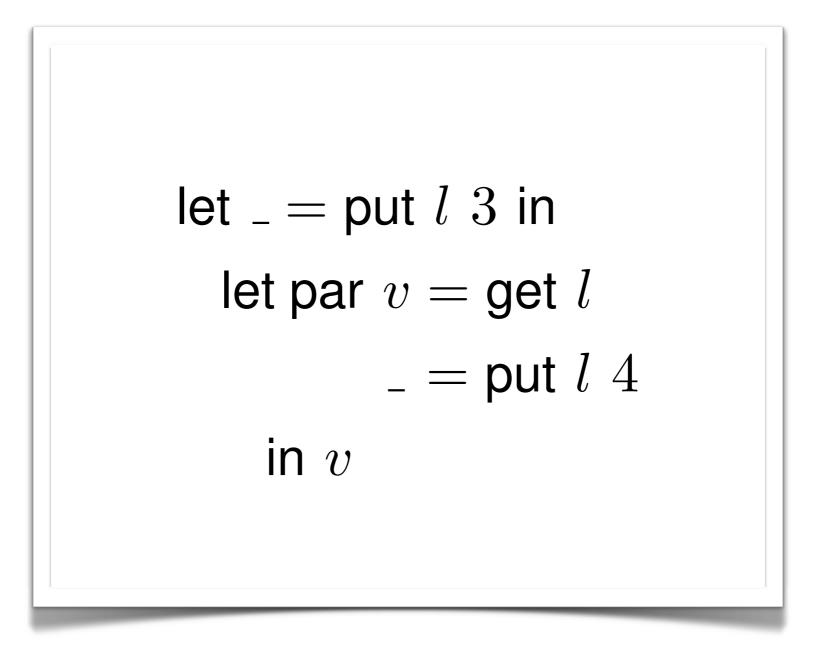
A Lattice-Based Approach to Deterministic Parallelism with Shared State

Lindsey Kuper and Ryan R. Newton Indiana University Bloomington, Indiana, USA

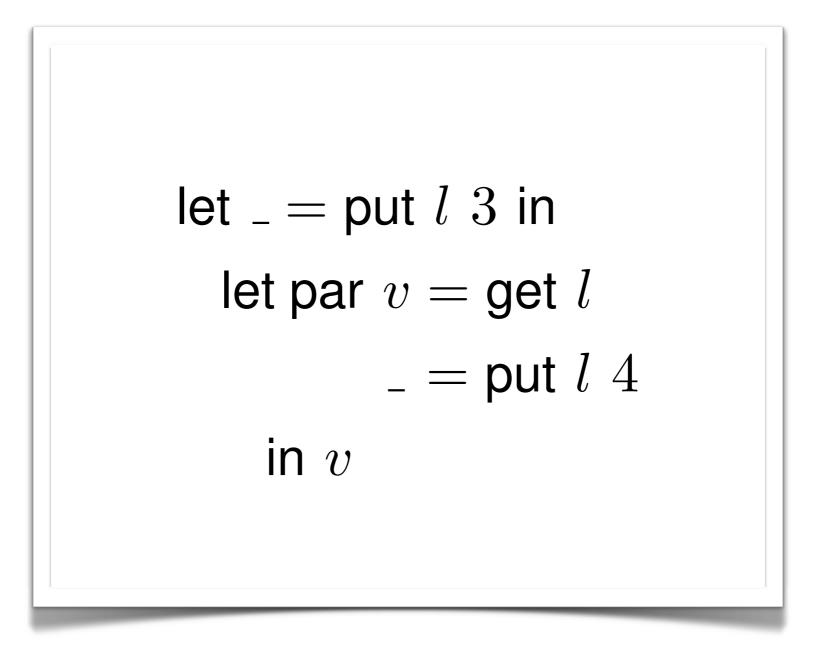
Aarhus University 14 September 2012

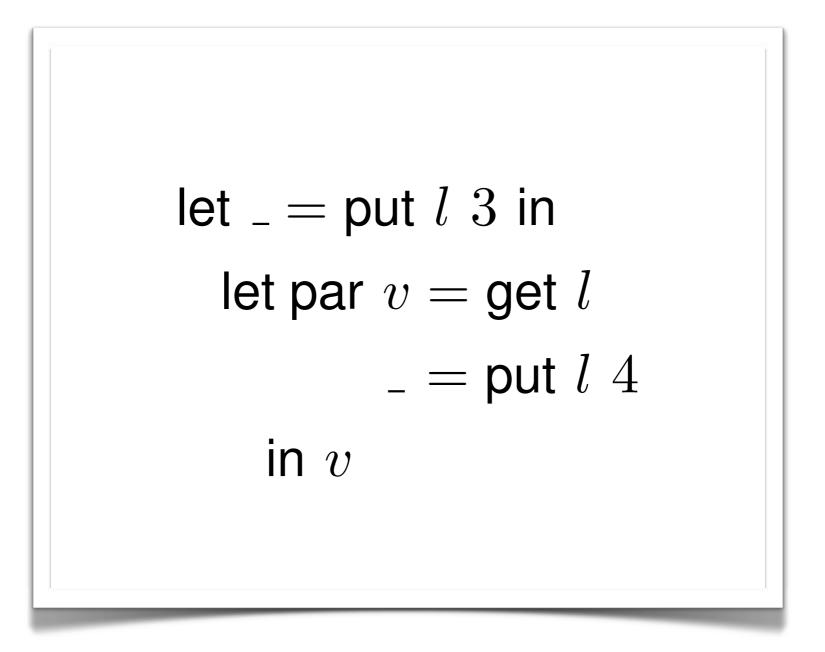


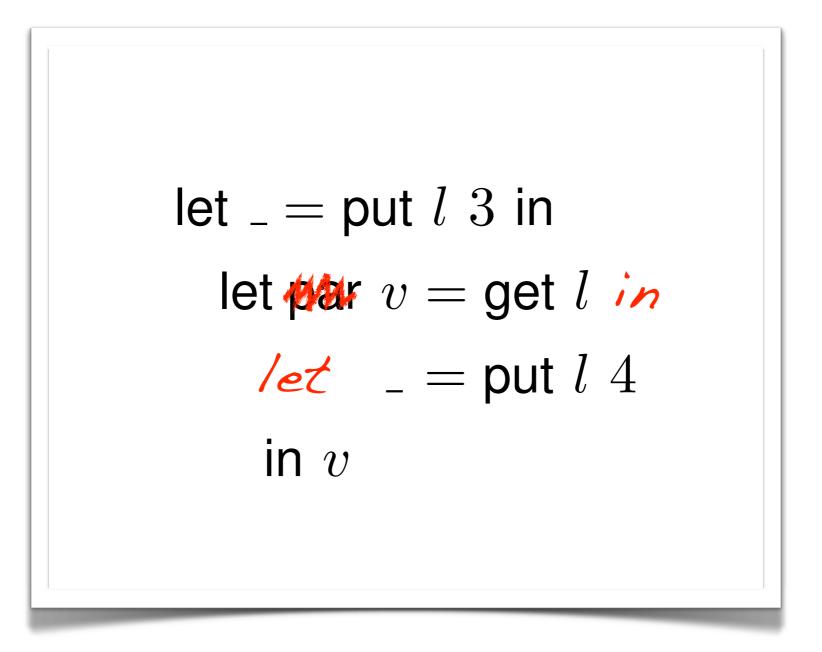
 A deterministic program is one that always produces the same observable result on multiple runs.

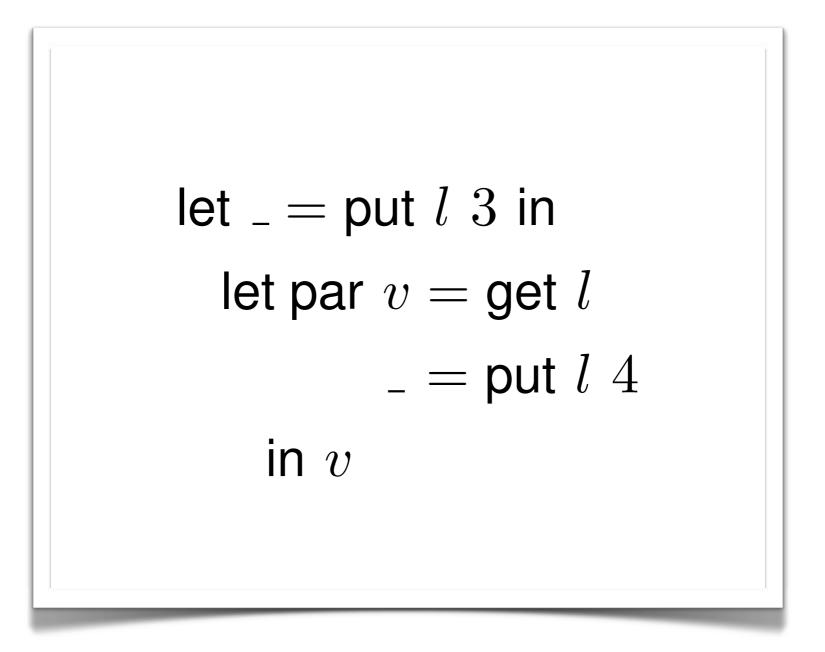
- A deterministic program is one that always produces the same observable result on multiple runs.
- A deterministic-by-construction programming model is one that only allows deterministic programs to be written.

- A deterministic program is one that always produces the same observable result on multiple runs.
- A deterministic-by-construction programming model is one that only allows deterministic programs to be written.
 - Examples: Kahn process networks, Intel Concurrent Collections, Haskell's monad-par, ...

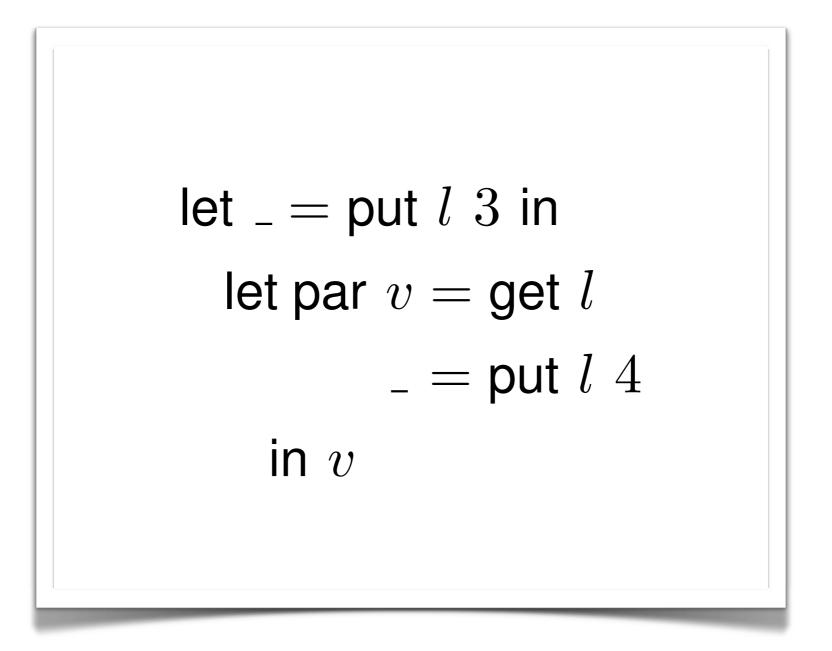




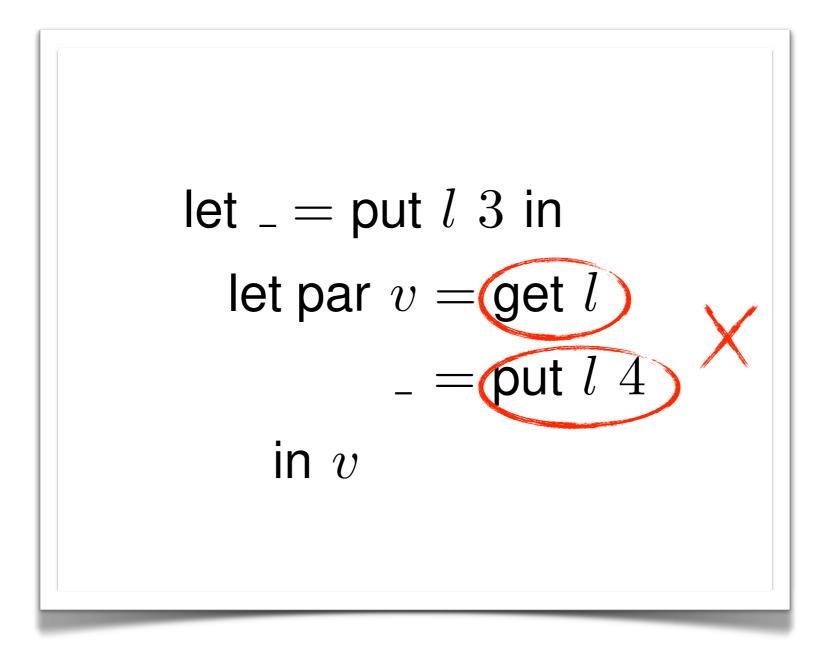




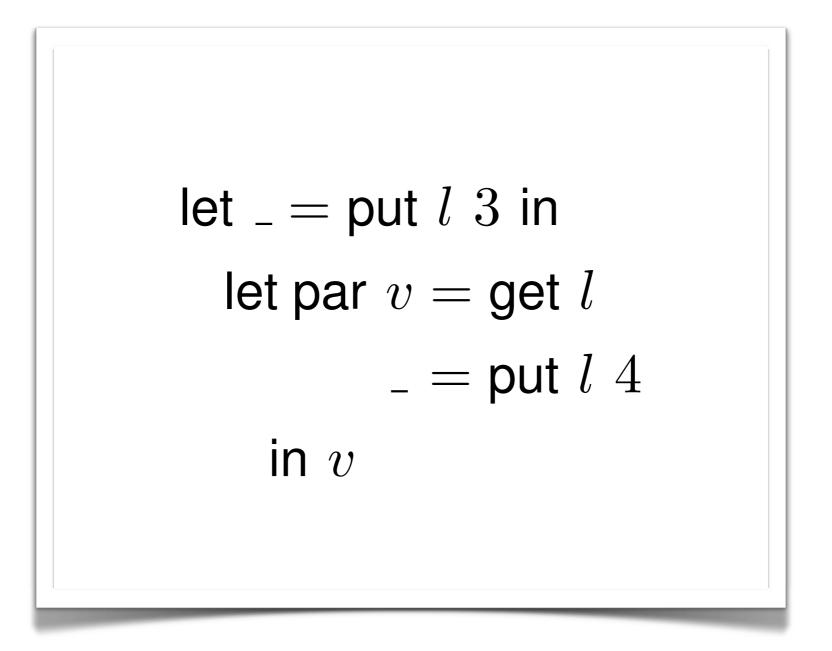
Disallow shared state?



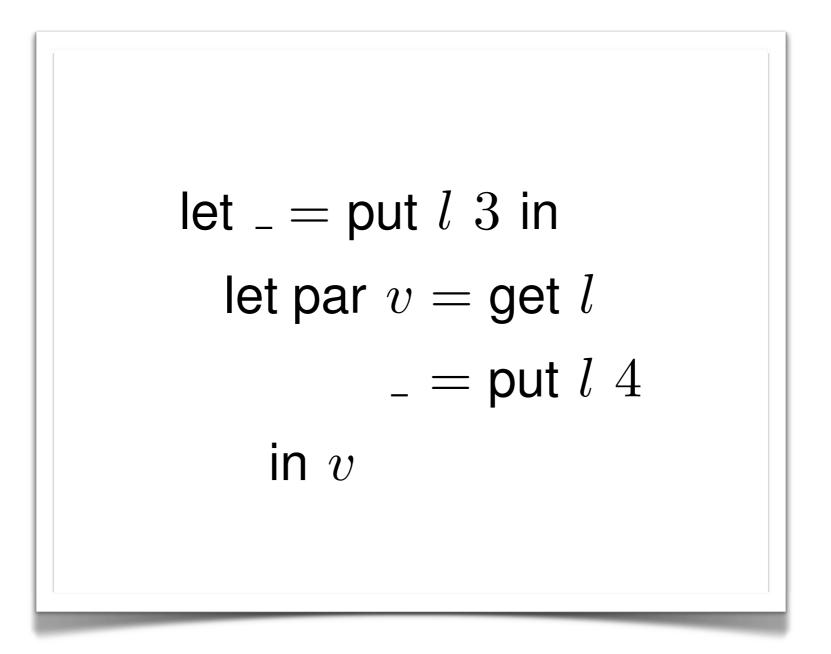
Disallow shared state?



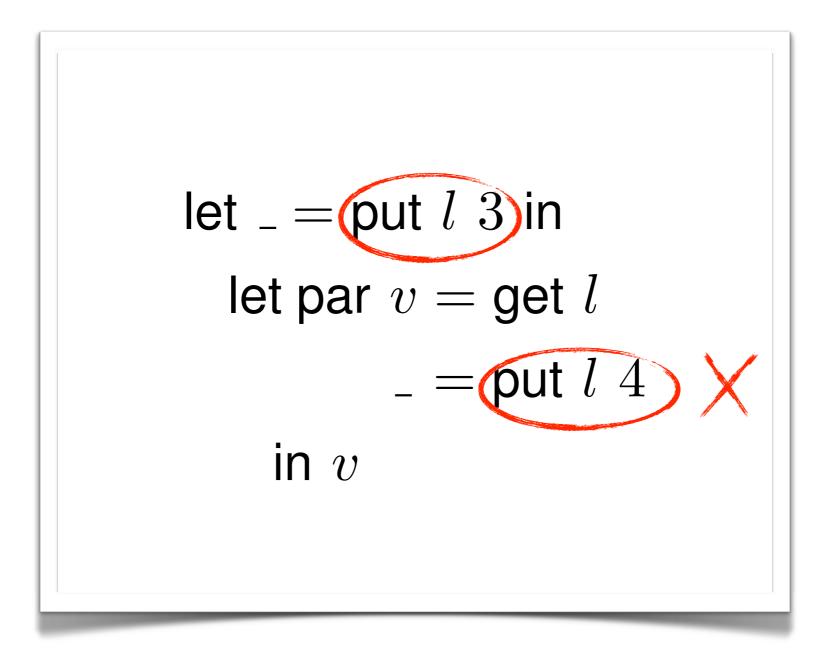
Disallow shared state?



Disallow multiple assignment?



Disallow multiple assignment?



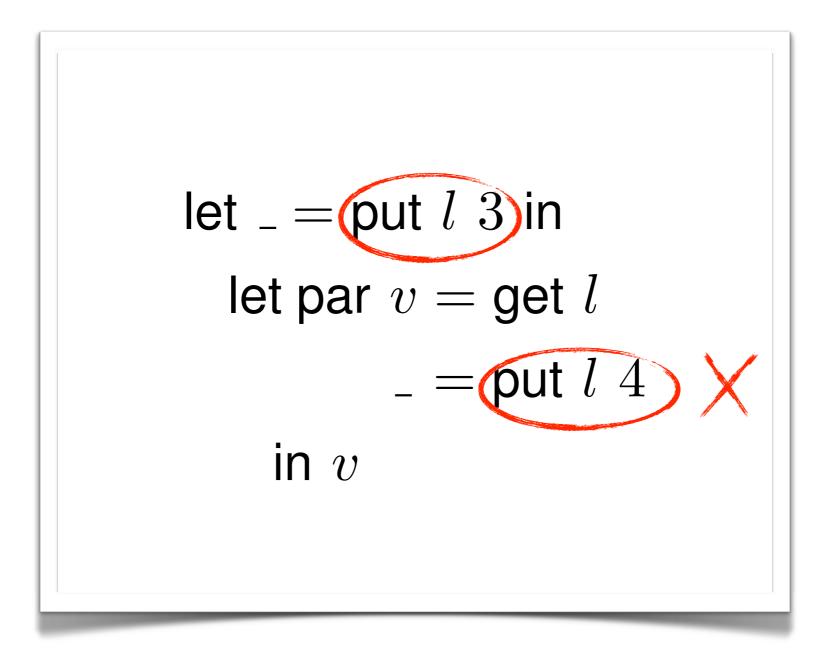
- Historically:
 - Compel (Tesler and Enea, 1968)

- Historically:
 - Compel (Tesler and Enea, 1968)
 - Id, I-Structures and IVars (Arvind et al., 1989)

- Historically:
 - Compel (Tesler and Enea, 1968)
 - Id, I-Structures and IVars (Arvind et al., 1989)
- Today:
 - Intel Concurrent Collections (Budimlić et al., 2010)
 - Specifically, Featherweight CnC

- Historically:
 - Compel (Tesler and Enea, 1968)
 - Id, I-Structures and IVars (Arvind et al., 1989)
- Today:
 - Intel Concurrent Collections (Budimlić et al., 2010)
 - Specifically, Featherweight CnC
 - monad-par for Haskell (Marlow et al., 2011)

Disallow multiple assignment?



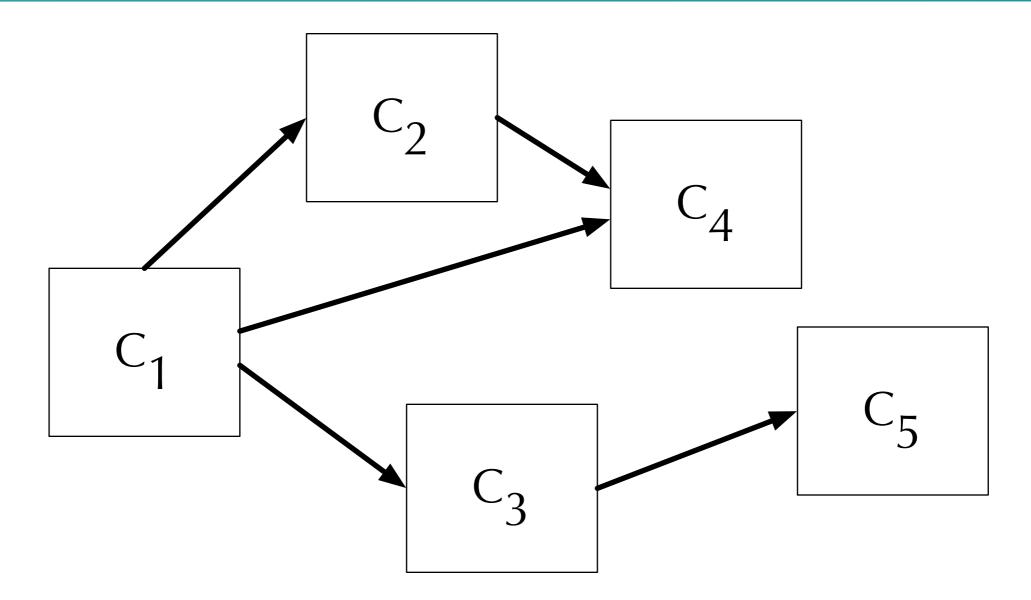
Deterministic programs that single-assignment forbids

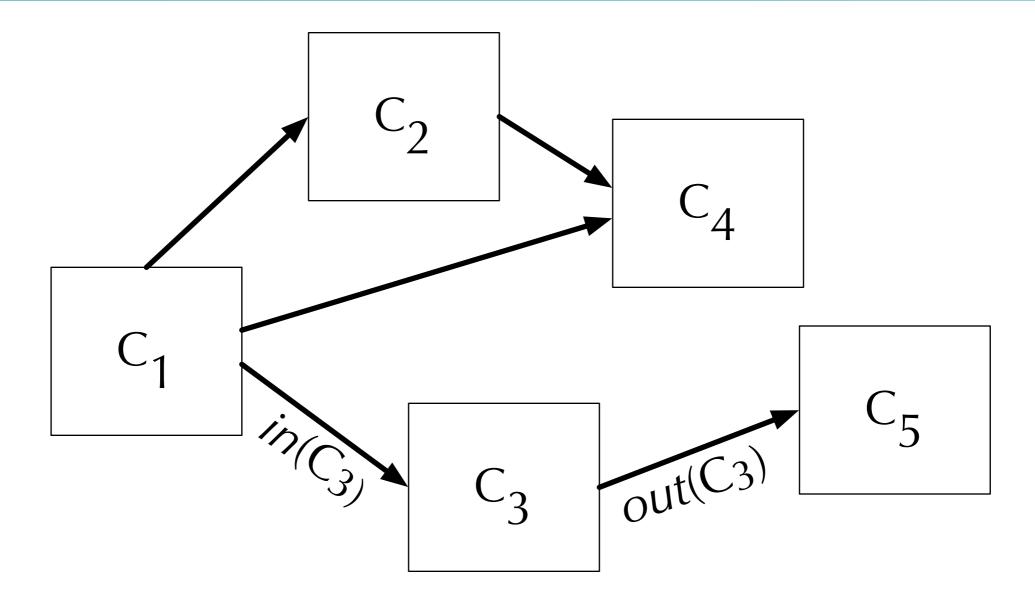
let _ = put
$$l$$
 3 in
let par v = get l
_ = put l 3
in v

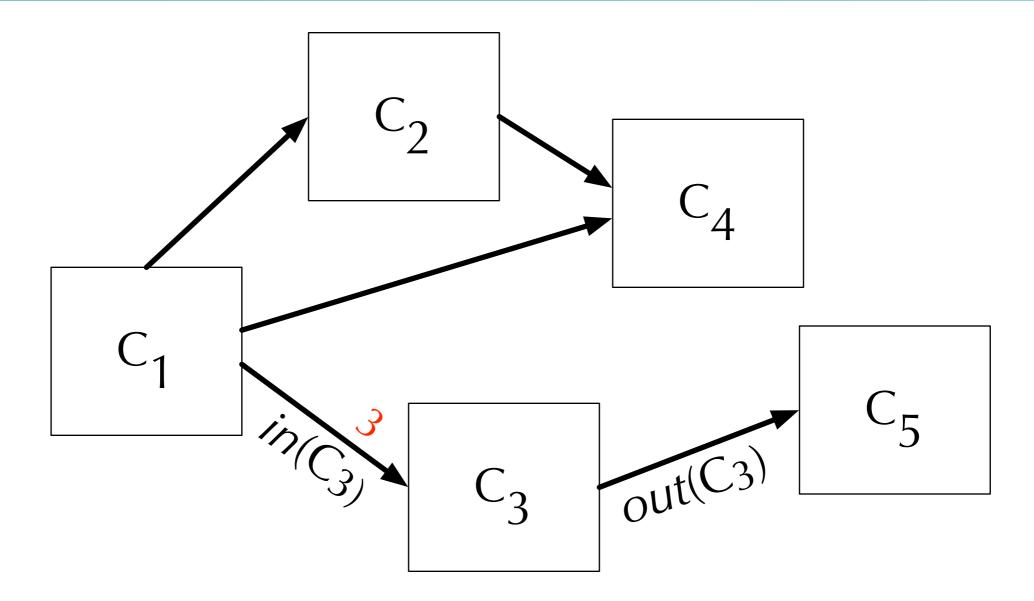
Deterministic programs that single-assignment forbids

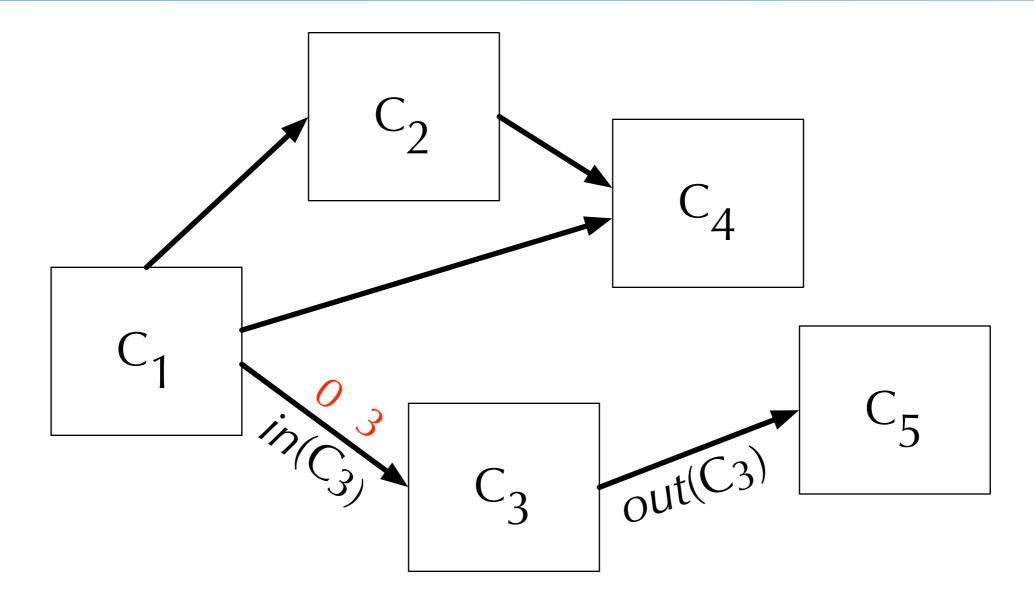
let _ = put
$$l$$
 3 in
let par v = get l
_ = put l 3
in v

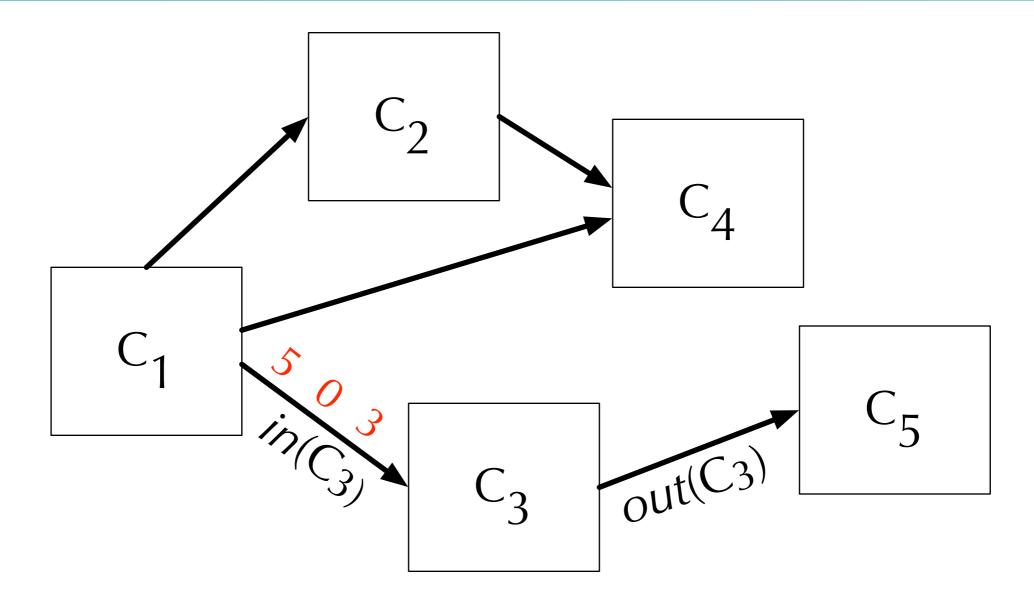
let par _ = put l (4, \perp) _ = put l (\perp , 3) in let v = get l in v

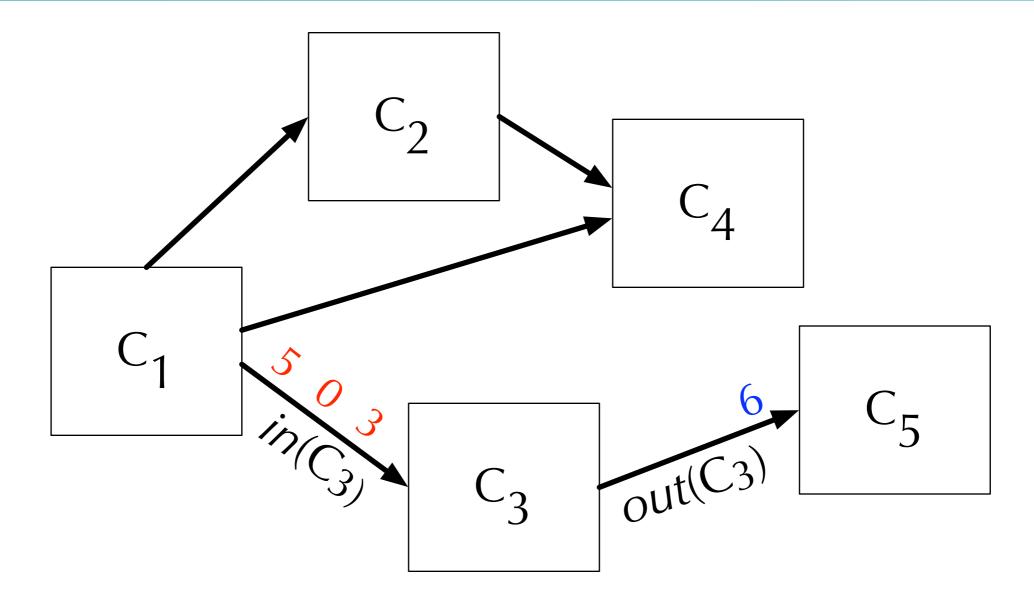


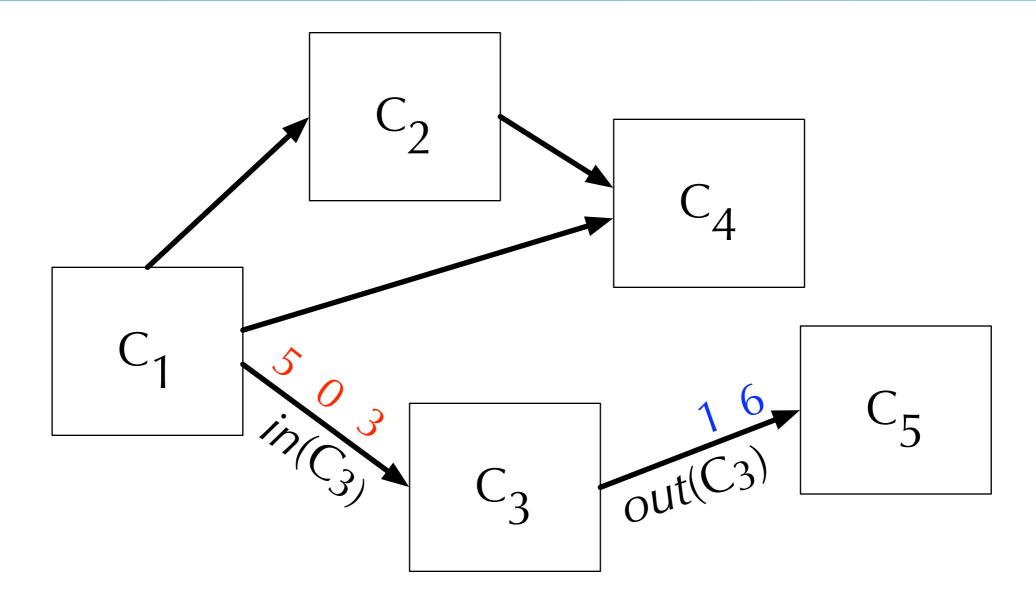


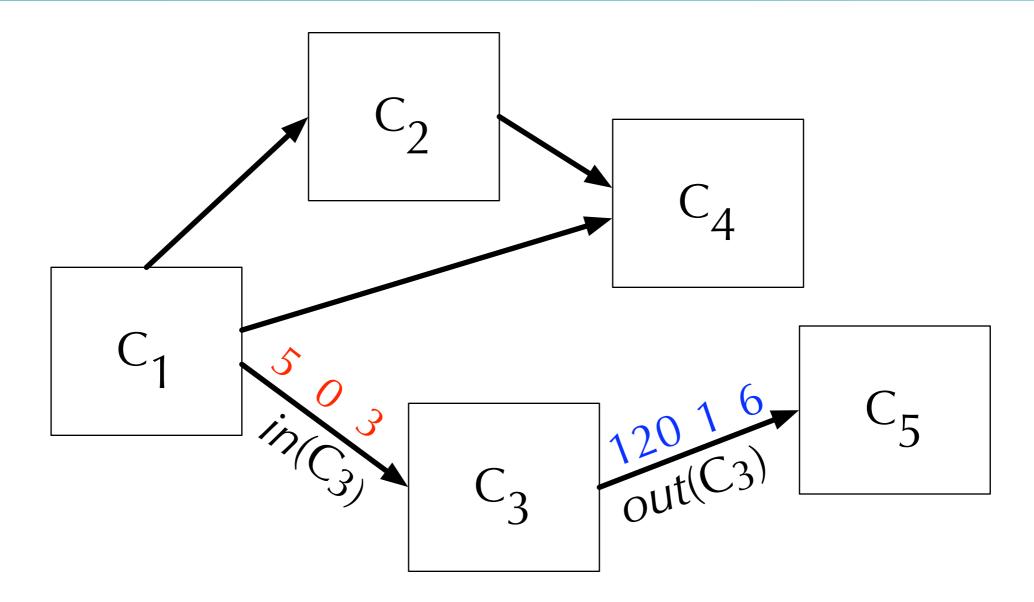


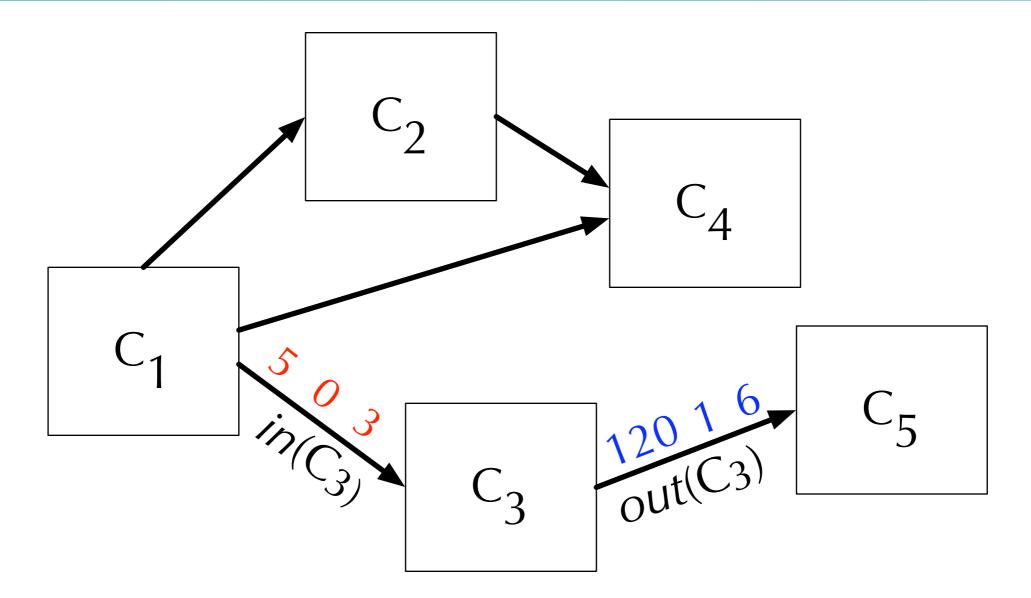




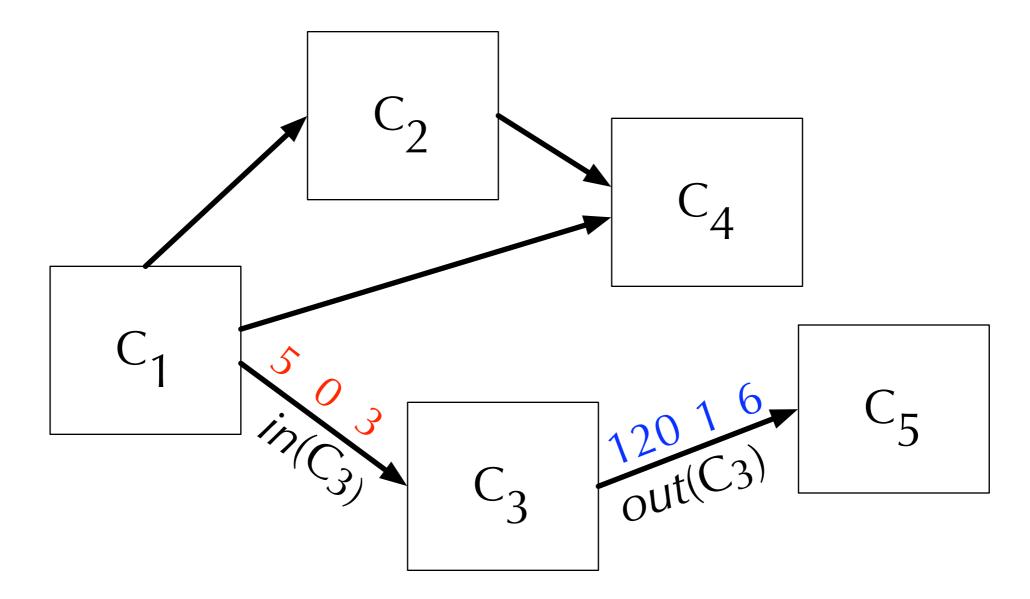








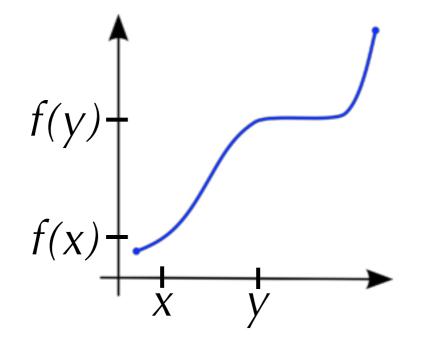
hist(*in*(C₃₎): [3, 0, 5, …]

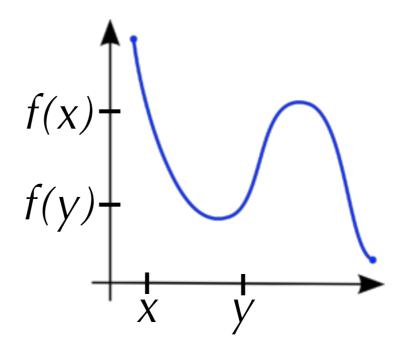


 $hist(in(C_3)): [3, 0, 5, ...]$ $hist(out(C_3)): [6, 1, 120, ...]$

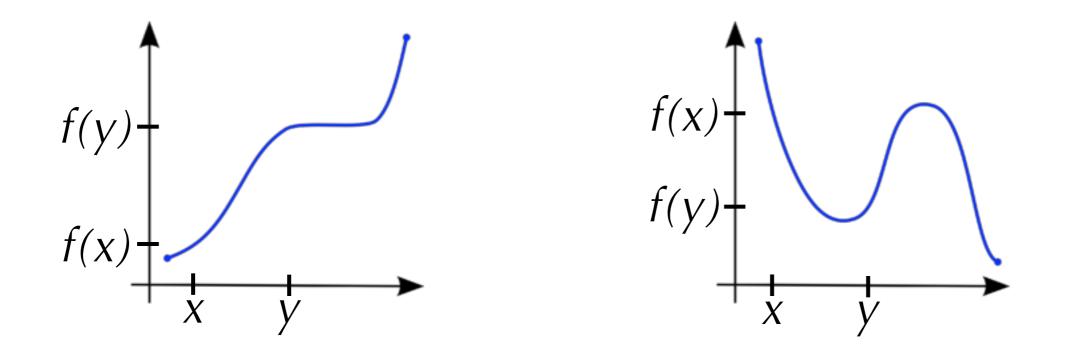
Monotonicity

Monotonicity



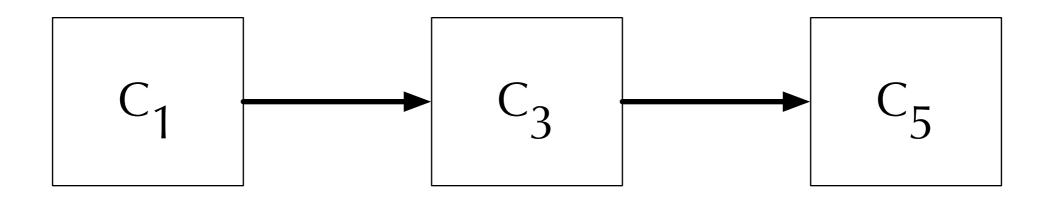


Monotonicity



f is monotonic iff $x \le y \Longrightarrow f(x) \le f(y)$

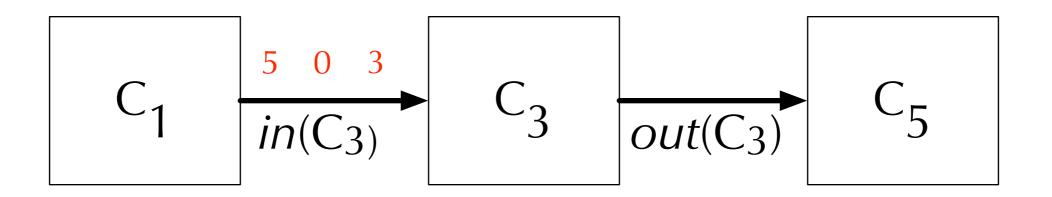
f is monotonic iff
$$x \le y \Longrightarrow f(x) \le f(y)$$



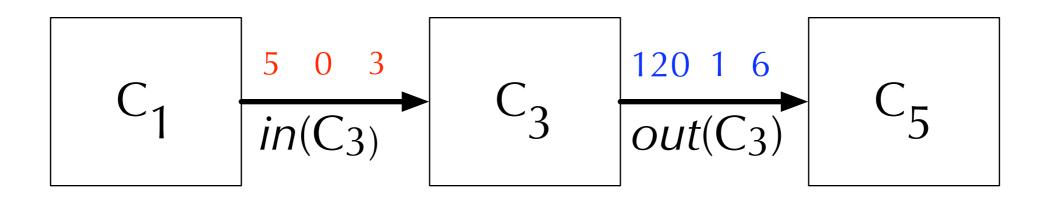
f is monotonic iff
$$x \le y \Longrightarrow f(x) \le f(y)$$



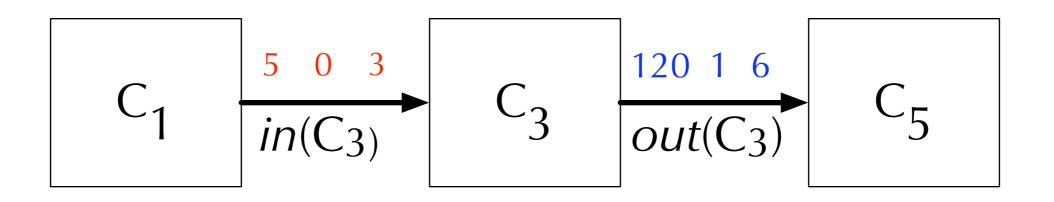
f is monotonic iff
$$x \le y \Longrightarrow f(x) \le f(y)$$



f is monotonic iff
$$x \le y \Longrightarrow f(x) \le f(y)$$



f is monotonic iff
$$x \le y \Longrightarrow f(x) \le f(y)$$



For KPNs, the \leq relation is just prefix-of: [3] prefix-of [3, 0] \Longrightarrow [6] prefix-of [6, 1] [3, 0] prefix-of [3, 0, 5] \Longrightarrow [6, 1] prefix-of [6, 1, 120]

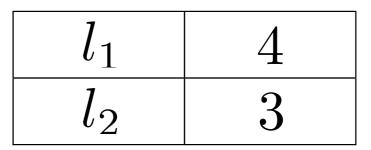
Monotonicity causes deterministic parallelism!

let _ = put
$$l_1$$
 4 in
let _ = put l_2 3 in
let par _ = put l_4 3
_ = put l_3 5
in get l_4

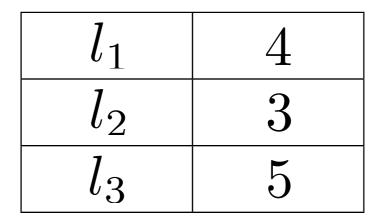
let _ = put
$$l_1$$
 4 in
let _ = put l_2 3 in
let par _ = put l_4 3
_ = put l_3 5
in get l_4

$$l_1$$
 4

let _ = put
$$l_1$$
 4 in
let _ = put l_2 3 in
let par _ = put l_4 3
_ = put l_3 5
in get l_4



let _ = put
$$l_1$$
 4 in
let _ = put l_2 3 in
let par _ = put l_4 3
_ = put l_3 5
in get l_4



let _ = put
$$l_1$$
 4 in
let _ = put l_2 3 in
let par _ = put l_4 3
_ = put l_3 5
in get l_4

l_1	4
l_2	3
l_3	5
l_4	3

let _ = put
$$l_1$$
 4 in
let _ = put l_2 3 in
let par _ = put l_4 3
_ = put l_3 5
in get l_4

Store:

l_1	4
l_2	3
l_3	5
l_4	3

For stores, the \leq relation is \subseteq : $\{l_1 \rightarrow 4, l_2 \rightarrow 3\} \subseteq \{l_1 \rightarrow 4, l_2 \rightarrow 3, l_3 \rightarrow 5\} \Longrightarrow$ $\{l_1 \rightarrow 4, l_2 \rightarrow 3, l_4 \rightarrow 3\} \subseteq \{l_1 \rightarrow 4, l_2 \rightarrow 3, l_3 \rightarrow 5, l_4 \rightarrow 3\}$

Generalizing our notion of monotonicity

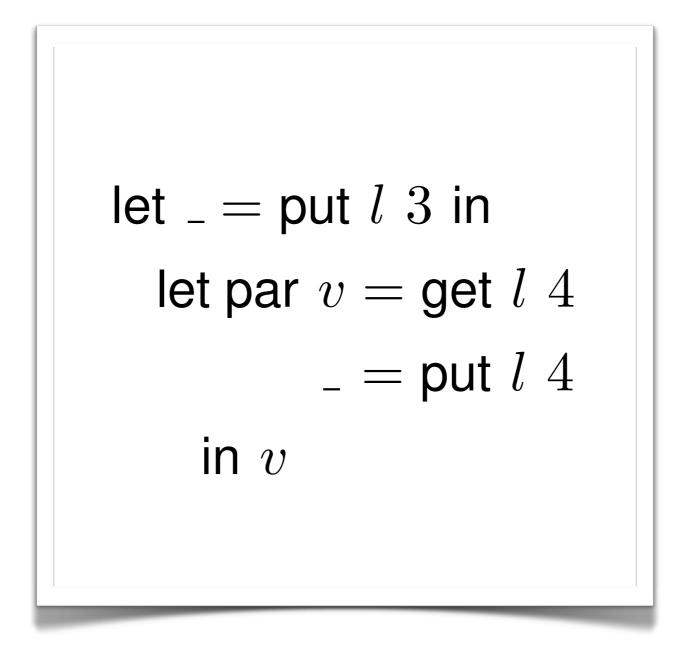
For stores, the \leq relation is \subseteq : $\{l_1 \rightarrow 4, l_2 \rightarrow 3\} \subseteq \{l_1 \rightarrow 4, l_2 \rightarrow 3, l_3 \rightarrow 5\} \Longrightarrow$ $\{l_1 \rightarrow 4, l_2 \rightarrow 3, l_4 \rightarrow 3\} \subseteq \{l_1 \rightarrow 4, l_2 \rightarrow 3, l_3 \rightarrow 5, l_4 \rightarrow 3\}$

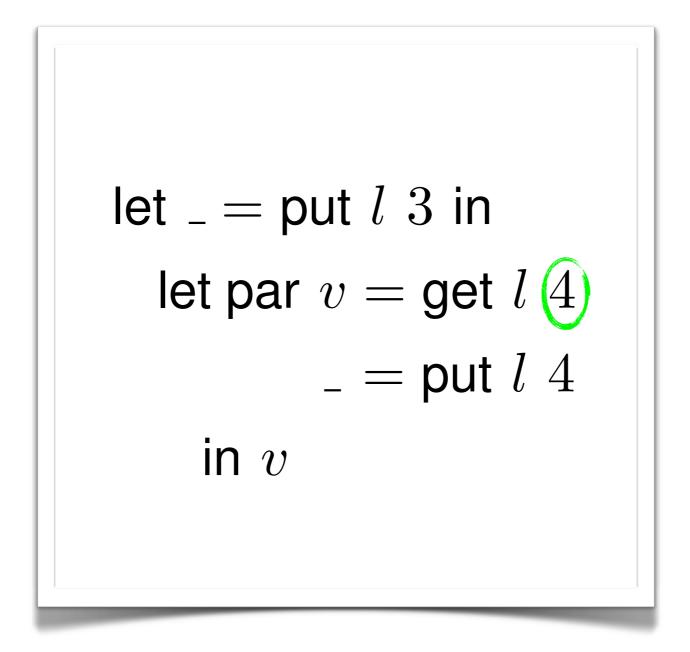
- Given stores *S* and *S'*, we say that $S \le S'$ iff:
 - $\operatorname{dom}(S) \subseteq \operatorname{dom}(S')$, and
 - for all locations *l* in dom(*S*), S(l) = S'(l)

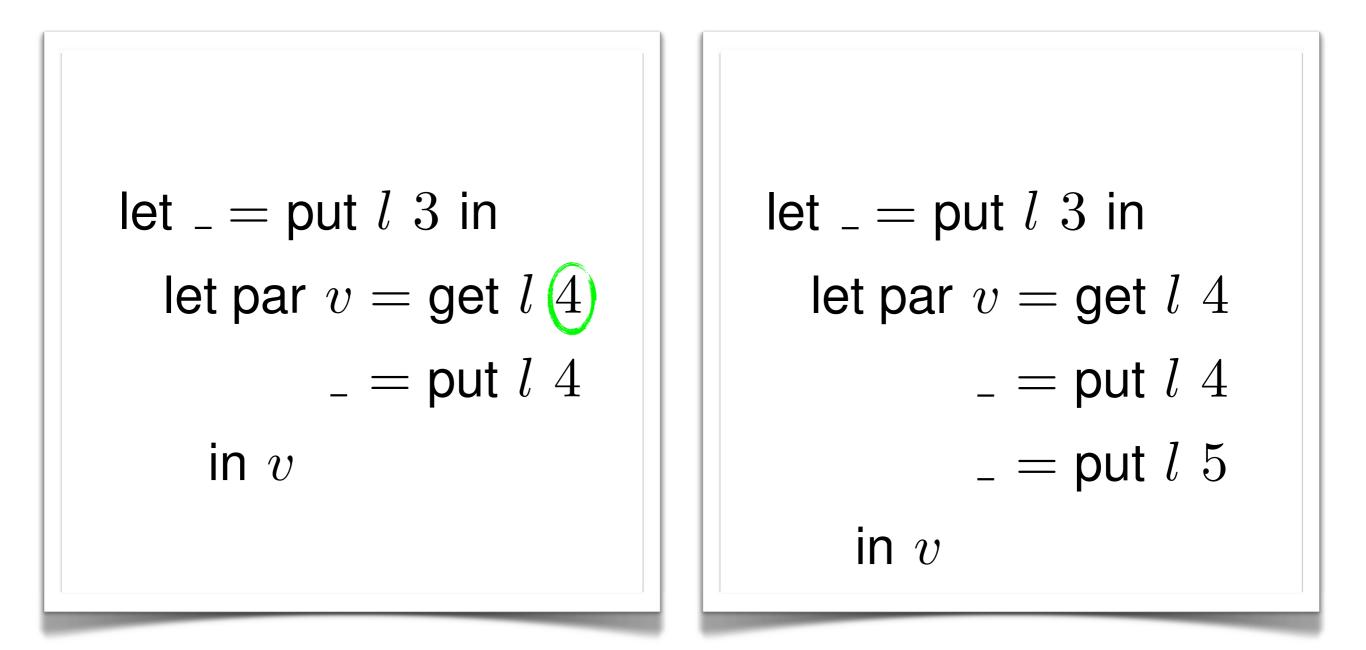
Generalizing our notion of monotonicity

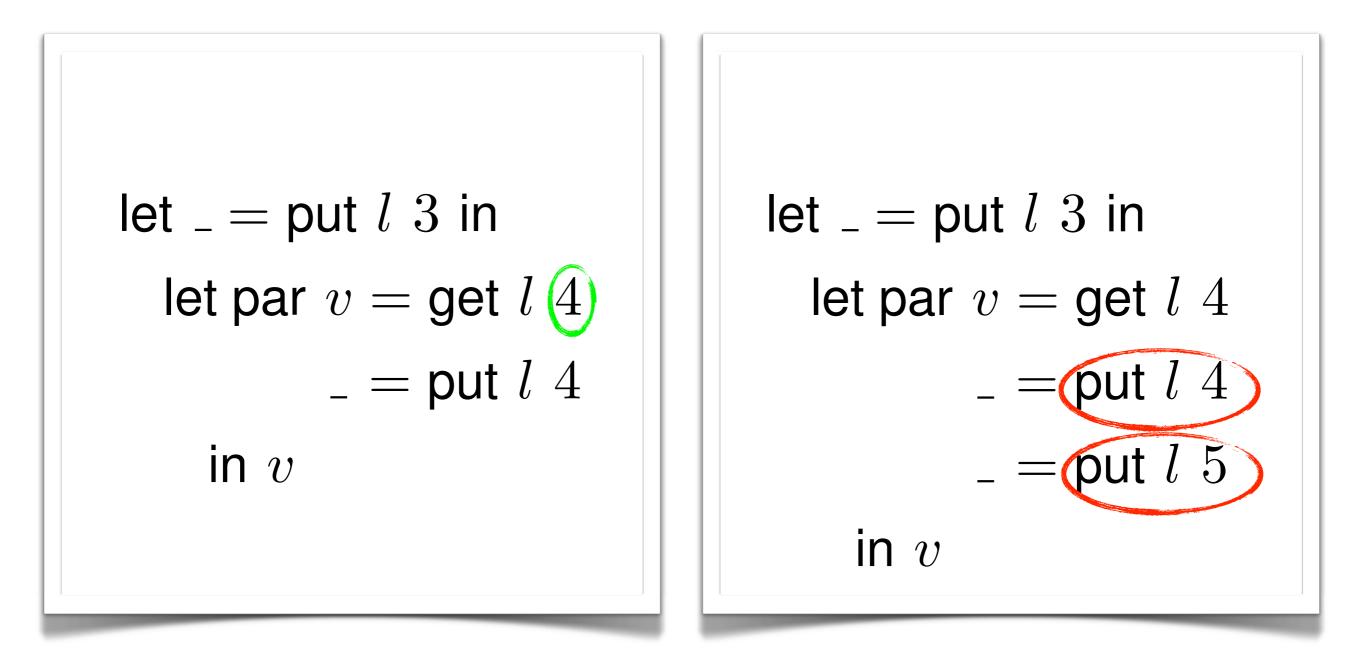
For stores, the \leq relation is \subseteq : $\{l_1 \rightarrow 4, l_2 \rightarrow 3\} \subseteq \{l_1 \rightarrow 4, l_2 \rightarrow 3, l_3 \rightarrow 5\} \Longrightarrow$ $\{l_1 \rightarrow 4, l_2 \rightarrow 3, l_4 \rightarrow 3\} \subseteq \{l_1 \rightarrow 4, l_2 \rightarrow 3, l_3 \rightarrow 5, l_4 \rightarrow 3\}$

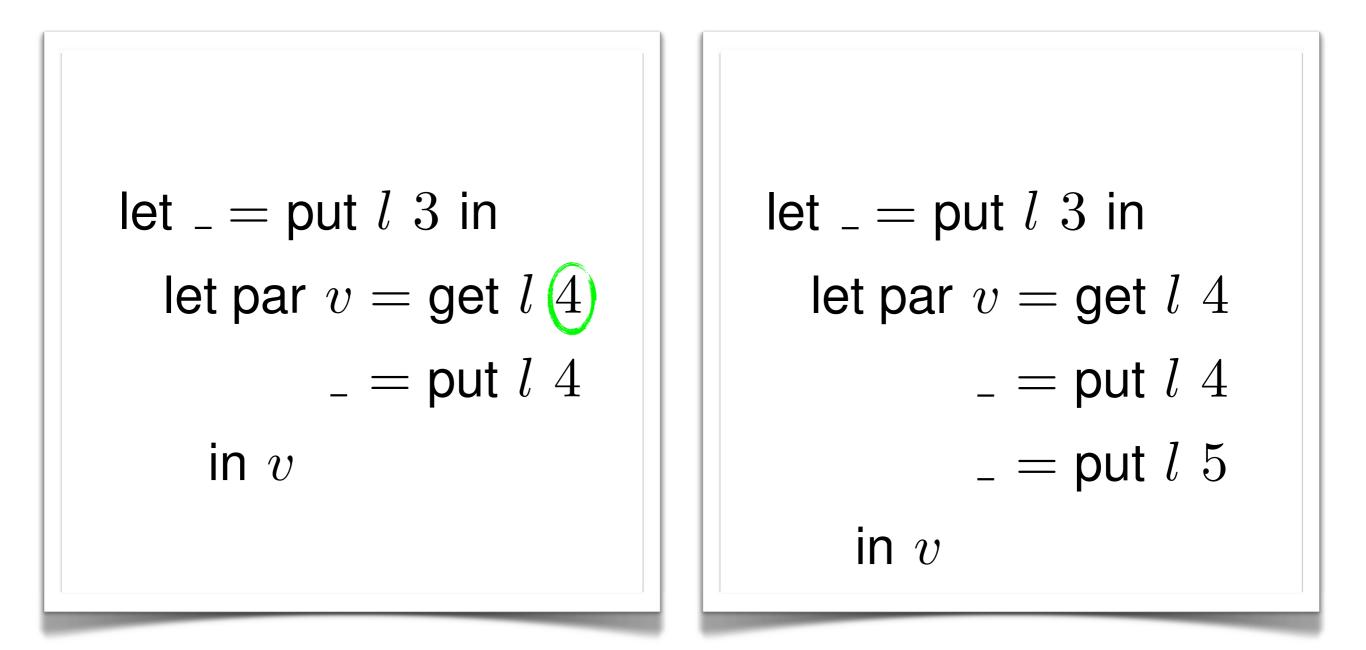
- Given stores *S* and *S'*, we say that $S \le S'$ iff:
 - $\operatorname{dom}(S) \subseteq \operatorname{dom}(S')$, and
 - for all locations *l* in dom(*S*), $S(l) \not \not \in S'(l)$

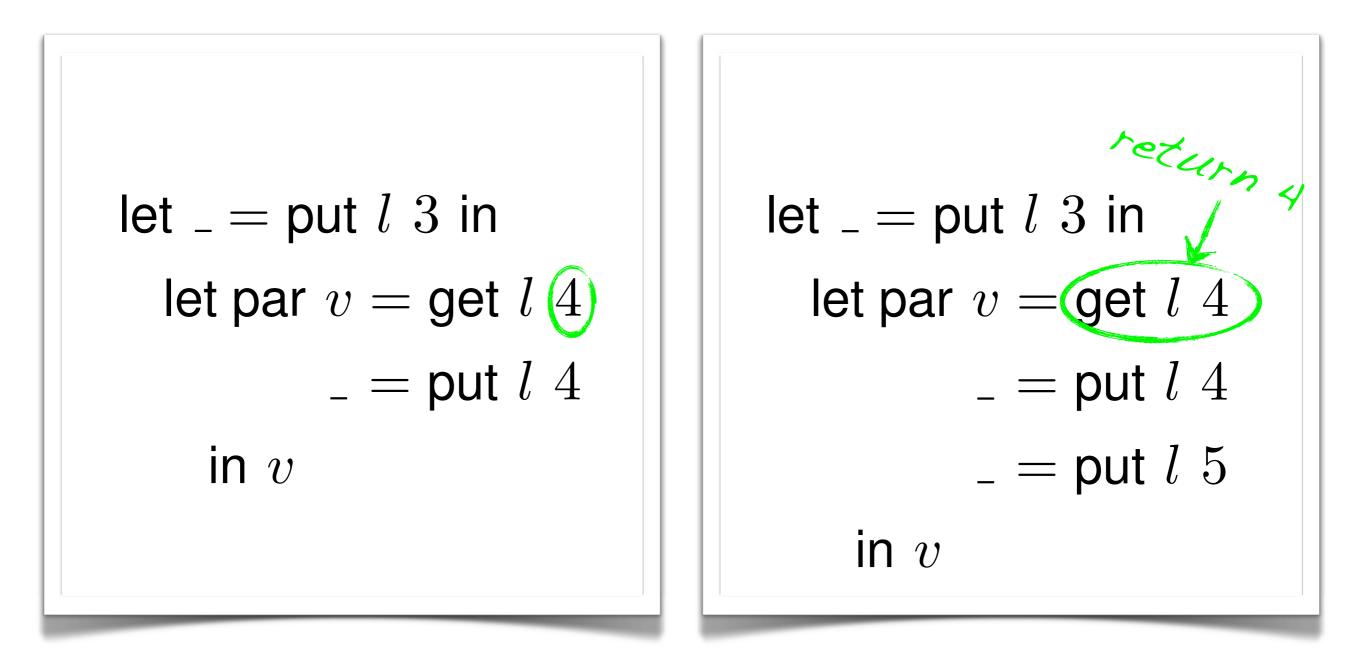




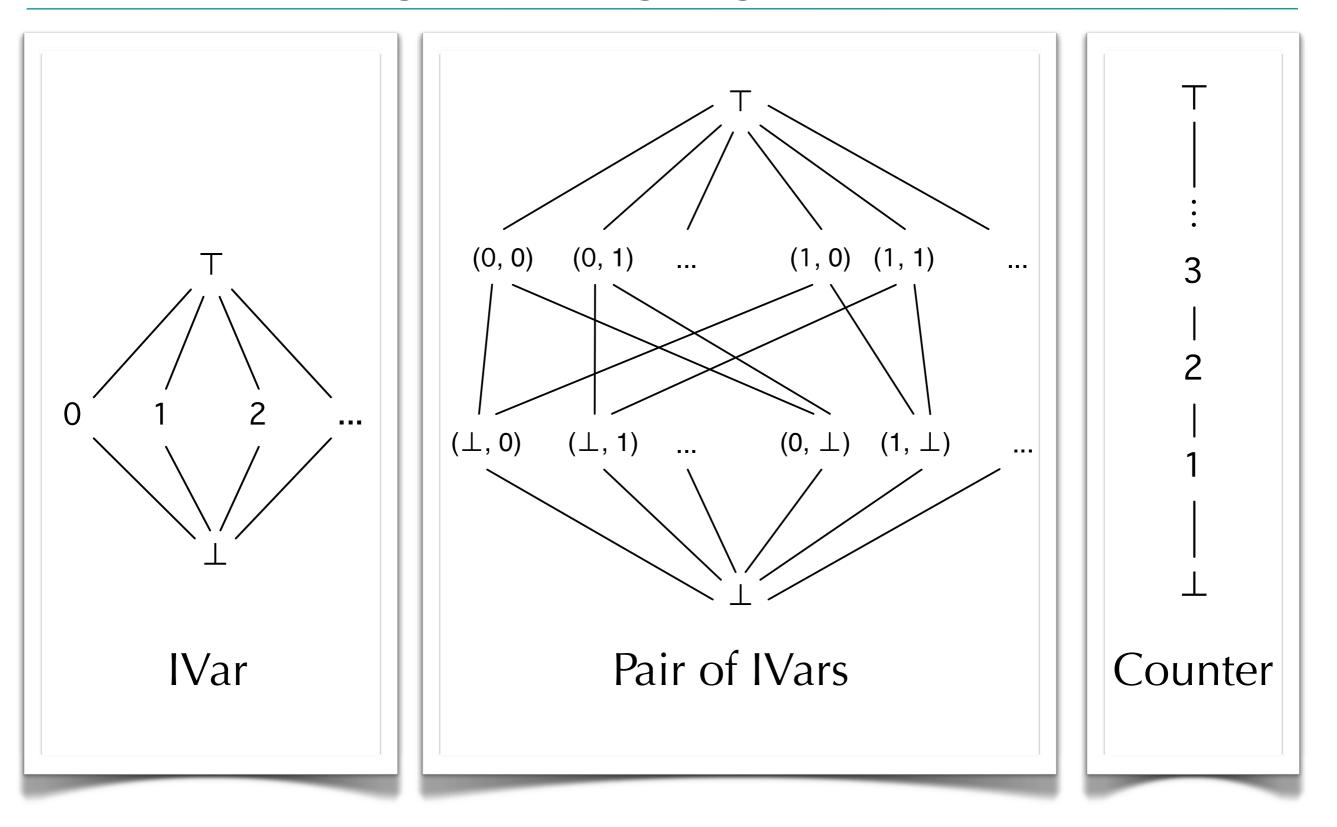


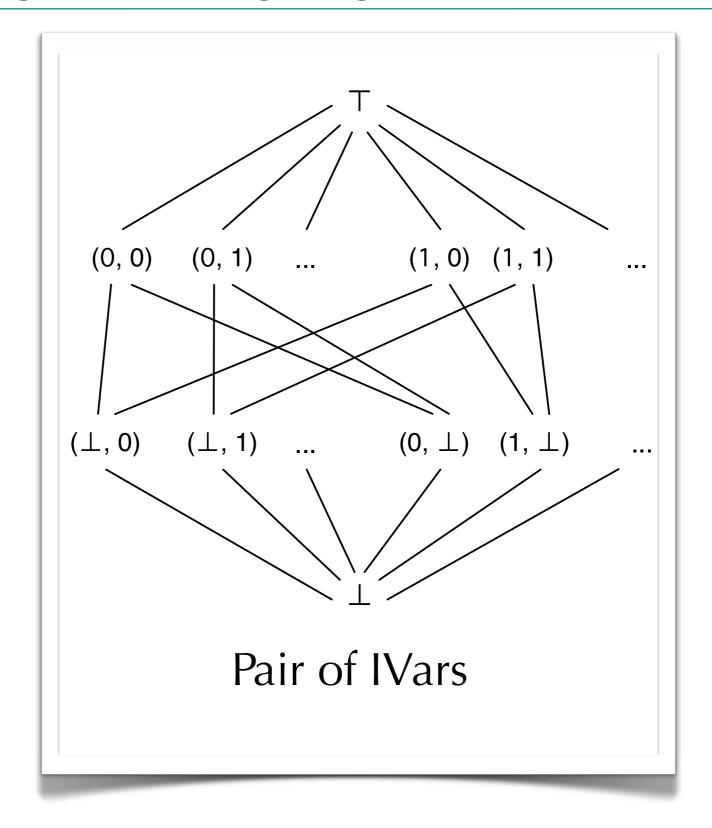


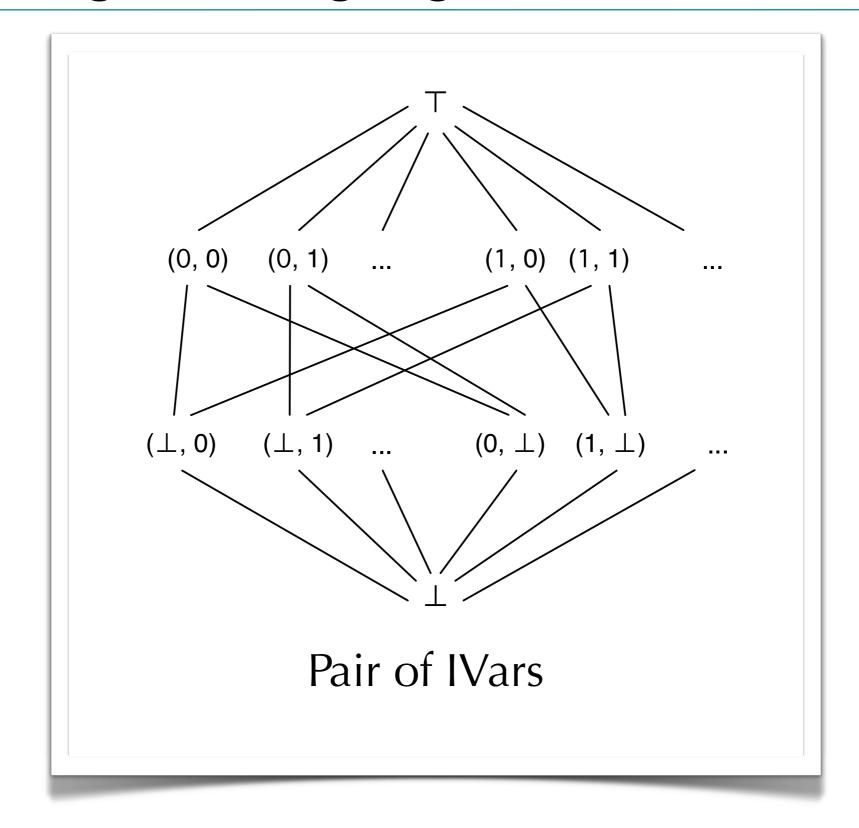


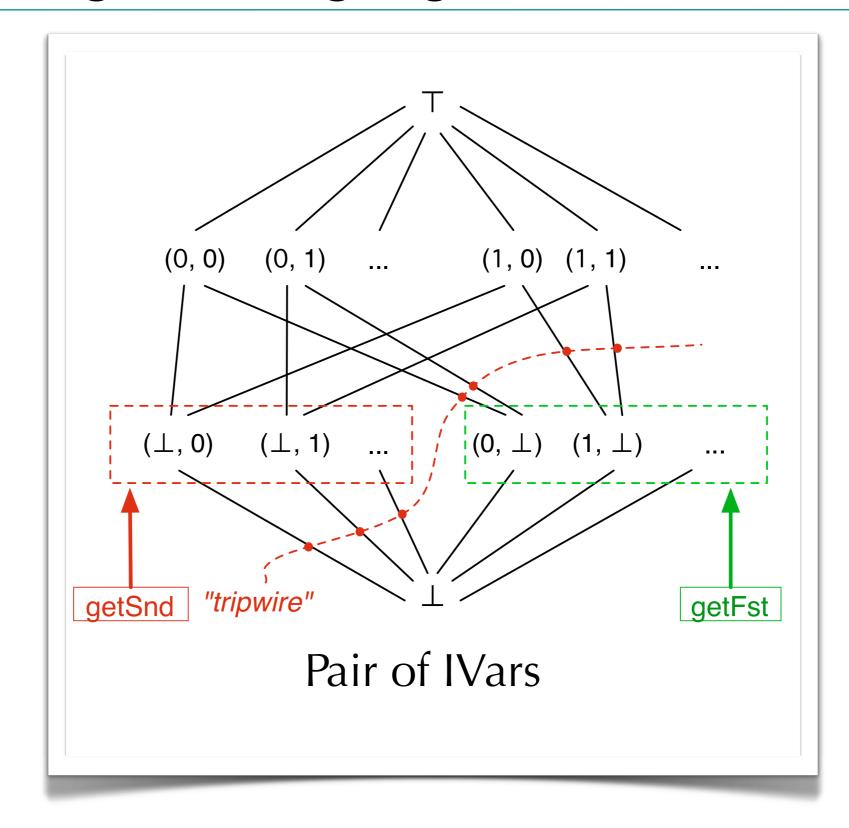


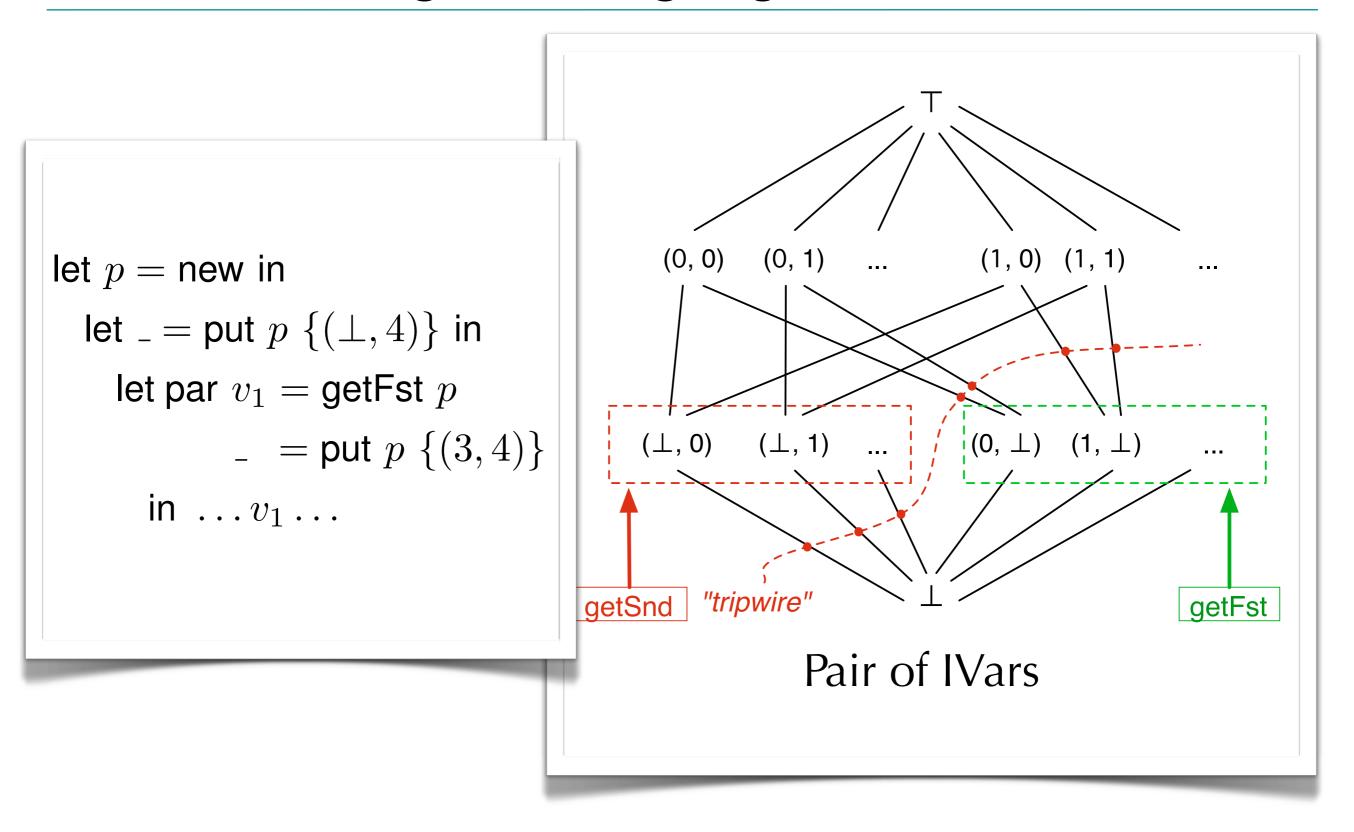
Monotonically increasing writes + threshold reads = deterministic parallelism











Monotonicity causes deterministic parallelism

Monotonically increasing writes + threshold reads = deterministic parallelism

Complete syntax and semantics

- Complete syntax and semantics
- Proof of determinism
 - A "frame-rule-like" property
 - Location renaming is surprisingly tricky!

- Complete syntax and semantics
- Proof of determinism
 - A "frame-rule-like" property
 - Location renaming is surprisingly tricky!
- Subsuming existing models
 - KPNs, CnC, monad-par

- Complete syntax and semantics
- Proof of determinism
 - A "frame-rule-like" property
 - Location renaming is surprisingly tricky!
- Subsuming existing models
 - KPNs, CnC, monad-par
- Support for controlled nondeterminism
 - "probation" state

Tak!

Email: lkuper@cs.indiana.edu Twitter: @lindsey Web: cs.indiana.edu/~lkuper Research group: lambda.cs.indiana.edu

Photo by kakadu on Flickr. Thanks!