
A Lattice-Based Approach to
Deterministic Parallelism

Lindsey Kuper and Ryan R. Newton
Indiana University

POPL 2013 Student Session
25 January 2013

let = put l 3 in

let par v = get l

= put l 4
in v

What does this program evaluate to?

let = put l 3 in

let par v = get l

= put l 4
in v

Disallow multiple writes?

let = put l 3 in

let par v = get l

= put l 4
in v

Disallow multiple writes?

Tesler and Enea, 1968

Arvind et al., 1989 “IVars”

Deterministic programs that single-assignment forbids

let = put l 3 in

let par v = get l

= put l 3
in v

Deterministic programs that single-assignment forbids

let = put l 3 in

let par v = get l

= put l 3
in v

let par = put l (4,⊥)
= put l (⊥, 3)

in get l

Deterministic programs that single-assignment forbids

let = put l 3 in

let par v = get l

= put l 3
in v

let par = put l (4,⊥)
= put l (⊥, 3)

in get l

let par = insert l ��1111��

= insert l ��1100��

in get l

From Concurrent Collections...

Budimlić et al., 2010

From Concurrent Collections...

Proof. We proceed by induction on n. In the base case of n = 1, then result is
immediate from Lemma 3.7. In the induction step, suppose σ →n σ� → σ��� and
suppose the lemma holds for n. From the induction hypothesis, we have there
exists σ�

c, i
�, j� such that σ� →i� σ�

c and σ�� →j� σ�
c and i� ≤ m and j� ≤ n. We

have two cases.

• If i� = 0, then σ� = σ�
c. We can then pick σc = σ��� and i = 0 and j = j�+1.

• If i� ≥ 1, then from σ� → σ��� and σ� →i� σ�
c and Lemma 3.7, we have

σ��
c and i�� and j�� such that σ��� →i�� σ��

c and σ�
c →j�� σ��

c and i�� ≤ i� and
j�� ≤ 1. So we also have σ�� →j� σ�

c →j�� σ��
c . In summary we pick σc = σ��

c

and i = i�� and j = j� + j��, which is sufficient because i = i�� ≤ i� ≤ m
and j = j� + j�� ≤ n+ 1.

Lemma 3.9. (Confluence) if σ →∗ σ� and σ →∗ σ��, then there exists σc

such that σ� →∗ σc and σ�� →∗ σc.

Proof. Strong Confluence (Lemma 3.8) implies Confluence.

Theorem 1. (Determinism) If σ →∗ σ� and σ →∗ σ��, and σ�,σ�� are both
final states, then σ� = σ��.

Proof. We have from Lemma 3.9 that there exists σc such that σ� →∗ σc and
σ�� →∗ σc. Given that neither σ� or σ�� have any outgoing transitions, we must
have σ� = σc and σ�� = σc, hence σ� = σ��.

The key language feature that enables determinism is the single assignment
condition. The single assignment condition guarantees monotonicity of the data
collection A. We view A as a partial function from integers to integers and the
single assignment condition guarantees that we can establish an ordering based
on the non-decreasing domain of A.

3.3 Discussion

Three key features of CnC are represented directly in the semantics for Feath-
erweight CnC. First, the single assignment property only allows one write to a
data collection for a given data tag. This property shows up as the side condi-
tion of Rules (9) and (10). Second, the data dependence property says a step
cannot execute until all of the data it needs is available. This property shows
up as the side condition of Rule (12). Third, the control dependence property,
captured by Rule (11), queues a step for execution without saying when it will
execute.

Turing completeness: We argue that the language provided for writing step
bodies is powerful enough to encode the set of all while programs, which are
known to be Turing complete. While programs have a very simple grammar
consisting of a while loop, a single variable x, assigning zero to x, and incre-
menting x by one. We can write a translator that will convert a while program

12

3.2.1 Proof of Determinism

Lemma 3.1. (Error Preservation) If (A, T) → error and A � A�, then
(A�, T) → error.

Proof. Straightforward by induction on the derivation of (A, T) → error; we
omit the details.

Lemma 3.2. (Monotonicity) If σ → σ�, then σ ≤ σ�.

Proof. Straightforward by induction on the derivation of σ → σ�. The interest-
ing case is for Rule (9) which is where σ can change and the single-assignment
side-condition plays an essential role. We omit the details.

Lemma 3.3. (Clash) If (A, T) → (A�, T �) and A[c] = ⊥ and A�[c] �= ⊥ and
Ad[c] �= ⊥ and then (Ad, T) → error.

Proof. Straightforward by induction on the derivation of (A, T) → (A�, T �); we
omit the details.

Lemma 3.4. (Independence) If (A, T) → (A�, T �) and A�[c] = ⊥, then
(A[c := c�], T) → (A�[c := c�], T �). ,

Proof. From (A, T) → (A�, T �) and Lemma 3.2 we have A � A�. From A � A�

and and A�[c] = ⊥, we have A[c] = ⊥. The proof is now straightforward by
induction on the derivation of (A, T) → (A�, T �); we omit the details.

Lemma 3.5. (Diamond) If (A, Ta) → (A�, T �
a) and (A, Tb) → (A��, T ��

b), then
there exists σc such that (A�, T �

a � Tb) → σc and (A��, Ta � T ��
b) → σc.

Proof. We proceed by induction on the derivation of (A, Ta) → (A�, T �
a). We

have twelve cases depending on the last rule used to derive (A, Ta) → (A�, T �
a).

• Rule (1). In this case we have Ta = (skip � T2) and A� = A and T �
a = T2. So

we can pick σc = (A��, T2 � T ��
b) because (A

�, T �
a � Tb) = (A, T2 � Tb) and from

(A, Tb) → (A��, T ��
b) and Rule (6) we have (A, T2 � Tb) → (A��, T2 � T ��

b), and
because (A��, Ta � T ��

b) = (A��, (skip � T2) � T ��
b) and from Rule (1) we have

(A��, (skip � T2)) → (A��, T2), and finally from (A��, (skip � T2)) → (A��, T2)
and Rule (5) we have (A��, (skip � T2) � T ��

b)) → (A��, T2 � T ��
b).

• Rule (2). This case is similar to the previous case; we omit the details.

• Rules (3)–(4). Both cases are impossible.

• Rule (5). In this case we have Ta = T1 � T2 and T �
a = T �

1 � T2 and (A, T1) →
(A�, T �

1). From (A, T1) → (A�, T �
1) and (A, Tb) → (A��, T ��

b) and the induction
hypothesis, we have σ�

c such that (A�, T �
1 � Tb) → σ�

c and (A��, T1 � T ��
b) → σ�

c.
Let us show that we can pick σc such that (A�, (T �

1 � Tb) � T2) → σc and
(A��, (T1 � T ��

b) � T2) → σc. We have two cases:

• If σ�
c = error, then we use Rule (3) to pick σc = error.

• If σ�
c = (Ac, Tc), then then we use Rule (5) to pick (Ac, Tc � T2).

7

Budimlić et al., 2010

...to KPNs

Kahn, 1974

...to KPNs

Kahn, 1974

Monotonicity causes deterministic parallelism!

Parameterizing our language: LVars

!

"

0 1 2 ...

IVar

!

"

(!, 0) (!, 1) ... (0, !) (1, !) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

Pair of IVars

!

"

1

2

#

3

Counter

getFst"tripwire"getSnd

Parameterizing our language: LVars

!

"

(!, 0) (!, 1) ... (0, !) (1, !) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

Pair of IVars

getFst"tripwire"getSnd

Parameterizing our language: LVars

!

"

(!, 0) (!, 1) ... (0, !) (1, !) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

Pair of IVars

Parameterizing our language: LVars

!

"

(!, 0) (!, 1) ... (0, !) (1, !) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

Pair of IVars

getFst"tripwire"getSnd

Parameterizing our language: LVars

!

"

(!, 0) (!, 1) ... (0, !) (1, !) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

Pair of IVars

getFst"tripwire"getSnd

let = put p {(⊥, 4)} in

let par v1 = getFst p

= put p {(3, 4)}
in . . . v1 . . .

Parameterizing our language: LVars

!

"

(!, 0) (!, 1) ... (0, !) (1, !) ...

(0, 0) (0, 1) ... (1, 0) ...(1, 1)

Pair of IVars

getFst"tripwire"getSnd

getFst p
!= get p {(n,⊥) | n ∈ N}

let = put p {(⊥, 4)} in

let par v1 = getFst p

= put p {(3, 4)}
in . . . v1 . . .

Two take-aways

Monotonically increasing writes
+ threshold reads

= deterministic parallelism

Monotonicity causes deterministic parallelism

More in our TR

■ Complete syntax and semantics

■ Proof of determinism
■ A frame property!

■ Location renaming is surprisingly tricky!

■ Subsuming existing models
■ KPNs, CnC, monad-par

■ Support for controlled nondeterminism
■ “probation” state

Photo by jwillier2 on Flickr. Thanks!

Grazie!

Email: lkuper@cs.indiana.edu
Twitter: @lindsey
Web: cs.indiana.edu/~lkuper
Research group: lambda.cs.indiana.edu

