LVars:

lattice-based data structures for deterministic parallelism

Lindsey Kuper and Ryan R. Newton Indiana University

Hacker School
June 10, 2013

What does this program evaluate to?

$$
\begin{array}{rl}
\text { let } \quad=\operatorname{put} l 0 & 0 \text { in } \\
\text { let par } v & =\operatorname{get} l \\
- & =\operatorname{put} l 8
\end{array}
$$

in v

Disallow multiple writes?

$$
\begin{aligned}
& \text { let } \quad=\operatorname{put} l 0 \text { in } \\
& \text { let } \operatorname{par} v=\operatorname{get} l \\
&-=\operatorname{put} l 8
\end{aligned}
$$

in v

Disallow multiple writes?

Tesler and Enea, 1968
Arvind et al., 1989
"IVars"

Deterministic programs that single-assignment forbids

let $_{-}=$put $l 8$ in let par $v=$ get l
_ $=$ put $l 8$
in v

Deterministic programs that single-assignment forbids

let $_{-}=$put $l 8$ in let $\operatorname{par} v=$ get l
_ $=$ put $l 8$ in v
let par _ $=$ put $l(4, \perp)$
${ }_{-}=\operatorname{put} l(\perp, 3)$
in get l

Deterministic programs that single-assignment forbids

let $_{-}=$put $l 8$ in let par $v=$ get l
_ $=$ put $l 8$ in v

$$
\text { let } \begin{aligned}
\text { par }- & =\text { put } l(4, \perp) \\
- & =\text { put } l(\perp, 3)
\end{aligned}
$$

in get l

From Kahn process networks...

in:ormation processing 74 - North-holland publishing company (1974)

THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING
Gilles KAHN
IRIA-Laboria, Domaine de Voluceau, 78150
Rocquencourt, France
ocquencourt, France
and
Commissariat à l'Energie Atomique, France
In this paper, we describe a simple language for paraliel programming. Its semantics 1 s studied thor-
oughly. The desirable properties of this language and tits deficiencies are exhibited by this theoret-

There is a wide disagreement among systems designers as to what are the best primitives for writing sys-
tems programs. In this paper, we describe a simple cems programs. In this paper, we describe a simp
language for paralle1 programing and study its language for parallel pr
mathematical properties.

1. a smple language for parallel programingc.

The features of our mini-linguage are exhibit ted on
the sample program S on f ig.1. The coriventions are
 close to Algol end we only insist upon the new
features. The propran or conisiss of a se set of decla-
rations and a body. varialles of type integer
 chynnel are dectared at line (1), and for any simple
tpe o (colean, teal e etc...) we could have declared a o channen. The procecsese f, 8 and h are
declared, much 1 ike procedures. Aside f from usual parameters (passed by value in this exanple, like
pir at line (). we can decclare in the heading of
It

lines the
put 1 ine
put ine.
The obdy a process is an usual Algol program except
for invocation of wait on an input 1ine (e.g. at (4))
 nntil some thing is being sent on this 1 line by ano-
ther process, but nothing can prevent a process from performinn a send on a inne.
In other words, processe
first-out (fifo)) queves.
Calling instances of the
e processes via first-in
body of the mainces of the proces amses at in done ine the the there the actual names of the channe1s are bound to the formal
parameters of the processes. The infix operator par parameters of the processes. The infix oper ator par
initiates the concurcent sctivation of the processe
Such Such a syle of programing is close to may systems
Using EVENT mechani sms $([1],[2],[3],[4])$. A pictousial representati
und
 Cesses.
 prog forever. Secondy, more precis sely, that s prints
 were to stop at some time for an extraneous reason,
the whole system would stop.
The
 of a parallel program and to prove them within ${ }^{\text {a }}$
formal logical framework is the central motivation for the theoretical study of the next sections.
2. parallel computation.

From Kahn process networks...

IN:ORMATION PROCESSING 74 - NORTH-HOLLAND PUBLISHING COMPANY (1974)

THE SEMANTICS OF A SIMPLE LANGUAGE FOR PARALLEL PROGRAMMING Gilles KAHN
IRIA-Laboria, Domaine de Voluceau, 78150
Rocquencourt, France Rocquencourt, Fra
and
Commissariat à l'Energie Atomique, France
In this paper, we describe a simple language for parallel programing. Its semantics 18 studied thor(ven. We hope in this way to make a case
f languages for systems programung and
Monotonicity means that receiving more input at a computing station can only provoke it to send more output. Indeed this a crucial property since it allows parallel operation : a machine need not have all of its input to start computing, since future input concerns only future putput.

The kind of parallel programing we have studied in this paper is severely limited : it can produce only: determinate programs.

2. Parallel computation

Informally speaking, a parallel computation is orga
nized in the following
int

 station computes on data coning along its input lines,

Monotonicity

f is monotonic iff, for a given \leq,

$$
x \leq y \Longrightarrow f(x) \leq f(y)
$$

...to Concurrent Collections

Concurrent Collections

 Vivek Sorkar' Frank Schlimbach ${ }^{2}$ 'Sngzak Thyrlar'

 Nifide CEDA ser partwoy these, peoiditig a rotrited prograirning model to

 Thily minatremen peralkibse will require restiag the lerge comeunity of

 donsin capert sod the Later of the perfurusece hating capert. The turing terget ecetiteecture and is not reyuired so have an undentasiligy of the domain

Budimlić et al., 2010

...to Concurrent Collections

Concurrent Collections
Zoran Dudimile' Michael Durke' Vincent Cave" Kathloes Knobe
Geodf Lowney'
Ryan Newton'
Vivek Sorker' Frank Schlimbach ${ }^{2}$ Snkenk Therrlar'

Abatract

Nidit CEDA ser pa
lidh.keel progrnami
eses simpify the under
to this paper wof
Is this paper wel
madel, built oe pout

demoniewing with
and we velated by o
Stic. This limits Co

Thily miantrean
mon procomingal por
but reating them
and paralel inphe
denain caper nod
opert is piven the
.
A senght of Coc:
The key language feature that enables determinism is the single assignment condition. The single assignment condition guarantees monotonicity of the data collection A. We view A as a partial function from integers to integers and the single assignment condition guarantees that we can establish an ordering based on the non-decreasing domain of A.

Lemma 3.2. (Monotonicity) If $\sigma \rightarrow \sigma^{\prime}$, then $\sigma \leq \sigma^{\prime}$.

Monotonicity enables deterministic parallelism!

Parameterizing our language: LVars

Parameterizing our language: LVars

Parameterizing our language: LVars

Pair of IVars

Parameterizing our language: LVars

Parameterizing our language: LVars

let ${ }_{-}=\operatorname{put} p\{(\perp, 4)\}$ in let par $v_{1}=$ getFst p
${ }^{-}=\operatorname{put} p\{(3,4)\}$ in $\ldots v_{1} \ldots$

getFst $p \triangleq \operatorname{get} p\{(n, \perp) \mid n \in \mathbb{N}\}$

Two take-aways

Monotonicity enables deterministic parallelism

Monotonically increasing writes

+ threshold reads
= deterministic parallelism

Where to find out more

- composition.al
- Recent post: "How to read from an LVar: an illustrated guide"
- Our draft paper and tech report
- Paper: Complete syntax and semantics
- TR: Complete proof of determinism
- GitHub: github.com/iu-parfunc/lvars
- Prototype LVar library in Haskell
- Mechanized semantics in PLT Redex
- Talk to me!

