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Separation of implementation and interface

Thursday, February 24, 2011



Data abstraction

3

Counter = ∃α. {new : α,
               inc : α → α,
               get : α → Nat}

c1 = {new = 0,
      inc = λx: Nat. x + 1,
      get = λx: Nat. x}

ctr1 = pack Nat, c1 as Counter
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c1 = {new = 0,
      inc = λx: Nat. x + 1,
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Counter = ∃α. {new : α,
               inc : α → α,
               get : α → Nat}

c1 = {new = 0,
      inc = λx: Nat. x + 1,
      get = λx: Nat. x}
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c2 = {new = 0,
      inc = λx: Int. x - 1,
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ctr2 = pack Int, c2 as Counter
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Separation of implementation and interface
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ctr2 = pack Int, c2 as Counter

indistinguishable

■ If two expressions 
have the same 
existential type, no 
program context can 
distinguish them.
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c1 = {new = 0,
      inc = λx: Nat. x + 1,
      get = λx: Nat. x}

ctr1 = pack Nat, c1 as Counter

c2 = {new = 0,
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ctr1

∃α.τ 
ctr2
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■ No two program 
contexts (instantiations) 
can cause an expression 
of type ∀α.τ to behave 
differently.

Λα.e

Nat
values

Int
values
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f : ∀α. α → α
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f : ∀α. α → α
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f : ∀α. α → α
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Existential types...and their dual, universal types

6

f : ∀α. α → α

Nat Int

indistinguishable as
far as f is concerned

Bool

■ No two program 
contexts (instantiations) 
can cause an expression 
of type ∀α.τ to behave 
differently.

Λα.e

Nat
values

Int
values
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f : ∀α. α → α

Nat Int

indistinguishable as
far as f is concerned

Bool%*$@!
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Existential types...and their dual, universal types

6

f : ∀α. α → α

Nat Int

indistinguishable as
far as f is concerned

f = Λα. λx: α. x

Bool%*$@!

■ No two program 
contexts (instantiations) 
can cause an expression 
of type ∀α.τ to behave 
differently.

Λα.e

Nat
values

Int
values
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Existential types...and their dual, universal types
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parametricity

∃α.τ

∀α.τ

   representation
 independence   
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How to break parametricity in one easy step

Λα. λx: α. (if (nat? x)
               (+ x 1)
               x)
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How to break parametricity in one easy step

Λα. λx: α. (if (nat? x)
               (+ x 1)
               x)

behaves differently at 
run-time depending on 
how α is instantiated
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How to break parametricity in one easy step

Λα. λx: α. (if (nat? x)
               (+ x 1)
               x)

behaves differently at 
run-time depending on 
how α is instantiated

Putting dynamically typed code in an 
otherwise statically typed program 

provides a way to 
“smuggle values past the type system” 

(Abadi et al., 1989)
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■ How can we assign a type to a program that’s 
written in two languages?

■ We’ll combine a minimal “Scheme” and a minimal 
“ML” in a multi-language embedding (Matthews & 
Findler, 2007):
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Using a Scheme procedure in ML
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(τ1→τ2!" (λ!. ")) !−→ (λ! : τ1. (τ2!" (λ!. ") ("!τ1 !)))
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Using a Scheme procedure in ML

11

(τ1→τ2!" (λ!. ")) !−→ (λ! : τ1. (τ2!" (λ!. ") ("!τ1 !)))

direction of conversion reverses 
for arguments

have to choose some type at 
which to embed the procedure
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A first attempt at polymorphism
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(∀α. τ
!" (λ!. ")) !−→ (Λα. (τ

!" (λ!. ")))
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A first attempt at polymorphism

12

(∀α. τ
!" (λ!. ")) !−→ (Λα. (τ

!" (λ!. ")))

embedding a Scheme procedure in 
ML at a universal type

evaluation stops here, and continues 
when we apply to a concrete type:
(Λα. !) "#$ !−→ ![α := "#$]
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(∀α. α→α
!" (λ!. !)) !"# 3

−→ (Λα. (α→α
!" (λ!. !)) !"# 3

−→ (!"#→!"#!" (λ!. !)) 3

−→ (λ$ : !"#. (!"#!" (λ!. !) ("!!"# $))) 3

−→ (!"#
!" (λ!. !) ("!!"# 3))

−→ (!"#
!" (λ!. !) 3)

−→ (!"#
!" 3)

−→ 3

.

A first attempt at polymorphism: example

13
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(∀α. α→α
!" (λ!. ("#$ (%&'? !) (+ ! 1) !))) !"#

−→ (Λα. (α→α
!" (λ!. ("#$ (%&'? !) (+ ! 1) !)))) !"#

−→ (!"#→!"#!" (λ!. ("#$ (%&'? !) (+ ! 1) !)))

−→ (λ$ : !"#. (!"#!" (λ!. ("#$ (%&'? !) (+ ! 1) !)) ("!!"# $)))

≡ (λ$ : !"#. (!"#
!" (λ!. (+ ! 1)) ("!!"# $)))

How parametricity breaks

14
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well-typed expression of type ∀α. α → α

not the identity function!
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What went wrong?

15

not the identity function!

The problem:
Scheme is able to observe the concrete 

choice of type for α and behave accordingly.

(∀α. α→α
!" (λ!. ("#$ (%&'? !) (+ ! 1) !))) !"#

−→ (Λα. (α→α
!" (λ!. ("#$ (%&'? !) (+ ! 1) !)))) !"#

−→ (!"#→!"#!" (λ!. ("#$ (%&'? !) (+ ! 1) !)))

−→ (λ$ : !"#. (!"#!" (λ!. ("#$ (%&'? !) (+ ! 1) !)) ("!!"# $)))

≡ (λ$ : !"#. (!"#
!" (λ!. (+ ! 1)) ("!!"# $)))
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c1 = {new = 0,
      inc = λx: Nat. x + 1,
      get = λx: Nat. x}

ctr1 = pack Nat, c1 as Counter

c2 = {new = 0,
      inc = λx: Int. x - 1,
      get = λx: Int. toNat(0 - x)}

ctr2 = pack Int, c2 as Counter

indistinguishable
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Data abstraction, revisited

■ Using type abstraction to enforce data abstraction is a 
static, compile-time approach

17

c1 = {new = 0,
      inc = λx: Nat. x + 1,
      get = λx: Nat. x}

ctr1 = pack Nat, c1 as Counter

c2 = {new = 0,
      inc = λx: Int. x - 1,
      get = λx: Int. toNat(0 - x)}

ctr2 = pack Int, c2 as Counter

indistinguishable
at compile time
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scope and hand out opaque, sealed values to clients
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■ Programs can create unique seals in their local 
scope and hand out opaque, sealed values to clients

(define create-seal) (gensym))

(define (seal-value v seal) 
  (lambda (s) 
    (if (eq? s seal) 
        v 
        (error ...))))

(define (unseal sealed-v seal)
   (sealed-v seal))
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Another approach to data abstraction

18

■ Programs can create unique seals in their local 
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scope and hand out opaque, sealed values to clients

(define create-seal) (gensym))

(define (seal-value v seal) 
  (lambda (s) 
    (if (eq? s seal) 
        v 
        (error ...))))
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value 1

indistinguishable
at run-time
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ψ (Λα. !) τ !−→ ψ, s ![α := 〈s; τ〉]

Updating our system to use dynamic sealing

■ Operational semantics defined not just on expressions, 
but on configurations that include a seal store

19
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ψ (Λα. !) τ !−→ ψ, s ![α := 〈s; τ〉]

Updating our system to use dynamic sealing

■ Operational semantics defined not just on expressions, 
but on configurations that include a seal store

19

if you think this looks 
stateful, you’re right

instead of regular type 
substitution, sealing 

substitution

contains all seals generated
during evaluation so far
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(∀α. α→α!" (λ!. ("#$ (%&'? !) (+ ! 1) !))) !"#

−→ (Λα. (α→α
!" (λ!. ("#$ (%&'? !) (+ ! 1) !)))) !"#

−→ (〈s;!"#〉→〈s;!"#〉
!" (λ!. ("#$ (%&'? !) (+ ! 1) !)))

−→ (λ$ : !"#. (〈s;!"#〉!" (λ!. ("#$ (%&'? !) (+ ! 1) !)) ("!〈s;!"#〉 $)))

≡ (λ$ : !"#. (〈s;!"#〉!" ("!〈s;!"#〉 $)))

−→ (λ$ : !"#. $)

Back to our example...

20
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Another example

21

(∀α. α→α!" (λ!. ("#$ (%&'? !) (+ ! 1) 2))) !"# 5

−→ (Λα. (α→α
!" (λ!. ("#$ (%&'? !) (+ ! 1) 2)))) !"# 5

−→ (〈s;!"#〉→〈s;!"#〉
!" (λ!. ("#$ (%&'? !) (+ ! 1) 2))) 5

−→ (λ$ : !"#. (〈s;!"#〉!" (λ!. ("#$ (%&'? !) (+ ! 1) 2)) ("!〈s;!"#〉 $))) 5

−→ (〈s;!"#〉!" (λ!. ("#$ (%&'? !) (+ ! 1) 2)) ("!〈s;!"#〉 5))

−→∗ (〈s;!"#〉!" 2)

−→ %&&'&( )&*+,&-./
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Proving parametricity

22
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When are two expressions indistinguishable?

■ The property we really want is contextual equivalence: e1 
and e2, when dropped into the same context, have the 
same observable behavior.

e1 e2
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23

When are two expressions indistinguishable?

■ The property we really want is contextual equivalence: e1 
and e2, when dropped into the same context, have the 
same observable behavior.

e1 e2

(if (> ⃞ 0)
    5
    500)

(if ⃞
    5
    500)
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A different notion of equivalence

■ Because contextual equivalence is hard to show 
directly, we need a different notion of equivalence.

■ We’ll define our own equivalence relation and show 
that it is sound with respect to contextual equivalence.

e1 e2
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Reflexivity: the Fundamental Property

■ In order to be an 
equivalence relation, our 
relation has to be reflexive: 
every expression must be 
related to itself.

■ But this corresponds nicely 
to what we mean by 
parametricity anyway!

25

e e

open expressions, 
two different 

closing type environments
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26

What’s “logical” about it?

Two values of 
type...

...are related if...

they’re equal

their first components are related at type τ1

and 
their second components are related at type τ2 

given values related at type τ1

they produce expressions related at type τ2 

■ The relation we’re defining is called a logical relation.  Why?
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26

What’s “logical” about it?

!"#

τ1 × τ2

τ1 → τ2

Two values of 
type...

...are related if...

they’re equal

their first components are related at type τ1

and 
their second components are related at type τ2 

given values related at type τ1

they produce expressions related at type τ2 

■ The relation we’re defining is called a logical relation.  Why?

■ A logical relation “respects the actions of the logical operators...that 
correspond to the language’s type constructors” (Crary, 2005)
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!"#

τ1 × τ2

τ1 → τ2

Two values of 
type...

...are related if...

they’re equal

their first components are related at type τ1

and 
their second components are related at type τ2 
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they produce expressions related at type τ2 
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■ Since Scheme only has one (static) type, a relation defined 
inductively on the structure of types would be ill-founded
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2 steps

Examples of related Scheme values

30

■ Intuitively, wrapping layers of λ around values makes 
them indistinguishable for 1 more step
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n

(!"#$ %1 %2)
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Two values of 
the syntactic 

form...
...are related for j steps if...

they’re equal

their first components are related for j steps
and 

their second components are related for j steps
given values related for i < j steps

they produce expressions related for i steps 
???
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The little step-indexer
■ Chapter 9 of The Little Schemer gives 

examples of functions length0, length≤1, 
length≤2, and so on  

■ length≤j takes a list and returns the length 
of that list, as long as that length is ≤j; 
otherwise, length≤j goes into an infinite 
loop

32

■ Think of the subscript ≤j as a behavioral contract guaranteeing that 
length≤j belongs to a certain type for up to j steps of execution

■ This is exactly the intuition behind the step-indexed model of 
recursive types (Appel & McAllester, 2001)
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n

(!"#$ %1 %2)

(λ!. ")

(!"〈s;τ〉
!)

Two values of 
the syntactic 

form...
...are related for j steps if...

they’re equal

their first components are related for j steps
and 

their second components are related for j steps
given values related for i < j steps

they produce expressions related for i steps 
the inner ML expressions 
are related for j-1 steps

step indices “leak” back into the ML relation
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34

(!"〈s;τ〉
!) the inner ML expressions 

are related for j-1 steps

(!"〈s1;τ1〉 !1) (!"〈s2;τ2〉 !2)

At what type are v1 and v2 related?

■ The type of these sealed values was originally a type 
variable...

■ We need a dynamic counterpart to δ
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Possible worlds

■ An idea from modal logic (Kripke, 1963)
■ Useful for reasoning about properties that only 

hold under certain conditions

35
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e1 and e2 are related...”
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What’s in a world?

36

seals s1 generated during 
evaluation of e1

seals s2 generated during 
evaluation of e2

mappings
α → (τ1, τ2, R)

mappings
α → (s1, s2)

■ Worlds capture the relationship between static 
type variables and dynamic seals

“Meanwhile, in the world where 
e1 and e2 are related...”
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Relatedness in a world

■ The answer: v1 and v2 must belong to a relation R 
that relates values of type τ1 and τ2

■ We can find R in the current world

37

(!"〈s1;τ1〉 !1) (!"〈s2;τ2〉 !2)

At what type are v1 and v2 related?
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A possible-worlds model

■ Expressions are now related at a type, for a given 
number of steps, and in a world

■ Whenever we do type application, we extend the 
current world with new seals s1 and s2 and new 
bindings for α

■ Whenever we need to determine relatedness of 
sealed values, we consult the current world to find 
the R that would relate them

■ Upshot of all this: now we can prove parametricity!
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Parametric contracted Scheme terms

■ One way to enforce a contract τ on a Scheme 
expression is by exporting it into ML at the type 
τ and then importing it back into Scheme...

41

!
τ = (!"τ (τ

"! !))

■ ...so we can leverage our parametricity result to 
immediately show that contracted Scheme terms 
behave parametrically too
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The three points I want you to remember

■ Aside from giving us free theorems, 
parametricity makes existential-style 
data abstraction possible.

■ Parametricity breaks when we incorporate 
dynamically typed code into otherwise 
statically typed programs, but we can restore 
it using dynamic seal generation.

■ Seal generation is a stateful notion akin to 
dynamic memory allocation, so we can use 
possible worlds to reason about the 
semantics of seals in order to prove 
parametricity.
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44Photo by mroach on Flickr.  Thanks!

Thanks!
Email: lkuper@cs.indiana.edu

Web: www.cs.indiana.edu/~lkuper
Research group: lambda.soic.indiana.edu

Thursday, February 24, 2011

mailto:lkuper@cs.indiana.edu
mailto:lkuper@cs.indiana.edu


Detailed non-parametricity example
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(∀α. α→α!" (λ!. ("#$ (%&'? !) (+ ! 1) !))) !"# 5

−→ (Λα. (α→α
!" (λ!. ("#$ (%&'? !) (+ ! 1) !)))) !"# 5

−→ (!"#→!"#
!" (λ!. ("#$ (%&'? !) (+ ! 1) !))) 5

−→ (λ$ : !"#. (!"#!" (λ!. ("#$ (%&'? !) (+ ! 1) !)) ("!!"# $))) 5

−→ (!"#!" (λ!. ("#$ (%&'? !) (+ ! 1) !)) ("!!"# 5))

−→ (!"#
!" (λ!. ("#$ (%&'? !) (+ ! 1) !)) 5)

−→ (!"#
!" ("#$ (%&'? 5) (+ 5 1) 5))

−→ (!"#
!" ("#$ 0 (+ 5 1) 5))

−→ (!"#!" (+ 5 1))

−→ (!"#!" 6)

−→ 6
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Detailed dynamic sealing example
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(∀α. α→α!" (λ!. ("#$ (%&'? !) (+ ! 1) !))) !"# 5

−→ (Λα. (α→α
!" (λ!. ("#$ (%&'? !) (+ ! 1) !)))) !"# 5

−→ (〈s;!"#〉→〈s;!"#〉
!" (λ!. ("#$ (%&'? !) (+ ! 1) !))) 5

−→ (λ$ : !"#. (〈s;!"#〉!" (λ!. ("#$ (%&'? !) (+ ! 1) !)) ("!〈s;!"#〉 $))) 5

−→ (〈s;!"#〉!" (λ!. ("#$ (%&'? !) (+ ! 1) !)) ("!〈s;!"#〉 5))

−→ (〈s;!"#〉
!" (λ!. ("#$ (%&'? !) (+ ! 1) !)) ("!〈s;!"#〉 5))

−→ (〈s;!"#〉
!" ("#$ (%&'? ("!〈s;!"#〉 5)) (+ ("!〈s;!"#〉 5) 1) ("!〈s;!"#〉 5)))

−→ (〈s;!"#〉
!" ("#$ 1 (+ ("!〈s;!"#〉 5) 1) ("!〈s;!"#〉 5)))

−→ (〈s;!"#〉
!" ("!〈s;!"#〉 5))

−→ 5
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Another detailed dynamic sealing example
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(∀α. α→α!" (λ!. ("#$ (%&'? !) (+ ! 1) 2))) !"# 5

−→ (Λα. (α→α
!" (λ!. ("#$ (%&'? !) (+ ! 1) 2)))) !"# 5

−→ (〈s;!"#〉→〈s;!"#〉
!" (λ!. ("#$ (%&'? !) (+ ! 1) 2))) 5

−→ (λ$ : !"#. (〈s;!"#〉!" (λ!. ("#$ (%&'? !) (+ ! 1) 2)) ("!〈s;!"#〉 $))) 5

−→ (〈s;!"#〉!" (λ!. ("#$ (%&'? !) (+ ! 1) 2)) ("!〈s;!"#〉 5))

−→ (〈s;!"#〉
!" (λ!. ("#$ (%&'? !) (+ ! 1) 2)) ("!〈s;!"#〉 5))

−→ (〈s;!"#〉
!" ("#$ (%&'? ("!〈s;!"#〉 5)) (+ ("!〈s;!"#〉 5) 1) 2))

−→ (〈s;!"#〉
!" ("#$ 1 (+ ("!〈s;!"#〉 5) 1) 2))

−→ (〈s;!"#〉
!" 2)

−→ %&&'&( )&*+,&-./
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