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Parallel Programming
(observably)

Deterministic

3



4



data Item = Book | Shoes | ...

4



p :: IO (Map Item Int)

data Item = Book | Shoes | ...

4



p :: IO (Map Item Int)
p = do cart <- newIORef empty

data Item = Book | Shoes | ...

4



p :: IO (Map Item Int)
p = do cart <- newIORef empty

data Item = Book | Shoes | ...

4



p :: IO (Map Item Int)
p = do cart <- newIORef empty

data Item = Book | Shoes | ...

4



p :: IO (Map Item Int)
p = do cart <- newIORef empty
       async (atomicModifyIORef cart
         (\m -> (insert Book 1 m, ())))

data Item = Book | Shoes | ...

4



p :: IO (Map Item Int)
p = do cart <- newIORef empty
       async (atomicModifyIORef cart
         (\m -> (insert Book 1 m, ())))

data Item = Book | Shoes | ...

4



p :: IO (Map Item Int)
p = do cart <- newIORef empty
       async (atomicModifyIORef cart
         (\m -> (insert Book 1 m, ())))

data Item = Book | Shoes | ...

4



p :: IO (Map Item Int)
p = do cart <- newIORef empty
       async (atomicModifyIORef cart
         (\m -> (insert Book 1 m, ())))
       async (atomicModifyIORef cart
         (\m -> (insert Shoes 1 m, ())))

data Item = Book | Shoes | ...

4



p :: IO (Map Item Int)
p = do cart <- newIORef empty
       async (atomicModifyIORef cart
         (\m -> (insert Book 1 m, ())))
       async (atomicModifyIORef cart
         (\m -> (insert Shoes 1 m, ())))
       res <- async (readIORef cart)

data Item = Book | Shoes | ...

4



p :: IO (Map Item Int)
p = do cart <- newIORef empty
       async (atomicModifyIORef cart
         (\m -> (insert Book 1 m, ())))
       async (atomicModifyIORef cart
         (\m -> (insert Shoes 1 m, ())))
       res <- async (readIORef cart)
       wait res

data Item = Book | Shoes | ...

4



5



5



5



5



if we want determinism,
we have to learn to share nicely
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p :: IO (Map Item Int)
p = do 
  cart <- newIORef empty
  a1 <- async (atomicModifyIORef cart 
        (\m -> (insert Book 1 m, ())))
  a2 <- async (atomicModifyIORef cart
        (\m -> (insert Shoes 1 m, ())))
  res <- async (do waitBoth a1 a2
                   readIORef cart)
  wait res

main = do v <- p
          print v

deterministic

p :: HasPut e =>
     Par e s (IMap Item s Int)
p = do
  cart <- newEmptyMap
  fork (insert Book 1 cart)
  fork (insert Shoes 1 cart)
  return cart

main = print (runParThenFreeze p)

deterministic by construction

...now...we hope

[FHPC ’13, POPL ’14]
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p = do cart <- newIORef empty
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do
  fork (put num 4) 
  get num
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threshold set elements 

must be 
pairwise incompatible

Data structure author’s
obligation:
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counter

!

"

1
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#
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do
  fork (incr1 counter) 
  fork (incr42 counter)

Works fine, since incrs commute

do
  fork (incr1 counter) 
  fork (incr42 counter)
  get counter 2

get blocks until threshold is reached

unblocks when counter is at least 2
exact contents of counter not observable
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}handlers, 
quiescence,
freezing
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traverse g startNode = do
  seen <- newEmptySet
  h <- newHandler seen
       (\node -> do
           mapM (\v -> insert v seen)
             (neighbors g node)
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tion. For instance, to instantiate a model called nat, where the
application-specific lattice is the natural numbers with max as the
least upper bound, one writes:

(define-LVish-language nat downset-op max natural)

where downset-op is separately defined. Here, downset-op and
max are Racket procedures. natural is a Redex pattern that has no
meaning to Racket proper, but because define-LVish-language
is a macro, natural is not evaluated until it is in the context of
Redex.

5. Quasi-Determinism for LVish
Our proof of quasi-determinism for LVish formalizes the claim
we make in Section 1: that, for a given program, although some
executions may raise exceptions, all executions that produce a final
result will produce the same final result.

In this section, we give the statements of the main quasi-
determinism theorem and the two most important supporting lem-
mas. The statements of the remaining lemmas, and proofs of all
our theorems and lemmas, are included in the companion technical
report [20].

5.1 Quasi-Determinism and Quasi-Confluence
Our main result, Theorem 1, says that if two executions starting
from a configuration ⇥ terminate in configurations ⇥⇥ and ⇥⇥⇥, then
⇥⇥ and ⇥⇥⇥ are the same configuration, or one of them is error.

Theorem 1 (Quasi-Determinism). If ⇥ ⇤�⌅� ⇥⇥ and ⇥ ⇤�⌅� ⇥⇥⇥,
and neither ⇥⇥ nor ⇥⇥⇥ can take a step, then either:

1. ⇥⇥ = ⇥⇥⇥ up to a permutation on locations �, or
2. ⇥⇥ = error or ⇥⇥⇥ = error.

Theorem 1 follows from a series of quasi-confluence lemmas.
The most important of these, Strong Local Quasi-Confluence
(Lemma 2), says that if a configuration steps to two different con-
figurations, then either there exists a single third configuration to
which they both step (in at most one step), or one of them steps to
error. Additional lemmas generalize Lemma 2’s result to multiple
steps by induction on the number of steps, eventually building up
to Theorem 1.

Lemma 2 (Strong Local Quasi-Confluence). If ⇥ ⇥ ⌦S; e↵ ⇤�⌅
⇥a and ⇥ ⇤�⌅ ⇥b, then either:

1. there exist �, i, j and ⇥c such that ⇥a ⇤�⌅i ⇥c and ⇥b ⇤�⌅j

�(⇥c) and i ⇤ 1 and j ⇤ 1, or
2. ⇥a ⇤�⌅ error or ⇥b ⇤�⌅ error.

5.2 Independence
In order to show Lemma 2, we need a “frame property” for LVish
that captures the idea that independent effects commute with each
other. Lemma 3, the Independence lemma, establishes this prop-
erty. Consider an expression e that runs starting in store S and steps
to e⇥, updating the store to S⇥. The Independence lemma allows us
to make a double-edged guarantee about what will happen if we run
e starting from a larger store S �S S⇥⇥: first, it will update the store
to S⇥�S S

⇥⇥; second, it will step to e⇥ as it did before. Here S�S S
⇥⇥

is the least upper bound of the original S and some other store S⇥⇥

that is “framed on” to S; intuitively, S⇥⇥ is the store resulting from
some other independently-running computation.

Lemma 3 (Independence). If ⌦S; e↵ ⇤�⌅ ⌦S⇥; e⇥↵ (where ⌦S⇥; e⇥↵ ⌃=
error), then we have that:
⌦S �S S⇥⇥; e↵ ⇤�⌅ ⌦S⇥ �S S⇥⇥; e⇥↵,
where S⇥⇥ is any store meeting the following conditions:

• S⇥⇥ is non-conflicting with ⌦S; e↵ ⇤�⌅ ⌦S⇥; e⇥↵,

• S⇥ �S S⇥⇥ =frz S, and
• S⇥ �S S⇥⇥ ⌃= �S .

Lemma 3 requires as a precondition that the stores S⇥ �S S⇥⇥ and
S are equal in status—that, for all the locations shared between
them, the status bits of those locations agree. This assumption
rules out interference from freezing. Finally, the store S⇥⇥ must be
non-conflicting with the original transition from ⌦S; e↵ to ⌦S⇥; e⇥↵,
meaning that locations in S⇥⇥ cannot share names with locations
newly allocated during the transition; this rules out location name
conflicts caused by allocation.

Definition 4. Two stores S and S⇥ are equal in status (written
S =frz S

⇥) iff for all l ⇧ (dom(S)  dom(S⇥)),
if S(l) = (d, frz ) and S⇥(l) = (d⇥, frz ⇥), then frz = frz ⇥.

Definition 5. A store S⇥⇥ is non-conflicting with the transition
⌦S; e↵ ⇤�⌅ ⌦S⇥; e⇥↵ iff (dom(S⇥)� dom(S))  dom(S⇥⇥) = ⌥.

6. Implementation
We have constructed a prototype implementation of LVish as a
monadic library in Haskell, which is available at

http://hackage.haskell.org/package/lvish

Our library adopts the basic approach of the Par monad [24],
enabling us to employ our own notion of lightweight, library-
level threads with a custom scheduler. It supports the program-
ming model laid out in Section 3 in full, including explicit han-
dler pools. It differs from our formal model in following Haskell’s
by-need evaluation strategy, which also means that concurrency in
the library is explicitly marked, either through uses of a fork func-
tion or through asynchronous callbacks, which run in their own
lightweight thread.

Implementing LVish as a Haskell library makes it possible to
provide compile-time guarantees about determinism and quasi-
determinism, because programs written using our library run in our
Par monad and can therefore only perform LVish-sanctioned side
effects. We take advantage of this fact by indexing Par computa-
tions with a phantom type that indicates their determinism level:

data Determinism = Det | QuasiDet

The Par type constructor has the following kind:8

Par :: Determinism ⇤ � ⇤ �
together with the following suite of run functions:

runPar :: Par Det a ⇤ a
runParIO :: Par lvl a ⇤ IO a
runParThenFreeze :: DeepFrz a ⌅ Par Det a ⇤ FrzType a

The public library API ensures that if code uses freeze, it is marked
as QuasiDet; thus, code that types as Det is guaranteed to be fully
deterministic. While LVish code with an arbitrary determinism
level lvl can be executed in the IO monad using runParIO, only Det

code can be executed as if it were pure, since it is guaranteed to be
free of visible side effects of nondeterminism. In the common case
that freeze is only needed at the end of an otherwise-deterministic
computation, runParThenFreeze runs the computation to comple-
tion, and then freezes the returned LVar, returning its exact value—
and is guaranteed to be deterministic.9

8 We are here using the DataKinds extension to Haskell to treat
Determinism as a kind. In the full implementation, we include a second
phantom type parameter to ensure that LVars cannot be used in multiple runs
of the Par monad, in a manner analogous to how the ST monad prevents an
STRef from being returned from runST.
9 The DeepFrz typeclass is used to perform freezing of nested LVars,
producing values of frozen type (as given by the FrzType type function).
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ming model laid out in Section 3 in full, including explicit han-
dler pools. It differs from our formal model in following Haskell’s
by-need evaluation strategy, which also means that concurrency in
the library is explicitly marked, either through uses of a fork func-
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Implementing LVish as a Haskell library makes it possible to
provide compile-time guarantees about determinism and quasi-
determinism, because programs written using our library run in our
Par monad and can therefore only perform LVish-sanctioned side
effects. We take advantage of this fact by indexing Par computa-
tions with a phantom type that indicates their determinism level:

data Determinism = Det | QuasiDet

The Par type constructor has the following kind:8

Par :: Determinism ⇤ � ⇤ �
together with the following suite of run functions:

runPar :: Par Det a ⇤ a
runParIO :: Par lvl a ⇤ IO a
runParThenFreeze :: DeepFrz a ⌅ Par Det a ⇤ FrzType a

The public library API ensures that if code uses freeze, it is marked
as QuasiDet; thus, code that types as Det is guaranteed to be fully
deterministic. While LVish code with an arbitrary determinism
level lvl can be executed in the IO monad using runParIO, only Det

code can be executed as if it were pure, since it is guaranteed to be
free of visible side effects of nondeterminism. In the common case
that freeze is only needed at the end of an otherwise-deterministic
computation, runParThenFreeze runs the computation to comple-
tion, and then freezes the returned LVar, returning its exact value—
and is guaranteed to be deterministic.9

8 We are here using the DataKinds extension to Haskell to treat
Determinism as a kind. In the full implementation, we include a second
phantom type parameter to ensure that LVars cannot be used in multiple runs
of the Par monad, in a manner analogous to how the ST monad prevents an
STRef from being returned from runST.
9 The DeepFrz typeclass is used to perform freezing of nested LVars,
producing values of frozen type (as given by the FrzType type function).
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enabling us to employ our own notion of lightweight, library-
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ming model laid out in Section 3 in full, including explicit han-
dler pools. It differs from our formal model in following Haskell’s
by-need evaluation strategy, which also means that concurrency in
the library is explicitly marked, either through uses of a fork func-
tion or through asynchronous callbacks, which run in their own
lightweight thread.

Implementing LVish as a Haskell library makes it possible to
provide compile-time guarantees about determinism and quasi-
determinism, because programs written using our library run in our
Par monad and can therefore only perform LVish-sanctioned side
effects. We take advantage of this fact by indexing Par computa-
tions with a phantom type that indicates their determinism level:

data Determinism = Det | QuasiDet

The Par type constructor has the following kind:8

Par :: Determinism ⇤ � ⇤ �
together with the following suite of run functions:

runPar :: Par Det a ⇤ a
runParIO :: Par lvl a ⇤ IO a
runParThenFreeze :: DeepFrz a ⌅ Par Det a ⇤ FrzType a

The public library API ensures that if code uses freeze, it is marked
as QuasiDet; thus, code that types as Det is guaranteed to be fully
deterministic. While LVish code with an arbitrary determinism
level lvl can be executed in the IO monad using runParIO, only Det

code can be executed as if it were pure, since it is guaranteed to be
free of visible side effects of nondeterminism. In the common case
that freeze is only needed at the end of an otherwise-deterministic
computation, runParThenFreeze runs the computation to comple-
tion, and then freezes the returned LVar, returning its exact value—
and is guaranteed to be deterministic.9

8 We are here using the DataKinds extension to Haskell to treat
Determinism as a kind. In the full implementation, we include a second
phantom type parameter to ensure that LVars cannot be used in multiple runs
of the Par monad, in a manner analogous to how the ST monad prevents an
STRef from being returned from runST.
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freeze: exact non-blocking read
Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: either the same final value or an exception
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  h <- newHandler seen
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least upper bound, one writes:
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max are Racket procedures. natural is a Redex pattern that has no
meaning to Racket proper, but because define-LVish-language
is a macro, natural is not evaluated until it is in the context of
Redex.
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Our proof of quasi-determinism for LVish formalizes the claim
we make in Section 1: that, for a given program, although some
executions may raise exceptions, all executions that produce a final
result will produce the same final result.

In this section, we give the statements of the main quasi-
determinism theorem and the two most important supporting lem-
mas. The statements of the remaining lemmas, and proofs of all
our theorems and lemmas, are included in the companion technical
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Theorem 1 (Quasi-Determinism). If ⇥ ⇤�⌅� ⇥⇥ and ⇥ ⇤�⌅� ⇥⇥⇥,
and neither ⇥⇥ nor ⇥⇥⇥ can take a step, then either:

1. ⇥⇥ = ⇥⇥⇥ up to a permutation on locations �, or
2. ⇥⇥ = error or ⇥⇥⇥ = error.

Theorem 1 follows from a series of quasi-confluence lemmas.
The most important of these, Strong Local Quasi-Confluence
(Lemma 2), says that if a configuration steps to two different con-
figurations, then either there exists a single third configuration to
which they both step (in at most one step), or one of them steps to
error. Additional lemmas generalize Lemma 2’s result to multiple
steps by induction on the number of steps, eventually building up
to Theorem 1.

Lemma 2 (Strong Local Quasi-Confluence). If ⇥ ⇥ ⌦S; e↵ ⇤�⌅
⇥a and ⇥ ⇤�⌅ ⇥b, then either:

1. there exist �, i, j and ⇥c such that ⇥a ⇤�⌅i ⇥c and ⇥b ⇤�⌅j

�(⇥c) and i ⇤ 1 and j ⇤ 1, or
2. ⇥a ⇤�⌅ error or ⇥b ⇤�⌅ error.

5.2 Independence
In order to show Lemma 2, we need a “frame property” for LVish
that captures the idea that independent effects commute with each
other. Lemma 3, the Independence lemma, establishes this prop-
erty. Consider an expression e that runs starting in store S and steps
to e⇥, updating the store to S⇥. The Independence lemma allows us
to make a double-edged guarantee about what will happen if we run
e starting from a larger store S �S S⇥⇥: first, it will update the store
to S⇥�S S

⇥⇥; second, it will step to e⇥ as it did before. Here S�S S
⇥⇥

is the least upper bound of the original S and some other store S⇥⇥

that is “framed on” to S; intuitively, S⇥⇥ is the store resulting from
some other independently-running computation.

Lemma 3 (Independence). If ⌦S; e↵ ⇤�⌅ ⌦S⇥; e⇥↵ (where ⌦S⇥; e⇥↵ ⌃=
error), then we have that:
⌦S �S S⇥⇥; e↵ ⇤�⌅ ⌦S⇥ �S S⇥⇥; e⇥↵,
where S⇥⇥ is any store meeting the following conditions:

• S⇥⇥ is non-conflicting with ⌦S; e↵ ⇤�⌅ ⌦S⇥; e⇥↵,

• S⇥ �S S⇥⇥ =frz S, and
• S⇥ �S S⇥⇥ ⌃= �S .

Lemma 3 requires as a precondition that the stores S⇥ �S S⇥⇥ and
S are equal in status—that, for all the locations shared between
them, the status bits of those locations agree. This assumption
rules out interference from freezing. Finally, the store S⇥⇥ must be
non-conflicting with the original transition from ⌦S; e↵ to ⌦S⇥; e⇥↵,
meaning that locations in S⇥⇥ cannot share names with locations
newly allocated during the transition; this rules out location name
conflicts caused by allocation.

Definition 4. Two stores S and S⇥ are equal in status (written
S =frz S

⇥) iff for all l ⇧ (dom(S)  dom(S⇥)),
if S(l) = (d, frz ) and S⇥(l) = (d⇥, frz ⇥), then frz = frz ⇥.

Definition 5. A store S⇥⇥ is non-conflicting with the transition
⌦S; e↵ ⇤�⌅ ⌦S⇥; e⇥↵ iff (dom(S⇥)� dom(S))  dom(S⇥⇥) = ⌥.

6. Implementation
We have constructed a prototype implementation of LVish as a
monadic library in Haskell, which is available at

http://hackage.haskell.org/package/lvish

Our library adopts the basic approach of the Par monad [24],
enabling us to employ our own notion of lightweight, library-
level threads with a custom scheduler. It supports the program-
ming model laid out in Section 3 in full, including explicit han-
dler pools. It differs from our formal model in following Haskell’s
by-need evaluation strategy, which also means that concurrency in
the library is explicitly marked, either through uses of a fork func-
tion or through asynchronous callbacks, which run in their own
lightweight thread.

Implementing LVish as a Haskell library makes it possible to
provide compile-time guarantees about determinism and quasi-
determinism, because programs written using our library run in our
Par monad and can therefore only perform LVish-sanctioned side
effects. We take advantage of this fact by indexing Par computa-
tions with a phantom type that indicates their determinism level:

data Determinism = Det | QuasiDet

The Par type constructor has the following kind:8

Par :: Determinism ⇤ � ⇤ �
together with the following suite of run functions:

runPar :: Par Det a ⇤ a
runParIO :: Par lvl a ⇤ IO a
runParThenFreeze :: DeepFrz a ⌅ Par Det a ⇤ FrzType a

The public library API ensures that if code uses freeze, it is marked
as QuasiDet; thus, code that types as Det is guaranteed to be fully
deterministic. While LVish code with an arbitrary determinism
level lvl can be executed in the IO monad using runParIO, only Det

code can be executed as if it were pure, since it is guaranteed to be
free of visible side effects of nondeterminism. In the common case
that freeze is only needed at the end of an otherwise-deterministic
computation, runParThenFreeze runs the computation to comple-
tion, and then freezes the returned LVar, returning its exact value—
and is guaranteed to be deterministic.9

8 We are here using the DataKinds extension to Haskell to treat
Determinism as a kind. In the full implementation, we include a second
phantom type parameter to ensure that LVars cannot be used in multiple runs
of the Par monad, in a manner analogous to how the ST monad prevents an
STRef from being returned from runST.
9 The DeepFrz typeclass is used to perform freezing of nested LVars,
producing values of frozen type (as given by the FrzType type function).
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freeze: exact non-blocking read
Attempts to write to a frozen LVar raise a write-after-freeze exception
Two possible outcomes: either the same final value or an exception

traverse g startNode = do
  seen <- newEmptySet
  h <- newHandler seen
       (\node -> do
           mapM (\v -> insert v seen)
             (neighbors g node)
           return ())
  insert startNode seen
  quiesce h
  ...  freeze seen

tion. For instance, to instantiate a model called nat, where the
application-specific lattice is the natural numbers with max as the
least upper bound, one writes:

(define-LVish-language nat downset-op max natural)

where downset-op is separately defined. Here, downset-op and
max are Racket procedures. natural is a Redex pattern that has no
meaning to Racket proper, but because define-LVish-language
is a macro, natural is not evaluated until it is in the context of
Redex.

5. Quasi-Determinism for LVish
Our proof of quasi-determinism for LVish formalizes the claim
we make in Section 1: that, for a given program, although some
executions may raise exceptions, all executions that produce a final
result will produce the same final result.

In this section, we give the statements of the main quasi-
determinism theorem and the two most important supporting lem-
mas. The statements of the remaining lemmas, and proofs of all
our theorems and lemmas, are included in the companion technical
report [20].
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Our main result, Theorem 1, says that if two executions starting
from a configuration ⇥ terminate in configurations ⇥⇥ and ⇥⇥⇥, then
⇥⇥ and ⇥⇥⇥ are the same configuration, or one of them is error.

Theorem 1 (Quasi-Determinism). If ⇥ ⇤�⌅� ⇥⇥ and ⇥ ⇤�⌅� ⇥⇥⇥,
and neither ⇥⇥ nor ⇥⇥⇥ can take a step, then either:

1. ⇥⇥ = ⇥⇥⇥ up to a permutation on locations �, or
2. ⇥⇥ = error or ⇥⇥⇥ = error.

Theorem 1 follows from a series of quasi-confluence lemmas.
The most important of these, Strong Local Quasi-Confluence
(Lemma 2), says that if a configuration steps to two different con-
figurations, then either there exists a single third configuration to
which they both step (in at most one step), or one of them steps to
error. Additional lemmas generalize Lemma 2’s result to multiple
steps by induction on the number of steps, eventually building up
to Theorem 1.

Lemma 2 (Strong Local Quasi-Confluence). If ⇥ ⇥ ⌦S; e↵ ⇤�⌅
⇥a and ⇥ ⇤�⌅ ⇥b, then either:

1. there exist �, i, j and ⇥c such that ⇥a ⇤�⌅i ⇥c and ⇥b ⇤�⌅j

�(⇥c) and i ⇤ 1 and j ⇤ 1, or
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In order to show Lemma 2, we need a “frame property” for LVish
that captures the idea that independent effects commute with each
other. Lemma 3, the Independence lemma, establishes this prop-
erty. Consider an expression e that runs starting in store S and steps
to e⇥, updating the store to S⇥. The Independence lemma allows us
to make a double-edged guarantee about what will happen if we run
e starting from a larger store S �S S⇥⇥: first, it will update the store
to S⇥�S S

⇥⇥; second, it will step to e⇥ as it did before. Here S�S S
⇥⇥

is the least upper bound of the original S and some other store S⇥⇥

that is “framed on” to S; intuitively, S⇥⇥ is the store resulting from
some other independently-running computation.

Lemma 3 (Independence). If ⌦S; e↵ ⇤�⌅ ⌦S⇥; e⇥↵ (where ⌦S⇥; e⇥↵ ⌃=
error), then we have that:
⌦S �S S⇥⇥; e↵ ⇤�⌅ ⌦S⇥ �S S⇥⇥; e⇥↵,
where S⇥⇥ is any store meeting the following conditions:

• S⇥⇥ is non-conflicting with ⌦S; e↵ ⇤�⌅ ⌦S⇥; e⇥↵,

• S⇥ �S S⇥⇥ =frz S, and
• S⇥ �S S⇥⇥ ⌃= �S .

Lemma 3 requires as a precondition that the stores S⇥ �S S⇥⇥ and
S are equal in status—that, for all the locations shared between
them, the status bits of those locations agree. This assumption
rules out interference from freezing. Finally, the store S⇥⇥ must be
non-conflicting with the original transition from ⌦S; e↵ to ⌦S⇥; e⇥↵,
meaning that locations in S⇥⇥ cannot share names with locations
newly allocated during the transition; this rules out location name
conflicts caused by allocation.

Definition 4. Two stores S and S⇥ are equal in status (written
S =frz S

⇥) iff for all l ⇧ (dom(S)  dom(S⇥)),
if S(l) = (d, frz ) and S⇥(l) = (d⇥, frz ⇥), then frz = frz ⇥.

Definition 5. A store S⇥⇥ is non-conflicting with the transition
⌦S; e↵ ⇤�⌅ ⌦S⇥; e⇥↵ iff (dom(S⇥)� dom(S))  dom(S⇥⇥) = ⌥.

6. Implementation
We have constructed a prototype implementation of LVish as a
monadic library in Haskell, which is available at

http://hackage.haskell.org/package/lvish

Our library adopts the basic approach of the Par monad [24],
enabling us to employ our own notion of lightweight, library-
level threads with a custom scheduler. It supports the program-
ming model laid out in Section 3 in full, including explicit han-
dler pools. It differs from our formal model in following Haskell’s
by-need evaluation strategy, which also means that concurrency in
the library is explicitly marked, either through uses of a fork func-
tion or through asynchronous callbacks, which run in their own
lightweight thread.

Implementing LVish as a Haskell library makes it possible to
provide compile-time guarantees about determinism and quasi-
determinism, because programs written using our library run in our
Par monad and can therefore only perform LVish-sanctioned side
effects. We take advantage of this fact by indexing Par computa-
tions with a phantom type that indicates their determinism level:

data Determinism = Det | QuasiDet

The Par type constructor has the following kind:8

Par :: Determinism ⇤ � ⇤ �
together with the following suite of run functions:

runPar :: Par Det a ⇤ a
runParIO :: Par lvl a ⇤ IO a
runParThenFreeze :: DeepFrz a ⌅ Par Det a ⇤ FrzType a

The public library API ensures that if code uses freeze, it is marked
as QuasiDet; thus, code that types as Det is guaranteed to be fully
deterministic. While LVish code with an arbitrary determinism
level lvl can be executed in the IO monad using runParIO, only Det

code can be executed as if it were pure, since it is guaranteed to be
free of visible side effects of nondeterminism. In the common case
that freeze is only needed at the end of an otherwise-deterministic
computation, runParThenFreeze runs the computation to comple-
tion, and then freezes the returned LVar, returning its exact value—
and is guaranteed to be deterministic.9

8 We are here using the DataKinds extension to Haskell to treat
Determinism as a kind. In the full implementation, we include a second
phantom type parameter to ensure that LVars cannot be used in multiple runs
of the Par monad, in a manner analogous to how the ST monad prevents an
STRef from being returned from runST.
9 The DeepFrz typeclass is used to perform freezing of nested LVars,
producing values of frozen type (as given by the FrzType type function).

or error.
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ABSTRACT 
Reliability at massive scale is one of the biggest challenges we 
face at Amazon.com, one of the largest e-commerce operations in 
the world; even the slightest outage has significant financial 
consequences and impacts customer trust. The Amazon.com 
platform, which provides services for many web sites worldwide, 
is implemented on top of an infrastructure of tens of thousands of 
servers and network components located in many datacenters 
around the world. At this scale, small and large components fail 
continuously and the way persistent state is managed in the face 
of these failures drives the reliability and scalability of the 
software systems.  

This paper presents the design and implementation of Dynamo, a 
highly available key-value storage system that some of AmazonBs 
core services use to provide an Calways-onD experience.  To 
achieve this level of availability, Dynamo sacrifices consistency 
under certain failure scenarios. It makes extensive use of object 
versioning and application-assisted conflict resolution in a manner 
that provides a novel interface for developers to use. 

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Storage Management; D.4.5 
[Operating Systems]: Reliability; D.4.2 [Operating Systems]: 
Performance; 

General Terms 
Algorithms, Management, Measurement, Performance, Design, 
Reliability. 

1. INTRODUCTION  
Amazon runs a world-wide e-commerce platform that serves tens 
of millions customers at peak times using tens of thousands of 
servers located in many data centers around the world. There are 
strict operational requirements on AmazonBs platform in terms of 
performance, reliability and efficiency, and to support continuous 
growth the platform needs to be highly scalable. Reliability is one 
of the most important requirements because even the slightest 
outage has significant financial consequences and impacts 
customer trust. In addition, to support continuous growth, the 
platform needs to be highly scalable. 

One of the lessons our organization has learned from operating 
AmazonBs platform is that the reliability and scalability of a 
system is dependent on how its application state is managed. 
Amazon uses a highly decentralized, loosely coupled, service 
oriented architecture consisting of hundreds of services. In this 
environment there is a particular need for storage technologies 
that are always available. For example, customers should be able 
to view and add items to their shopping cart even if disks are 
failing, network routes are flapping, or data centers are being 
destroyed by tornados. Therefore, the service responsible for 
managing shopping carts requires that it can always write to and 
read from its data store, and that its data needs to be available 
across multiple data centers.  

Dealing with failures in an infrastructure comprised of millions of 
components is our standard mode of operation; there are always a 
small but significant number of server and network components 
that are failing at any given time. As such AmazonBs software 
systems need to be constructed in a manner that treats failure 
handling as the normal case without impacting availability or 
performance. 

To meet the reliability and scaling needs, Amazon has developed 
a number of storage technologies, of which the Amazon Simple 
Storage Service (also available outside of Amazon and known as 
Amazon S3), is probably the best known. This paper presents the 
design and implementation of Dynamo, another highly available 
and scalable distributed data store built for AmazonBs platform. 
Dynamo is used to manage the state of services that have very 
high reliability requirements and need tight control over the 
tradeoffs between availability, consistency, cost-effectiveness and 
performance. AmazonBs platform has a very diverse set of 
applications with different storage requirements. A select set of 
applications requires a storage technology that is flexible enough 
to let application designers configure their data store appropriately 
based on these tradeoffs to achieve high availability and 
guaranteed performance in the most cost effective manner. 

There are many services on AmazonBs platform that only need 
primary-key access to a data store. For many services, such as 
those that provide best seller lists, shopping carts, customer 
preferences, session management, sales rank, and product catalog, 
the common pattern of using a relational database would lead to 
inefficiencies and limit scale and availability. Dynamo provides a 
simple primary-key only interface to meet the requirements of 
these applications.  

Dynamo uses a synthesis of well known techniques to achieve 
scalability and availability: Data is partitioned and replicated 
using consistent hashing [10], and consistency is facilitated by 
object versioning [12]. The consistency among replicas during 
updates is maintained by a quorum-like technique and a 
decentralized replica synchronization protocol. Dynamo employs 
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ABSTRACT 
Reliability at massive scale is one of the biggest challenges we 
face at Amazon.com, one of the largest e-commerce operations in 
the world; even the slightest outage has significant financial 
consequences and impacts customer trust. The Amazon.com 
platform, which provides services for many web sites worldwide, 
is implemented on top of an infrastructure of tens of thousands of 
servers and network components located in many datacenters 
around the world. At this scale, small and large components fail 
continuously and the way persistent state is managed in the face 
of these failures drives the reliability and scalability of the 
software systems.  

This paper presents the design and implementation of Dynamo, a 
highly available key-value storage system that some of AmazonBs 
core services use to provide an Calways-onD experience.  To 
achieve this level of availability, Dynamo sacrifices consistency 
under certain failure scenarios. It makes extensive use of object 
versioning and application-assisted conflict resolution in a manner 
that provides a novel interface for developers to use. 

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Storage Management; D.4.5 
[Operating Systems]: Reliability; D.4.2 [Operating Systems]: 
Performance; 

General Terms 
Algorithms, Management, Measurement, Performance, Design, 
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1. INTRODUCTION  
Amazon runs a world-wide e-commerce platform that serves tens 
of millions customers at peak times using tens of thousands of 
servers located in many data centers around the world. There are 
strict operational requirements on AmazonBs platform in terms of 
performance, reliability and efficiency, and to support continuous 
growth the platform needs to be highly scalable. Reliability is one 
of the most important requirements because even the slightest 
outage has significant financial consequences and impacts 
customer trust. In addition, to support continuous growth, the 
platform needs to be highly scalable. 

One of the lessons our organization has learned from operating 
AmazonBs platform is that the reliability and scalability of a 
system is dependent on how its application state is managed. 
Amazon uses a highly decentralized, loosely coupled, service 
oriented architecture consisting of hundreds of services. In this 
environment there is a particular need for storage technologies 
that are always available. For example, customers should be able 
to view and add items to their shopping cart even if disks are 
failing, network routes are flapping, or data centers are being 
destroyed by tornados. Therefore, the service responsible for 
managing shopping carts requires that it can always write to and 
read from its data store, and that its data needs to be available 
across multiple data centers.  

Dealing with failures in an infrastructure comprised of millions of 
components is our standard mode of operation; there are always a 
small but significant number of server and network components 
that are failing at any given time. As such AmazonBs software 
systems need to be constructed in a manner that treats failure 
handling as the normal case without impacting availability or 
performance. 

To meet the reliability and scaling needs, Amazon has developed 
a number of storage technologies, of which the Amazon Simple 
Storage Service (also available outside of Amazon and known as 
Amazon S3), is probably the best known. This paper presents the 
design and implementation of Dynamo, another highly available 
and scalable distributed data store built for AmazonBs platform. 
Dynamo is used to manage the state of services that have very 
high reliability requirements and need tight control over the 
tradeoffs between availability, consistency, cost-effectiveness and 
performance. AmazonBs platform has a very diverse set of 
applications with different storage requirements. A select set of 
applications requires a storage technology that is flexible enough 
to let application designers configure their data store appropriately 
based on these tradeoffs to achieve high availability and 
guaranteed performance in the most cost effective manner. 

There are many services on AmazonBs platform that only need 
primary-key access to a data store. For many services, such as 
those that provide best seller lists, shopping carts, customer 
preferences, session management, sales rank, and product catalog, 
the common pattern of using a relational database would lead to 
inefficiencies and limit scale and availability. Dynamo provides a 
simple primary-key only interface to meet the requirements of 
these applications.  

Dynamo uses a synthesis of well known techniques to achieve 
scalability and availability: Data is partitioned and replicated 
using consistent hashing [10], and consistency is facilitated by 
object versioning [12]. The consistency among replicas during 
updates is maintained by a quorum-like technique and a 
decentralized replica synchronization protocol. Dynamo employs 
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The next design choice is who performs the process of conflict 
resolution. This can be done by the data store or the application. If 
conflict resolution is done by the data store, its choices are rather 
limited. In such cases, the data store can only use simple policies, 
such as :last write wins< [22], to resolve conflicting updates. On 
the other hand, since the application is aware of the data schema it 
can decide on the conflict resolution method that is best suited for 
its clientBs experience. For instance, the application that maintains 
customer shopping carts can choose to :merge< the conflicting 
versions and return a single unified shopping cart. Despite this 
flexibility, some application developers may not want to write 
their own conflict resolution mechanisms and choose to push it 
down to the data store, which in turn chooses a simple policy such 
as :last write wins<.  

Other key principles embraced in the design are: 

Incremental scalability: Dynamo should be able to scale out one 
storage host (henceforth, referred to as :node3) at a time, with 
minimal impact on both operators of the system and the system 
itself. 

Symmetry: Every node in Dynamo should have the same set of 
responsibilities as its peers; there should be no distinguished node 
or nodes that take special roles or extra set of responsibilities. In 
our experience, symmetry simplifies the process of system 
provisioning and maintenance.  

Decentralization: An extension of symmetry, the design should 
favor decentralized peer-to-peer techniques over centralized 
control. In the past, centralized control has resulted in outages and 
the goal is to avoid it as much as possible. This leads to a simpler, 
more scalable, and more available system. 

Heterogeneity: The system needs to be able to exploit 
heterogeneity in the infrastructure it runs on. e.g. the work 
distribution must be proportional to the capabilities of the 
individual servers. This is essential in adding new nodes with 
higher capacity without having to upgrade all hosts at once. 

3. RELATED WORK 
3.1 Peer to Peer Systems 
There are several peer-to-peer (P2P) systems that have looked at 
the problem of data storage and distribution. The first generation 
of P2P systems, such as Freenet and Gnutella1, were 
predominantly used as file sharing systems. These were examples 
of unstructured P2P networks where the overlay links between 
peers were established arbitrarily. In these networks, a search 
query is usually flooded through the network to find as many 
peers as possible that share the data. P2P systems evolved to the 
next generation into what is widely known as structured P2P 
networks. These networks employ a globally consistent protocol 
to ensure that any node can efficiently route a search query to 
some peer that has the desired data. Systems like Pastry [16] and 
Chord [20] use routing mechanisms to ensure that queries can be 
answered within a bounded number of hops. To reduce the 
additional latency introduced by multi-hop routing, some P2P 
systems (e.g., [14]) employ O(1) routing where each peer 
maintains enough routing information locally so that it can route 
requests (to access a data item) to the appropriate peer within a 
constant number of hops.   

Various storage systems, such as Oceanstore [9] and PAST [17] 
were built on top of these routing overlays. Oceanstore provides a 
global, transactional, persistent storage service that supports 
serialized updates on widely replicated data. To allow for 
concurrent updates while avoiding many of the problems inherent 
with wide-area locking, it uses an update model based on conflict 
resolution. Conflict resolution was introduced in [21] to reduce 
the number of transaction aborts. Oceanstore resolves conflicts by 
processing a series of updates, choosing a total order among them, 
and then applying them atomically in that order. It is built for an 
environment where the data is replicated on an untrusted 
infrastructure. By comparison, PAST provides a simple 
abstraction layer on top of Pastry for persistent and immutable 
objects. It assumes that the application can build the necessary 
storage semantics (such as mutable files) on top of it.  

3.2 Distributed File Systems and Databases 
Distributing data for performance, availability and durability has 
been widely studied in the file system and database systems 
community. Compared to P2P storage systems that only support 
flat namespaces, distributed file systems typically support 
hierarchical namespaces. Systems like Ficus [15] and Coda [19] 
replicate files for high availability at the expense of consistency. 
Update conflicts are typically managed using specialized conflict 
resolution procedures. The Farsite system [1] is a distributed file 
system that does not use any centralized server like NFS. Farsite 
achieves high availability and scalability using replication. The 
Google File System [6] is another distributed file system built for 
hosting the state of GoogleBs internal applications. GFS uses a 
simple design with a single master server for hosting the entire 
metadata and where the data is split into chunks and stored in 
chunkservers. Bayou is a distributed relational database system 
that allows disconnected operations and provides eventual data 
consistency [21].  

Among these systems, Bayou, Coda and Ficus allow disconnected 
operations and are resilient to issues such as network partitions 
and outages. These systems differ on their conflict resolution 
procedures. For instance, Coda and Ficus perform system level 
conflict resolution and Bayou allows application level resolution. 
All of them, however, guarantee eventual consistency. Similar to 
these systems, Dynamo allows read and write operations to 
continue even during network partitions and resolves updated 
conflicts using different conflict resolution mechanisms. 
Distributed block storage systems like FAB [18] split large size 
objects into smaller blocks and stores each block in a highly 
available manner. In comparison to these systems, a key-value 
store is more suitable in this case because: (a) it is intended to 
store relatively small objects (size < 1M) and (b) key-value stores 
are easier to configure on a per-application basis. Antiquity is a 
wide-area distributed storage system designed to handle multiple 
server failures [23]. It uses a secure log to preserve data integrity, 
replicates each log on multiple servers for durability, and uses 
Byzantine fault tolerance protocols to ensure data consistency. In 
contrast to Antiquity, Dynamo does not focus on the problem of 
data integrity and security and is built for a trusted environment. 
Bigtable is a distributed storage system for managing structured 
data. It maintains a sparse, multi-dimensional sorted map and 
allows applications to access their data using multiple attributes 
[2]. Compared to Bigtable, Dynamo targets applications that 
require only key/value access with primary focus on high 
availability where updates are not rejected even in the wake of 
network partitions or server failures. 
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face at Amazon.com, one of the largest e-commerce operations in 
the world; even the slightest outage has significant financial 
consequences and impacts customer trust. The Amazon.com 
platform, which provides services for many web sites worldwide, 
is implemented on top of an infrastructure of tens of thousands of 
servers and network components located in many datacenters 
around the world. At this scale, small and large components fail 
continuously and the way persistent state is managed in the face 
of these failures drives the reliability and scalability of the 
software systems.  

This paper presents the design and implementation of Dynamo, a 
highly available key-value storage system that some of AmazonBs 
core services use to provide an Calways-onD experience.  To 
achieve this level of availability, Dynamo sacrifices consistency 
under certain failure scenarios. It makes extensive use of object 
versioning and application-assisted conflict resolution in a manner 
that provides a novel interface for developers to use. 
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1. INTRODUCTION  
Amazon runs a world-wide e-commerce platform that serves tens 
of millions customers at peak times using tens of thousands of 
servers located in many data centers around the world. There are 
strict operational requirements on AmazonBs platform in terms of 
performance, reliability and efficiency, and to support continuous 
growth the platform needs to be highly scalable. Reliability is one 
of the most important requirements because even the slightest 
outage has significant financial consequences and impacts 
customer trust. In addition, to support continuous growth, the 
platform needs to be highly scalable. 

One of the lessons our organization has learned from operating 
AmazonBs platform is that the reliability and scalability of a 
system is dependent on how its application state is managed. 
Amazon uses a highly decentralized, loosely coupled, service 
oriented architecture consisting of hundreds of services. In this 
environment there is a particular need for storage technologies 
that are always available. For example, customers should be able 
to view and add items to their shopping cart even if disks are 
failing, network routes are flapping, or data centers are being 
destroyed by tornados. Therefore, the service responsible for 
managing shopping carts requires that it can always write to and 
read from its data store, and that its data needs to be available 
across multiple data centers.  

Dealing with failures in an infrastructure comprised of millions of 
components is our standard mode of operation; there are always a 
small but significant number of server and network components 
that are failing at any given time. As such AmazonBs software 
systems need to be constructed in a manner that treats failure 
handling as the normal case without impacting availability or 
performance. 

To meet the reliability and scaling needs, Amazon has developed 
a number of storage technologies, of which the Amazon Simple 
Storage Service (also available outside of Amazon and known as 
Amazon S3), is probably the best known. This paper presents the 
design and implementation of Dynamo, another highly available 
and scalable distributed data store built for AmazonBs platform. 
Dynamo is used to manage the state of services that have very 
high reliability requirements and need tight control over the 
tradeoffs between availability, consistency, cost-effectiveness and 
performance. AmazonBs platform has a very diverse set of 
applications with different storage requirements. A select set of 
applications requires a storage technology that is flexible enough 
to let application designers configure their data store appropriately 
based on these tradeoffs to achieve high availability and 
guaranteed performance in the most cost effective manner. 

There are many services on AmazonBs platform that only need 
primary-key access to a data store. For many services, such as 
those that provide best seller lists, shopping carts, customer 
preferences, session management, sales rank, and product catalog, 
the common pattern of using a relational database would lead to 
inefficiencies and limit scale and availability. Dynamo provides a 
simple primary-key only interface to meet the requirements of 
these applications.  

Dynamo uses a synthesis of well known techniques to achieve 
scalability and availability: Data is partitioned and replicated 
using consistent hashing [10], and consistency is facilitated by 
object versioning [12]. The consistency among replicas during 
updates is maintained by a quorum-like technique and a 
decentralized replica synchronization protocol. Dynamo employs 
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The next design choice is who performs the process of conflict 
resolution. This can be done by the data store or the application. If 
conflict resolution is done by the data store, its choices are rather 
limited. In such cases, the data store can only use simple policies, 
such as :last write wins< [22], to resolve conflicting updates. On 
the other hand, since the application is aware of the data schema it 
can decide on the conflict resolution method that is best suited for 
its clientBs experience. For instance, the application that maintains 
customer shopping carts can choose to :merge< the conflicting 
versions and return a single unified shopping cart. Despite this 
flexibility, some application developers may not want to write 
their own conflict resolution mechanisms and choose to push it 
down to the data store, which in turn chooses a simple policy such 
as :last write wins<.  

Other key principles embraced in the design are: 

Incremental scalability: Dynamo should be able to scale out one 
storage host (henceforth, referred to as :node3) at a time, with 
minimal impact on both operators of the system and the system 
itself. 

Symmetry: Every node in Dynamo should have the same set of 
responsibilities as its peers; there should be no distinguished node 
or nodes that take special roles or extra set of responsibilities. In 
our experience, symmetry simplifies the process of system 
provisioning and maintenance.  

Decentralization: An extension of symmetry, the design should 
favor decentralized peer-to-peer techniques over centralized 
control. In the past, centralized control has resulted in outages and 
the goal is to avoid it as much as possible. This leads to a simpler, 
more scalable, and more available system. 

Heterogeneity: The system needs to be able to exploit 
heterogeneity in the infrastructure it runs on. e.g. the work 
distribution must be proportional to the capabilities of the 
individual servers. This is essential in adding new nodes with 
higher capacity without having to upgrade all hosts at once. 

3. RELATED WORK 
3.1 Peer to Peer Systems 
There are several peer-to-peer (P2P) systems that have looked at 
the problem of data storage and distribution. The first generation 
of P2P systems, such as Freenet and Gnutella1, were 
predominantly used as file sharing systems. These were examples 
of unstructured P2P networks where the overlay links between 
peers were established arbitrarily. In these networks, a search 
query is usually flooded through the network to find as many 
peers as possible that share the data. P2P systems evolved to the 
next generation into what is widely known as structured P2P 
networks. These networks employ a globally consistent protocol 
to ensure that any node can efficiently route a search query to 
some peer that has the desired data. Systems like Pastry [16] and 
Chord [20] use routing mechanisms to ensure that queries can be 
answered within a bounded number of hops. To reduce the 
additional latency introduced by multi-hop routing, some P2P 
systems (e.g., [14]) employ O(1) routing where each peer 
maintains enough routing information locally so that it can route 
requests (to access a data item) to the appropriate peer within a 
constant number of hops.   

Various storage systems, such as Oceanstore [9] and PAST [17] 
were built on top of these routing overlays. Oceanstore provides a 
global, transactional, persistent storage service that supports 
serialized updates on widely replicated data. To allow for 
concurrent updates while avoiding many of the problems inherent 
with wide-area locking, it uses an update model based on conflict 
resolution. Conflict resolution was introduced in [21] to reduce 
the number of transaction aborts. Oceanstore resolves conflicts by 
processing a series of updates, choosing a total order among them, 
and then applying them atomically in that order. It is built for an 
environment where the data is replicated on an untrusted 
infrastructure. By comparison, PAST provides a simple 
abstraction layer on top of Pastry for persistent and immutable 
objects. It assumes that the application can build the necessary 
storage semantics (such as mutable files) on top of it.  

3.2 Distributed File Systems and Databases 
Distributing data for performance, availability and durability has 
been widely studied in the file system and database systems 
community. Compared to P2P storage systems that only support 
flat namespaces, distributed file systems typically support 
hierarchical namespaces. Systems like Ficus [15] and Coda [19] 
replicate files for high availability at the expense of consistency. 
Update conflicts are typically managed using specialized conflict 
resolution procedures. The Farsite system [1] is a distributed file 
system that does not use any centralized server like NFS. Farsite 
achieves high availability and scalability using replication. The 
Google File System [6] is another distributed file system built for 
hosting the state of GoogleBs internal applications. GFS uses a 
simple design with a single master server for hosting the entire 
metadata and where the data is split into chunks and stored in 
chunkservers. Bayou is a distributed relational database system 
that allows disconnected operations and provides eventual data 
consistency [21].  

Among these systems, Bayou, Coda and Ficus allow disconnected 
operations and are resilient to issues such as network partitions 
and outages. These systems differ on their conflict resolution 
procedures. For instance, Coda and Ficus perform system level 
conflict resolution and Bayou allows application level resolution. 
All of them, however, guarantee eventual consistency. Similar to 
these systems, Dynamo allows read and write operations to 
continue even during network partitions and resolves updated 
conflicts using different conflict resolution mechanisms. 
Distributed block storage systems like FAB [18] split large size 
objects into smaller blocks and stores each block in a highly 
available manner. In comparison to these systems, a key-value 
store is more suitable in this case because: (a) it is intended to 
store relatively small objects (size < 1M) and (b) key-value stores 
are easier to configure on a per-application basis. Antiquity is a 
wide-area distributed storage system designed to handle multiple 
server failures [23]. It uses a secure log to preserve data integrity, 
replicates each log on multiple servers for durability, and uses 
Byzantine fault tolerance protocols to ensure data consistency. In 
contrast to Antiquity, Dynamo does not focus on the problem of 
data integrity and security and is built for a trusted environment. 
Bigtable is a distributed storage system for managing structured 
data. It maintains a sparse, multi-dimensional sorted map and 
allows applications to access their data using multiple attributes 
[2]. Compared to Bigtable, Dynamo targets applications that 
require only key/value access with primary focus on high 
availability where updates are not rejected even in the wake of 
network partitions or server failures. 
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consequences and impacts customer trust. The Amazon.com 
platform, which provides services for many web sites worldwide, 
is implemented on top of an infrastructure of tens of thousands of 
servers and network components located in many datacenters 
around the world. At this scale, small and large components fail 
continuously and the way persistent state is managed in the face 
of these failures drives the reliability and scalability of the 
software systems.  

This paper presents the design and implementation of Dynamo, a 
highly available key-value storage system that some of AmazonBs 
core services use to provide an Calways-onD experience.  To 
achieve this level of availability, Dynamo sacrifices consistency 
under certain failure scenarios. It makes extensive use of object 
versioning and application-assisted conflict resolution in a manner 
that provides a novel interface for developers to use. 
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1. INTRODUCTION  
Amazon runs a world-wide e-commerce platform that serves tens 
of millions customers at peak times using tens of thousands of 
servers located in many data centers around the world. There are 
strict operational requirements on AmazonBs platform in terms of 
performance, reliability and efficiency, and to support continuous 
growth the platform needs to be highly scalable. Reliability is one 
of the most important requirements because even the slightest 
outage has significant financial consequences and impacts 
customer trust. In addition, to support continuous growth, the 
platform needs to be highly scalable. 

One of the lessons our organization has learned from operating 
AmazonBs platform is that the reliability and scalability of a 
system is dependent on how its application state is managed. 
Amazon uses a highly decentralized, loosely coupled, service 
oriented architecture consisting of hundreds of services. In this 
environment there is a particular need for storage technologies 
that are always available. For example, customers should be able 
to view and add items to their shopping cart even if disks are 
failing, network routes are flapping, or data centers are being 
destroyed by tornados. Therefore, the service responsible for 
managing shopping carts requires that it can always write to and 
read from its data store, and that its data needs to be available 
across multiple data centers.  

Dealing with failures in an infrastructure comprised of millions of 
components is our standard mode of operation; there are always a 
small but significant number of server and network components 
that are failing at any given time. As such AmazonBs software 
systems need to be constructed in a manner that treats failure 
handling as the normal case without impacting availability or 
performance. 

To meet the reliability and scaling needs, Amazon has developed 
a number of storage technologies, of which the Amazon Simple 
Storage Service (also available outside of Amazon and known as 
Amazon S3), is probably the best known. This paper presents the 
design and implementation of Dynamo, another highly available 
and scalable distributed data store built for AmazonBs platform. 
Dynamo is used to manage the state of services that have very 
high reliability requirements and need tight control over the 
tradeoffs between availability, consistency, cost-effectiveness and 
performance. AmazonBs platform has a very diverse set of 
applications with different storage requirements. A select set of 
applications requires a storage technology that is flexible enough 
to let application designers configure their data store appropriately 
based on these tradeoffs to achieve high availability and 
guaranteed performance in the most cost effective manner. 

There are many services on AmazonBs platform that only need 
primary-key access to a data store. For many services, such as 
those that provide best seller lists, shopping carts, customer 
preferences, session management, sales rank, and product catalog, 
the common pattern of using a relational database would lead to 
inefficiencies and limit scale and availability. Dynamo provides a 
simple primary-key only interface to meet the requirements of 
these applications.  

Dynamo uses a synthesis of well known techniques to achieve 
scalability and availability: Data is partitioned and replicated 
using consistent hashing [10], and consistency is facilitated by 
object versioning [12]. The consistency among replicas during 
updates is maintained by a quorum-like technique and a 
decentralized replica synchronization protocol. Dynamo employs 
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The next design choice is who performs the process of conflict 
resolution. This can be done by the data store or the application. If 
conflict resolution is done by the data store, its choices are rather 
limited. In such cases, the data store can only use simple policies, 
such as :last write wins< [22], to resolve conflicting updates. On 
the other hand, since the application is aware of the data schema it 
can decide on the conflict resolution method that is best suited for 
its clientBs experience. For instance, the application that maintains 
customer shopping carts can choose to :merge< the conflicting 
versions and return a single unified shopping cart. Despite this 
flexibility, some application developers may not want to write 
their own conflict resolution mechanisms and choose to push it 
down to the data store, which in turn chooses a simple policy such 
as :last write wins<.  

Other key principles embraced in the design are: 

Incremental scalability: Dynamo should be able to scale out one 
storage host (henceforth, referred to as :node3) at a time, with 
minimal impact on both operators of the system and the system 
itself. 

Symmetry: Every node in Dynamo should have the same set of 
responsibilities as its peers; there should be no distinguished node 
or nodes that take special roles or extra set of responsibilities. In 
our experience, symmetry simplifies the process of system 
provisioning and maintenance.  

Decentralization: An extension of symmetry, the design should 
favor decentralized peer-to-peer techniques over centralized 
control. In the past, centralized control has resulted in outages and 
the goal is to avoid it as much as possible. This leads to a simpler, 
more scalable, and more available system. 

Heterogeneity: The system needs to be able to exploit 
heterogeneity in the infrastructure it runs on. e.g. the work 
distribution must be proportional to the capabilities of the 
individual servers. This is essential in adding new nodes with 
higher capacity without having to upgrade all hosts at once. 

3. RELATED WORK 
3.1 Peer to Peer Systems 
There are several peer-to-peer (P2P) systems that have looked at 
the problem of data storage and distribution. The first generation 
of P2P systems, such as Freenet and Gnutella1, were 
predominantly used as file sharing systems. These were examples 
of unstructured P2P networks where the overlay links between 
peers were established arbitrarily. In these networks, a search 
query is usually flooded through the network to find as many 
peers as possible that share the data. P2P systems evolved to the 
next generation into what is widely known as structured P2P 
networks. These networks employ a globally consistent protocol 
to ensure that any node can efficiently route a search query to 
some peer that has the desired data. Systems like Pastry [16] and 
Chord [20] use routing mechanisms to ensure that queries can be 
answered within a bounded number of hops. To reduce the 
additional latency introduced by multi-hop routing, some P2P 
systems (e.g., [14]) employ O(1) routing where each peer 
maintains enough routing information locally so that it can route 
requests (to access a data item) to the appropriate peer within a 
constant number of hops.   

Various storage systems, such as Oceanstore [9] and PAST [17] 
were built on top of these routing overlays. Oceanstore provides a 
global, transactional, persistent storage service that supports 
serialized updates on widely replicated data. To allow for 
concurrent updates while avoiding many of the problems inherent 
with wide-area locking, it uses an update model based on conflict 
resolution. Conflict resolution was introduced in [21] to reduce 
the number of transaction aborts. Oceanstore resolves conflicts by 
processing a series of updates, choosing a total order among them, 
and then applying them atomically in that order. It is built for an 
environment where the data is replicated on an untrusted 
infrastructure. By comparison, PAST provides a simple 
abstraction layer on top of Pastry for persistent and immutable 
objects. It assumes that the application can build the necessary 
storage semantics (such as mutable files) on top of it.  

3.2 Distributed File Systems and Databases 
Distributing data for performance, availability and durability has 
been widely studied in the file system and database systems 
community. Compared to P2P storage systems that only support 
flat namespaces, distributed file systems typically support 
hierarchical namespaces. Systems like Ficus [15] and Coda [19] 
replicate files for high availability at the expense of consistency. 
Update conflicts are typically managed using specialized conflict 
resolution procedures. The Farsite system [1] is a distributed file 
system that does not use any centralized server like NFS. Farsite 
achieves high availability and scalability using replication. The 
Google File System [6] is another distributed file system built for 
hosting the state of GoogleBs internal applications. GFS uses a 
simple design with a single master server for hosting the entire 
metadata and where the data is split into chunks and stored in 
chunkservers. Bayou is a distributed relational database system 
that allows disconnected operations and provides eventual data 
consistency [21].  

Among these systems, Bayou, Coda and Ficus allow disconnected 
operations and are resilient to issues such as network partitions 
and outages. These systems differ on their conflict resolution 
procedures. For instance, Coda and Ficus perform system level 
conflict resolution and Bayou allows application level resolution. 
All of them, however, guarantee eventual consistency. Similar to 
these systems, Dynamo allows read and write operations to 
continue even during network partitions and resolves updated 
conflicts using different conflict resolution mechanisms. 
Distributed block storage systems like FAB [18] split large size 
objects into smaller blocks and stores each block in a highly 
available manner. In comparison to these systems, a key-value 
store is more suitable in this case because: (a) it is intended to 
store relatively small objects (size < 1M) and (b) key-value stores 
are easier to configure on a per-application basis. Antiquity is a 
wide-area distributed storage system designed to handle multiple 
server failures [23]. It uses a secure log to preserve data integrity, 
replicates each log on multiple servers for durability, and uses 
Byzantine fault tolerance protocols to ensure data consistency. In 
contrast to Antiquity, Dynamo does not focus on the problem of 
data integrity and security and is built for a trusted environment. 
Bigtable is a distributed storage system for managing structured 
data. It maintains a sparse, multi-dimensional sorted map and 
allows applications to access their data using multiple attributes 
[2]. Compared to Bigtable, Dynamo targets applications that 
require only key/value access with primary focus on high 
availability where updates are not rejected even in the wake of 
network partitions or server failures. 

1 http://freenetproject.org/, http://www.gnutella.org 
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Our contribution:
deterministic threshold queries of CvRDTs
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Thank you!
Twitter : @lindsey
LVars project repo: github.com/iu-parfunc/lvars
Code from this talk: github.com/lkuper/lvar-examples
Papers: cs.indiana.edu/~lkuper
Research blog: composition.al


