline{5})$	$(\lambda \times . \overline{6})$	I step

Examples of related Scheme values

v_{1}	v_{2}	Related (indistinguishable) for...
$\overline{5}$	$\overline{6}$	0 steps
$(\lambda \mathrm{x} . \overline{5})$	$(\lambda \mathrm{x} . \overline{6})$	I step
$(\lambda y .(\lambda x . \overline{5}))$		

Examples of related Scheme values

v_{1}	v_{2}	Related (indistinguishable) for...
$\overline{5}$	$\overline{6}$	0 steps
$(\lambda \mathrm{x} . \overline{5})$	$(\lambda \mathrm{x} . \overline{6})$	I step
$(\lambda \mathrm{y} .(\lambda \mathrm{x} . \overline{5}))$	$(\lambda \mathrm{y} .(\lambda \mathrm{x} . \overline{6}))$	

Examples of related Scheme values

v_{1}	v_{2}	Related (indistinguishable) for...
$\overline{5}$	$\overline{6}$	0 steps
$(\lambda \mathrm{x} . \overline{5})$	$(\lambda \mathrm{x} . \overline{6})$	I step
$(\lambda \mathrm{y} .(\lambda \mathrm{x} . \overline{5}))$	$(\lambda \mathrm{y} .(\lambda \mathrm{x} . \overline{6}))$	

$\left.\begin{array}{llll}(\lambda y \cdot(\lambda x \cdot \overline{5})) \overline{1} & \longmapsto & (\lambda x \cdot \overline{5})[y:=\overline{1}] & \longmapsto\end{array}(\lambda x \cdot \overline{5})\right)$

Examples of related Scheme values

VI	V2	Related (indistinguishable) for...
$\overline{5}$	$\overline{6}$	0 steps
$(\lambda \mathrm{x} . \overline{5})$	$(\lambda \times . \overline{6})$	I step
$(\lambda \mathrm{y} .(\lambda \mathrm{x} . \overline{5}))$	$(\lambda y .(\lambda x . \overline{6}))$	2 steps
($(\lambda x . \overline{5})) \overline{1}$	$\longrightarrow \quad(\lambda x . \overline{5})[y$	$=\overline{1}] \longmapsto(\lambda x . \overline{5})$
($(\lambda \times \overline{6})) \overline{1}$	$(\lambda x . \overline{6})[y$	$=\overline{1}] \longmapsto(\lambda x . \overline{6})$

Examples of related Scheme values

v_{1}	v_{2}	Related (indistinguishable) for...
$\overline{5}$	$\overline{6}$	0 steps
$(\lambda \mathrm{x} . \overline{5})$	$(\lambda \mathrm{x} . \overline{6})$	I step
$(\lambda \mathrm{y} .(\lambda \mathrm{x} . \overline{5}))$	$(\lambda \mathrm{y} .(\lambda \mathrm{x} . \overline{6}))$	2 steps

Examples of related Scheme values

\mathbf{v}_{1}	\mathbf{v}_{2}	Related (indistinguishable) for...
$\overline{5}$	$\overline{6}$	0 steps
$(\lambda \mathrm{x} . \overline{5})$	$(\lambda \mathrm{x} . \overline{6})$	I step
$(\lambda \mathrm{y} .(\lambda \mathrm{x} . \overline{5}))$	$(\lambda \mathrm{y} .(\lambda \mathrm{x} . \overline{6}))$	2 steps

- Intuitively, wrapping layers of λ around values makes them indistinguishable for I more step

A step-indexed relation

Two values of the syntactic ...are related for j steps if... form...
$\bar{n} \quad$ they're equal
(cons $\mathrm{v}_{1} \mathrm{v}_{2}$)
their first components are related for j steps and
their second components are related for j steps
($\lambda \mathrm{x} . \mathrm{e})$
???

A step-indexed relation

Two values of the syntactic ...are related for j steps if... form...
\bar{n}
($\lambda \mathrm{x} . \mathrm{e}$)

$$
\left(\text { cons } \mathrm{v}_{1} \mathrm{v}_{2}\right)
$$

$$
\begin{aligned}
& \text { they're equal } \\
& \text { their first components are related for } j \text { steps } \\
& \text { and } \\
& \text { their second components are related for } j \text { steps } \\
& \text { given values related for } i<j \text { steps } \\
& \text { they produce expressions related for } i \text { steps }
\end{aligned}
$$

The little step-indexer

The little step-indexer

- Chapter 9 of The Little Schemer gives examples of functions lengtho, length ≤ 1, length ≤ 2, and so on

The little step-indexer

- Chapter 9 of The Little Schemer gives examples of functions lengtho, length ≤ 1, length ≤ 2, and so on
- length $\int_{\leq j}$ takes a list and returns the length of that list, as long as that length is $\leq j$; otherwise, length $\leq j$ goes into an infinite loop

The little step-indexer

- Chapter 9 of The Little Schemer gives examples of functions lengtho, length ≤ 1, length ≤ 2, and so on
- length $\leq j$ takes a list and returns the length of that list, as long as that length is $\leq j$; otherwise, length $\leq j$ goes into an infinite loop

- Think of the subscript $\leq j$ as a behavioral contract guaranteeing that length $\leq j$ belongs to a certain type for up to j steps of execution

The little step-indexer

- Chapter 9 of The Little Schemer gives examples of functions lengtho, length ≤ 1, length ≤ 2, and so on
- length ${ }_{\leq j}$ takes a list and returns the length of that list, as long as that length is $\leq j$; otherwise, length $\leq j$ goes into an infinite loop

- Think of the subscript $\leq j$ as a behavioral contract guaranteeing that length $\leq j$ belongs to a certain type for up to j steps of execution
- This is exactly the intuition behind the step-indexed model of recursive types (Appel \& McAllester, 200I)

A step-indexed relation

Two values of the syntactic form...	...are related for j steps if...
\bar{n}	they're equal
$\left(\right.$ cons $\left.v_{1} v_{2}\right)$	their first components are related for j steps and their second components are related for j steps
$(\lambda \mathrm{x} . \mathrm{e})$	given values related for $i<j$ steps they produce expressions related for i steps

A step-indexed relation

Two values of the syntactic form...	...are related for j steps if...
\bar{n}	they're equal
$\left(\right.$ cons $\left.v_{1} v_{2}\right)$	their first components are related for j steps and
$(\lambda \mathbf{x . e})$	geir second components are related for j steps they produce expressions related for i steps
$\left(\mathrm{SM}^{\langle s ; \tau\rangle} \mathbf{v}\right)$	

A step-indexed relation

Two values of the syntactic form...	...are related for j steps if...
\bar{n}	they're equal
$\left(\right.$ cons $\left.v_{1} \mathrm{v}_{2}\right)$	their first components are related for j steps and their second components are related for j steps
$(\lambda \mathbf{x . e})$	given values related for $i<j$ steps they produce expressions related for i steps
$\left(\mathrm{SM}^{\langle s ; \tau\rangle} \mathbf{v}\right)$	$\boldsymbol{? ? ?}$

A step-indexed relation

Two values of the syntactic form...	...are related for j steps if...
\bar{n}	they're equal
$\left(\right.$ cons $\left.\mathrm{v}_{1} \mathrm{v}_{2}\right)$	their first components are related for j steps and their second components are related for j steps
$(\lambda \mathrm{x} . \mathrm{e})$	given values related for $i<j$ steps they produce expressions related for i steps
$\left(\mathrm{SM}^{\langle s ; \tau\rangle} \mathbf{v}\right)$	the inner ML expressions are related for j-I steps

A step-indexed relation

Two values of the syntactic form...	...are related for j steps if...
\bar{n}	they're equal
(cons $\mathrm{v}_{1} \mathrm{v}_{2}$)	their first components are related for j steps and their second components are related for j steps
($\lambda \mathrm{x} . \mathrm{e}$)	given values related for $i<j$ steps they produce expressions related for i steps
$\left(S M^{\langle s ; \tau\rangle} \mathbf{v}\right)$	the inner ML expressions are related for j-l steps

$\left(S M^{\langle s ; \tau\rangle} \mathbf{v}\right)$

the inner ML expressions are related for j-l steps

But wait!

$\left(\mathrm{SM}^{\langle s ; \tau\rangle} \mathbf{v}\right)$

the inner ML expressions are related for $j-l$ steps

But wait!

$$
\begin{array}{c|c}
\\
\left(\mathrm{SM}^{\langle s ; \tau\rangle} \mathbf{v}\right) & \text { the inner ML expressions } \\
\text { are related for } j-l \text { steps }
\end{array}
$$

At what type are $\mathbf{V}_{\mathbf{I}}$ and $\mathbf{v}_{\mathbf{2}}$ related?

But wait!

$$
\left(S M^{\langle s ; \tau\rangle} \mathbf{v}\right)
$$

the inner ML expressions are related for j-l steps

At what type are $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ related?
The type of these sealed values was originally a type variable...

But wait!

$$
\begin{array}{l|l}
\\
\left(\mathrm{SM}^{\langle s ; \tau\rangle} \mathbf{v}\right) & \text { the inner ML expressions } \\
\text { are related for } j-l \text { steps }
\end{array}
$$

At what type are $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ related?

- The type of these sealed values was originally a type variable...
- We need a dynamic counterpart to δ

Possible worlds

An idea from modal logic (Kripke, 1963)

- Useful for reasoning about properties that only hold under certain conditions

What's in a world?

"Meanwhile, in the world where \mathbf{e}_{1} and $\mathbf{e}_{\mathbf{2}}$ are related..."

What's in a world?

"Meanwhile, in the world where $\mathbf{e}_{\mathbf{1}}$ and $\mathbf{e}_{\mathbf{2}}$ are related..."

seals sı generated during evaluation of $\mathbf{e}_{\mathbf{I}}$

What's in a world?

"Meanwhile, in the world where \mathbf{e}_{1} and \mathbf{e}_{2} are related..."
seals sı generated during evaluation of $\mathbf{e}_{\mathbf{I}}$

seals s_{2} generated during evaluation of \mathbf{e}_{2}

What's in a world?

"Meanwhile, in the world where $\mathbf{e}_{\mathbf{1}}$ and $\mathbf{e}_{\mathbf{2}}$ are related..."
seals s I generated during evaluation of $\mathbf{e}_{\mathbf{I}}$
mappings
$\alpha \rightarrow\left(s_{1}, s_{2}\right)$
seals s_{2} generated during evaluation of \mathbf{e}_{2}

What's in a world?

"Meanwhile, in the world where $\mathbf{e}_{\mathbf{1}}$ and $\mathbf{e}_{\mathbf{2}}$ are related..."
seals s_{1} generated during evaluation of $\mathbf{e}_{\mathbf{I}}$
seals s_{2} generated during evaluation of \mathbf{e}_{2}

What's in a world?

"Meanwhile, in the world where \mathbf{e}_{1} and \mathbf{e}_{2} are related..."

Relatedness in a world

At what type are $\mathbf{V}_{\mathbf{I}}$ and $\mathbf{V}_{\mathbf{2}}$ related?

Relatedness in a world

- The answer: $\mathbf{V}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ must belong to a relation \mathbf{R} that relates values of type T_{1} and T_{2}

Relatedness in a world

- The answer: $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ must belong to a relation \mathbf{R} that relates values of type T_{1} and T_{2}
- We can find \mathbf{R} in the current world

A possible-worlds model

A possible-worlds model

- Expressions are now related at a type, for a given number of steps, and in a world

A possible-worlds model

- Expressions are now related at a type, for a given number of steps, and in a world
- Whenever we do type application, we extend the current world with new seals s_{1} and s_{2} and new bindings for α

A possible-worlds model

- Expressions are now related at a type, for a given number of steps, and in a world
- Whenever we do type application, we extend the current world with new seals s_{1} and s_{2} and new bindings for α
- Whenever we need to determine relatedness of sealed values, we consult the current world to find the \mathbf{R} that would relate them

A possible-worlds model

- Expressions are now related at a type, for a given number of steps, and in a world
- Whenever we do type application, we extend the current world with new seals s_{1} and s_{2} and new bindings for α
- Whenever we need to determine relatedness of sealed values, we consult the current world to find the \mathbf{R} that would relate them
- Upshot of all this: now we can prove parametricity!

Sage advice

Sage advice

@sstrickl
Stevie Strickland
When in doubt, add another environment to your relation. \#typesystemprotips

30 Mar via TweetDeck Unfavorite 扫 Retweet क Reply

The Fundamental Property / Parametricity

The Fundamental Property / Parametricity

The bridge lemma:

The Fundamental Property / Parametricity

The bridge lemma:
I. For all e_{1} and e_{2},
if $\left(j, w, \mathbf{e}_{1}, \mathbf{e}_{2}\right) \in \mathcal{V}_{S}$ then $\left(j, w,\left({ }^{\delta_{1}(\tau)} \mathbf{M S} \mathrm{e}_{1}\right),\left({ }^{\delta_{2}(\tau)} \mathrm{MS}_{2}\right)\right) \in \mathcal{V}_{M} \llbracket \tau \rrbracket \delta$.

The Fundamental Property / Parametricity

- The bridge lemma:

carries relatedness

between languages
I. For all e_{1} and e_{2}, if $\left(j, w, \mathrm{e}_{1}, \mathrm{e}_{2}\right) \in \mathcal{V}_{S}$ then $\left(j, w,\left({ }^{\delta_{1}(\tau)} \mathbf{M S} \mathrm{e}_{1}\right),\left({ }^{\delta_{2}(\tau)} \mathbf{M S} \mathrm{e}_{2}\right)\right) \in \mathcal{V}_{M} \llbracket \tau \rrbracket \delta$.

The Fundamental Property / Parametricity

- The bridge lemma:
I. For all e_{1} and e_{2}, if $\left(j, w, \mathrm{e}_{1}, \mathrm{e}_{2}\right) \in \mathcal{V}_{S}$ then $\left(j, w,\left({ }^{\delta_{1}(\tau)} \mathbf{M S} \mathrm{e}_{1}\right),\left({ }^{\delta_{2}(\tau)} \mathbf{M S} \mathrm{e}_{2}\right)\right) \in \mathcal{V}_{M} \llbracket \tau \rrbracket \delta$.

2. For all \mathbf{e}_{1} and \mathbf{e}_{2},

$$
\text { if }\left(j, w, \mathbf{e}_{1}, \mathbf{e}_{2}\right) \in \mathcal{V}_{M} \llbracket \tau \rrbracket \delta
$$

$$
\text { then }\left(j, w,\left(\operatorname{SM}^{\delta_{1}(\tau)} \mathbf{e}_{1}\right),\left(\operatorname{SM}^{\delta_{2}(\tau)} \mathbf{e}_{2}\right)\right) \in \mathcal{V}_{S}
$$

The Fundamental Property / Parametricity

- The bridge lemma:
I. For all e_{1} and e_{2}, if $\left(j, w, \mathrm{e}_{1}, \mathrm{e}_{2}\right) \in \mathcal{V}_{S}$ then $\left(j, w,\left({ }^{\delta_{1}(\tau)} \mathbf{M S} \mathrm{e}_{1}\right),\left({ }^{\delta_{2}(\tau)} \mathbf{M S} \mathrm{e}_{2}\right)\right) \in \mathcal{V}_{M} \llbracket \tau \rrbracket \delta$.

2. For all \mathbf{e}_{1} and \mathbf{e}_{2},

$$
\begin{aligned}
& \text { if }\left(j, w, \mathbf{e}_{1}, \mathbf{e}_{2}\right) \in \mathcal{V}_{M} \llbracket \tau \rrbracket \delta \\
& \text { then }\left(j, w,\left(\operatorname{SM}^{\delta_{1}(\tau)} \mathbf{e}_{1}\right),\left(\operatorname{SM}^{\delta_{2}(\tau)} \mathbf{e}_{2}\right)\right) \in \mathcal{V}_{S}
\end{aligned}
$$

- From there we can show the Fundamental Property:

The Fundamental Property / Parametricity

- The bridge lemma:
I. For all e_{1} and e_{2}, if $\left(j, w, \mathrm{e}_{1}, \mathrm{e}_{2}\right) \in \mathcal{V}_{S}$ then $\left(j, w,\left({ }^{\delta_{1}(\tau)} \mathbf{M S} \mathrm{e}_{1}\right),\left({ }^{\delta_{2}(\tau)} \mathbf{M S} \mathrm{e}_{2}\right)\right) \in \mathcal{V}_{M} \llbracket \tau \rrbracket \delta$.

2. For all \mathbf{e}_{1} and \mathbf{e}_{2},

$$
\begin{aligned}
& \text { if }\left(j, w, \mathbf{e}_{1}, \mathbf{e}_{2}\right) \in \mathcal{V}_{M} \llbracket \tau \rrbracket \delta \\
& \text { then }\left(j, w,\left(\operatorname{SM}^{\delta_{1}(\tau)} \mathbf{e}_{1}\right),\left(\operatorname{SM}^{\delta_{2}(\tau)} \mathbf{e}_{2}\right)\right) \in \mathcal{V}_{S}
\end{aligned}
$$

- From there we can show the Fundamental Property:
I. If $\Delta ; \Gamma \vdash_{M} \mathbf{e}: \tau$, then $\Delta ; \Gamma \vdash_{M} \mathbf{e} \lesssim_{M} \mathbf{e}: \tau$.

The Fundamental Property / Parametricity

- The bridge lemma:
I. For all e_{1} and e_{2}, if $\left(j, w, \mathrm{e}_{1}, \mathrm{e}_{2}\right) \in \mathcal{V}_{S}$ then $\left(j, w,\left({ }^{\delta_{1}(\tau)} \mathbf{M S} \mathrm{e}_{1}\right),\left({ }^{\delta_{2}(\tau)} \mathbf{M S} \mathrm{e}_{2}\right)\right) \in \mathcal{V}_{M} \llbracket \tau \rrbracket \delta$.

2. For all \mathbf{e}_{1} and \mathbf{e}_{2},

$$
\text { if }\left(j, w, \mathbf{e}_{1}, \mathbf{e}_{2}\right) \in \mathcal{V}_{M} \llbracket \tau \rrbracket \delta
$$

$$
\text { then }\left(j, w,\left(\operatorname{SM}^{\delta_{1}(\tau)} \mathbf{e}_{1}\right),\left(\operatorname{SM}^{\delta_{2}(\tau)} \mathbf{e}_{2}\right)\right) \in \mathcal{V}_{S}
$$

- From there we can show the Fundamental Property:
I. If $\Delta ; \Gamma \vdash_{M} \mathbf{e}: \tau$, then $\Delta ; \Gamma \vdash_{M} \mathbf{e} \lesssim{ }_{M} \mathbf{e}: \tau$.

2. If $\Delta ; \Gamma \vdash_{S}$ e : TST, then $\Delta ; \Gamma \vdash_{S} \mathrm{e} \lesssim_{S}$ e : TST.

Parametric contracted Scheme terms

Parametric contracted Scheme terms

One way to enforce a contract T on a Scheme expression is by exporting it into ML at the type T and then importing it back into Scheme...

Parametric contracted Scheme terms

One way to enforce a contract T on a Scheme expression is by exporting it into ML at the type T and then importing it back into Scheme...

$$
\mathrm{e}^{\tau}=\left(\mathrm{SM}^{\tau}\left({ }^{\tau} \mathbf{M S} \mathrm{e}\right)\right)
$$

Parametric contracted Scheme terms

- One way to enforce a contract T on a Scheme expression is by exporting it into ML at the type T and then importing it back into Scheme...

$$
\mathrm{e}^{\tau}=\left(\mathrm{SM}^{\tau}\left({ }^{\tau} \mathbf{M S} \mathrm{e}\right)\right)
$$

...so we can leverage our parametricity result to immediately show that contracted Scheme terms behave parametrically too

Conclusion

The three points I want you to remember

The three points I want you to remember

- Aside from giving us free theorems, parametricity makes existential-style data abstraction possible.

The three points I want you to remember

- Aside from giving us free theorems, parametricity makes existential-style data abstraction possible.
- Parametricity breaks when we incorporate dynamically typed code into otherwise statically typed programs, but we can restore it using dynamic seal generation.

The three points I want you to remember

- Aside from giving us free theorems, parametricity makes existential-style data abstraction possible.
- Parametricity breaks when we incorporate dynamically typed code into otherwise statically typed programs, but we can restore it using dynamic seal generation.
- Seal generation is a stateful notion akin to dynamic memory allocation, so we can use possible worlds to reason about the semantics of seals in order to prove parametricity.

Thanks!

Email: Ikuper@cs.indiana.edu

 Web: www.cs.indiana.edu/~Ikuper Research group: lambda.soic.indiana.edu
Detailed non-parametricity example

$$
\begin{aligned}
& \left({ }^{\forall \alpha . \alpha \rightarrow \alpha} \operatorname{MS}(\lambda \times .(\text { if0 }(\text { nat? } x)(+x \overline{1}) x))\right) \text { Nat } \overline{5} \\
& \longrightarrow\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} \mathbf{M S}(\lambda \mathbf{x} .(\text { if0 }(\text { nat? } \mathbf{x})(+\mathbf{x} \overline{1}) \mathbf{x}))\right)\right) \text { Nat } \overline{5} \\
& \left.\longrightarrow \quad\left({ }^{\text {Nat } \rightarrow \text { Nat }} M S(\lambda x \text {. (if0 }(\text { nat? } x)(+x \overline{1}) x)\right)\right) \overline{5} \\
& \longrightarrow\left(\lambda \mathbf{y}: \text { Nat. }\left({ }^{\text {Nat }} \mathbf{M S}(\lambda \mathbf{x} .(\text { if0 }(\operatorname{nat} ? \mathbf{x})(+\mathbf{x} \overline{1}) \mathbf{x}))\left(\text { SM }^{\text {Nat }} \mathbf{y}\right)\right)\right) \overline{5} \\
& \longrightarrow \quad\left({ }^{\text {Nat }} \text { MS }(\lambda x .(\text { ifO }(\text { nat? } x)(+x \overline{1}) x))\left(S^{\text {Nat }} \overline{5}\right)\right) \\
& \longrightarrow \quad\left({ }^{\text {Nat }} M S(\lambda x \text {. }(\text { if0 }(\text { nat? } x)(+x \overline{1}) x)) \overline{5}\right) \\
& \longrightarrow \quad\left({ }^{\text {Nat }} \mathrm{MS}(\text { if0 }(\text { nat? } \overline{5})(+\overline{5} \overline{1}) \overline{5})\right) \\
& \longrightarrow \quad\left({ }^{\text {Nat }} \mathbf{M S}(\text { if0 } \overline{0}(+\overline{5} \overline{1}) \overline{5})\right) \\
& \longrightarrow\left({ }^{\text {Nat }} \mathbf{M S}(+\overline{5} \overline{1})\right) \\
& \longrightarrow \quad\left({ }^{\text {Nat }} \text { MS } \overline{6}\right) \\
& \longrightarrow \quad \overline{6}
\end{aligned}
$$

Detailed dynamic sealing example

$\left({ }^{\forall \alpha \cdot \alpha \rightarrow \alpha M S}(\lambda x\right.$. (if0 $($ nat? $\left.\left.x)(+x \overline{1}) x)\right)\right)$ Nat $\overline{5}$
$\longrightarrow\left(\Lambda \alpha \cdot\left({ }^{\alpha \rightarrow \alpha} M S(\lambda x\right.\right.$. (if0 (nat? x$\left.\left.\left.\left.)(+\mathrm{x} \overline{1}) \mathrm{x}\right)\right)\right)\right) \mathbf{N a t} \overline{5}$
$\longrightarrow(\langle s ;$ Nat $\rangle \rightarrow\langle s ;$ Nat $\rangle M S(\lambda \mathrm{x}$. (if0 $($ nat? x$)(+\mathrm{x} \overline{1}) \mathrm{x}))) \overline{5}$

$\longrightarrow\left({ }^{\langle s ; \text { Nat }\rangle} M S(\lambda x\right.$. (if0 $($ nat? $\left.\left.x)(+x \overline{1}) x)\right)\left(S M^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right)$
$\longrightarrow \quad(\langle s ;$ Nat $\rangle M S(\lambda x$. (if0 $($ nat? $\left.x)(+x \overline{1}) x))\left(S^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right)$
$\longrightarrow\left({ }^{\langle s ; \text { Nat }\rangle} \mathbf{M S}\left(\right.\right.$ if0 $\left.\left.\left(\operatorname{nat} ?\left(\operatorname{SM}^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right)\left(+\left(\mathbf{S M}^{\langle s ; \text { Nat }\rangle} \overline{5}\right) \overline{1}\right)\left(\operatorname{SM}^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right)\right)$
$\longrightarrow\left({ }^{\langle s ; \text { Nat }\rangle} \mathbf{M S}\left(\right.\right.$ if0 $\left.\left.\overline{1}\left(+\left(\mathbf{S M}^{\langle s ; \text { Nat }\rangle} \overline{5}\right) \overline{1}\right)\left(\mathbf{S M}^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right)\right)$
$\longrightarrow\left(\langle s ;\right.$ Nat $\left.\rangle M S\left(\mathbf{S M}^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right)$
$\longrightarrow \quad \overline{5}$

Another detailed dynamic sealing example

$(\forall \alpha . \alpha \rightarrow \alpha \operatorname{MS}(\lambda x$. (if0 (nat? x) $(+x \overline{1}) \overline{2})))$ Nat $\overline{5}$
$\longrightarrow\left(\Lambda \alpha .\left({ }^{\alpha \rightarrow \alpha} M S(\lambda x\right.\right.$. (if0 $($ nat? $\left.\left.\left.x)(+x \overline{1}) \overline{2})\right)\right)\right)$ Nat $\overline{5}$
$\longrightarrow(\langle s ;$ Nat $\rangle \rightarrow\langle s ;$ Nat \rangle MS $(\lambda \mathrm{x}$. (if0 $($ nat? x$)(+\mathrm{x} \overline{1}) \overline{2}))) \overline{5}$
$\longrightarrow\left(\lambda \mathbf{y}: \operatorname{Nat} .\left({ }^{\langle s ; \text { Nat }\rangle} \mathbf{M S}(\lambda \mathbf{x}\right.\right.$. $($ if0 $($ nat? $\left.\left.\mathbf{x})(+\mathrm{x} \overline{1}) \overline{2}))\left(\mathbf{S M}^{\langle s ; \text { Nat }\rangle} \mathbf{y}\right)\right)\right) \overline{5}$
$\longrightarrow(\langle s ;$ Nat $\rangle M S(\lambda x$. (if0 $($ nat? $\left.x)(+x \overline{1}) \overline{2}))\left(S^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right)$
$\longrightarrow\left({ }^{\langle s ; \text { Nat }\rangle} \mathbf{M S}(\lambda x\right.$. (if0 $($ nat? x$\left.\left.)(+\mathrm{x} \overline{1}) \overline{2})\right)\left(\mathrm{SM}^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right)$
$\longrightarrow\left({ }^{\langle s ; \text { Nat }\rangle} \mathbf{M S}\left(\right.\right.$ if0 $\left(\right.$ nat? $\left(\right.$ SM $\left.\left.^{\langle s ; \text { Nat }\rangle} \overline{5}\right)\right)\left(+\left(\right.\right.$ SM $\left.\left.\left.\left.^{\langle s ; \text { Nat }\rangle} \overline{5}\right) \overline{1}\right) \overline{2}\right)\right)$
$\longrightarrow\left(\left\langle\langle;\right.\right.$ Nat $\rangle M S\left(\right.$ if0 $\overline{1}\left(+\left(\right.\right.$ SM $\left.\left.\left.\left.^{\langle s ; \text { Nat }\rangle} \overline{5}\right) \overline{1}\right) \overline{2}\right)\right)$
$\longrightarrow(\langle s ;$ Nat \rangle MS $\overline{2})$
\longrightarrow Error: bad value

