Causal Message Delivery, Cooked Three Ways

Lindsey Kuper
UC Santa Cruz
[FP WG 2.16 (Language Design), January 2023

...what meeting with Lindsey? &

happens-before

...what meeting with Lindsey? &

happens-before

...what meeting with Lindsey? &

happens-before

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(mi:) —, deliver(my)

(total order of events
on process p)

...what meeting with Lindsey? &

happens-before

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(mi:) —, deliver(my)

(total order of events
on process p)

...what meeting with Lindsey? &

happens-before

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(mi:) —, deliver(my)

(total order of events
on process p)

happens-before

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(mi:) —, deliver(my)

(total order of events
on process p)

Receiver-side enforcement °,
of causal delivery v

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(mi:) —, deliver(my)

(total order of events
on process p)

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(mi:) —, deliver(my)

(total order of events
on process p)

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(mi:) —, deliver(my)

(total order of events
on process p)

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(mi:) —, deliver(my)

(total order of events
on process p)

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(mi:) —, deliver(my)

(total order of events
on process p)

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(mi:) —, deliver(my)

(total order of events
on process p)

Sender-side enforcement
of causal delivery

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(m;) —, deliver(my)

(total order of events
on process p)

A receiver-side protocol
[Raynal et al., 1991]

DELIV, =[0, 0, @]

A receiver-side protocol
[Raynal et al., 1991]

DELIV, =[0, 0, @]

SENT,;=[0, @, e,
9, 9, 9,
0, 0, 0]

A receiver-side protocol
[Raynal et al., 1991]

A receiver-side protocol

[Raynal et al., 1991]

DELIV, =[0, 0, @]

SENT,; =[e, o, o,
9, 9, 9,
0, 0, 0]

DELIV, =[0, 0, 0]

SENT, = [0, ©, o,
0, 0, O,
0, 0, 0]

DELIVz = [0, @, @]

SENT; = [0, @, @,
0, 0, o,
0, 0, 0]

A receiver-side protocol

[Raynal et al., 1991]

DELIV = [0, e,

SENT, = [0, o,

&

9, 9,
9, 9,

DELIV, =[0, 0, 0]

SENT, = [0, 0, @,
0, 0, O,
0, 8, 0]

DELIVz = [0, @, @]

SENTz = [@, @, ®,
0, 0, 0,
0, 0, 0]

A receiver-side protocol

[Raynal et al., 1991]

DELIV = [0, e,

SENT, = [0, o,

DELIV, =[0, 0, 0]

SENT, = [0, 0, @,
0, 0, O,
0, 8, 0]

DELIVz = [0, @, @]

SENTz = [@, @, ®,
0, 0, 0,
0, 0, 0]

increment
SENT,[1,3]

A receiver-side protocol

SENT]_:[@, @, 1,
0, 0, 0O,
0, 0, 0]

[Raynal et al., 1991]

DELIV = [0, e,

SENT, = [0, o,

DELIV, =[0, 0, 0]

SENT, = [0, ©, o,
0, 0, O,
0, 8, 0]

DELIVz = [0, @, @]

SENTz = [@, @, ®,
0, 0, 0,
0, 0, 0]

increment
SENT,[1,3]

A receiver-side protocol

SENT]_:[@, @, 1,
0, 0, 0O,
0, 0, 0]

[Raynal et al., 1991]

DELIV = [0, e,

SENT, = [0, o,

9, 9,
9, 9,

DELIV, =[0, 0, 0]

SENT, = [0, 0, @,
0, 0, O,
0, 8, 0]

DELIVz = [0, @, @]

SENTz = [@, @, ®,
0, 0, 0,
0, 0, 0]

DELIV, = [0, @, @] DELIV, = [0, @, @] DELIVZ = [@, @, @]

SENT, = [0, e, o, SENT, =[e, o, o, SENTz = [0, 0, 0,
0, 0, 0, 0, 0, 0, 9, 0, O,
0, 0, 0] 0, 0, 0] 0, 0, 0]

SENTl = [@, @, 1, @
9, 0, o, 7 (o
increment > 6

@J @) @] 9.: 2 6
SENT,[1,3] 0 6 8,

A receiver-side protocol
[Raynal et al., 1991]

SENTl = [@, @, 1,

9, 0, 0,

increment 8, 0, 0]
SENT,[1,3] S

SENT; = [0, 1, 1,

0, 0, 0,

increment 0 0]
SENT,[1,2] T

A receiver-side protocol
[Raynal et al., 1991]

DELIV, =[0, 0, @]

SENT, = [0, 0, ®,

9, 0, 0,
9, 0, 0]

DELIV, =[0, 0, 0]

SENT, = [0, ©, o,
0, 0, O,
0, 8, 0]

DELIVz = [0, @, @]

SENTz = [@, @, ®,
0, 0, 0,
0, 0, 0]

SENTl = [@, @, 1,

0, 0, 0,

increment 8, 0, 0]
SENT,[1,3] S

SENT1=[@, 1, 1,

o, 0, 0O,

increment 0 0]
SENT,[1,2] T

A receiver-side protocol
[Raynal et al., 1991]

DELIV, =[0, 0, @]

SENT, = [e, o, o,

0, 0, 0,
9, 0, 0]

DELIV, =[0, 0, 0]

SENT, = [0, ©, o,

A message with metadata SENT,,
is deliverable at process i if:

for all k, DELIVi[k] = SENT[k,i]

DELIVz = [0, @, @]

SENT; = [0, @, @,
0, 0, o,
0, 0, 0]

SENTl = [@, @, 1,

0, 0, 0,

increment 8, 0, 0]
SENT,[1,3] S

SENT1=[@, 1, 1,

o, 0, 0O,

increment 0 0]
SENT,[1,2] T

A receiver-side protocol
[Raynal et al., 1991]

DELIV, =[0, 0, @]

SENT, = [e, o, o,

0, 0, 0,
9, 0, 0]

DELIV, =[0, 0, 0]

SENT, = [0, ©, o,
0, 0, O,
0, 0, 0]

A message with metadata SENT,,
is deliverable at process i if:

for all k, DELIVi[k] = SENT[k,i]

deliverable

vk. DELIV,[k] > [©,
9,
0]

DELIVz = [0, @, @]

SENT; = [0, @, @,
0, 0, o,
0, 0, 0]

SENTl = [@, @, 1,

0, 0, 0,

increment 8, 0, 0]
SENT,[1,3] S

SENT1=[@, 1, 1,

o, 0, 0O,

increment 0 0]
SENT,[1,2] T

A receiver-side protocol
[Raynal et al., 1991]

DELIV, =[0, 0, @]

SENT, = [e, o, o,

0, 0, 0,
9, 0, 0]

DELIV, = [1, O3\0]

increment
SENT,[1,2] SENT, =[0, 1, 1,
and merge with 9, 0, O,
m,’s metadata 0, 0, 9]

A message with metadata SENT,,
is deliverable at process i if:

for all k, DELIVi[k] = SENT[k,i]

deliverable

vk. DELIV,[k] > [©,
9,
0]

DELIVz = [0, @, @]

SENT; = [0, @, @,
0, 0, 0,
0, 0, 0]

SENTl = [@, @, 1,

0, 0, 0,

increment 8, 0, 0]
SENT,[1,3] S

SENT1=[@, 1, 1,

o, 0, 0O,

increment 0 0]
SENT,[1,2] T

A receiver-side protocol
[Raynal et al., 1991]

DELIV, =[0, 0, @]

SENT,; =[e, o, o,
9, 9, 9,
0, 0, 0]

increment
SENT,[1,2]
and merge with
m,’s metadata

DELIV, = [1, O30]

SENT, = [0, 1, 1,
0, 0, 9,
9, 0, 0]

DELIV, =[0, 0, 0]

SENT, = [0, ©, o,

A message with metadata SENT,,
is deliverable at process i if:

for all k, DELIVi[k] = SENT[k,i]

deliverable
vk.DELIV,[k] > [,

@J

0] ms

DELIVz = [0, @, @]

SENT; = [0, @, @,
0, 0, o,
0, 0, 0]

DELIV, = [0, @, @] DELIV, = [0, @, @] DELIVZ = [@, @, @]

SENT, = [0, o, @, SENT, = [0, @, o, SENTz=[0, 0, o,

e, 0, 0, 0, 0, 9, 9, 0, 0,
9, 0, 0] 0, 0, 0] 0, 9, 0]
SENT1=[@, @, 1, @
N 9, 0, 0, 74 le A message with metadata SENT,,
SENT. [1,3] 0, 0, 9] 99, eeJ o is deliverable at process i if:
1) S)
2 6 e_,
SENT, = [0, 1, 1, 7 °7 for all k, DELIV{[k] = SENTu[k,i]
0, 0, 0, 2 [@J 6
increment 0, 0, 0] 0, o’ 1,
SENT,[1,2] T 0, ,° O, -
> 6] DELIV- = 12 Bv) deliverable (4
increment : $ vk.DELIV,[k] 2 [e,
. . SENT,[1,2] SENT2= [0, 1, 1, 0, [e
A receiver-side protocol 2L 0] > 1, g
and merge with 9, 0, O, 7723 0, 0, g’
[Raynal et al., 1991] my's metadata 0. 0. o] 0 e: ej

SENTl = [@, @, 1,

0, 9, 0,

increment 8, 0, 0]
SENT,[1,3] S

SENT1=[@, 1, 1,

o, 0, 0O,

increment 0, 0, 0]
SENT,[1,2] T

A receiver-side protocol
[Raynal et al., 1991]

DELIV, =[0, 0, @]

SENT, = [e, o, o,

0, 0, 0,
9, 0, 0]

increment
SENT,[1,2]
and merge with
m,’s metadata

increment
SENT,[2,3]

DELIV, = [1,

SENT, = [0,
9,
9,
SENT, = [0,
9,
9,

Q)

o

)

)

)

o

® O B O O BB

)

A message with metadata SENT,,
is deliverable at process i if:

for all k, DELIVi[k] = SENT[k,i]

deliverable
vk.DELIV,[k] > [,
9,
@] [e)
M3 0, o
0, o,

DELIVz = [0, @, @]

SENT; = [0, @, @,
0, 0, 0,
0, 0, 0]

DELIV, = [0, @, @] DELIVZ = [@, @, @]

SENT, = [0, ©, o, SENTz = [0, @, o,

0, 0, 0, 9, 9, O,
0, 0, 0] 0, 0, 0]
SENT1=[@, @, 1, @
N 9, 0, 0, 74 le . A message with metadata SENT,,
@, e’ @ 9.’ , . . .o:
SENT, [1,3]] 0’ 6 ee’ is deliverable at process i if
) 9)
SENT, = [0, 1, 1, 7 o7 for all k, DELIVi[k] = SENTw[k,i]
0, 0, 0, 2 [@ 6
increment 0, 0, 0] 6: 5 1,
SENT,[1,2] 0, OJ 0,
> 6] DELIV- = 12 Bv) deliverable (4
. 275 5 vk.DELIV,[k] > [0,
Increment SENT. = [@ 11 0
A receiver-side protocol >ENT,[1,2] 2o ol 1y [0, 1, 4,
R 1 et al., 1991] and merge with 9, 9, O, 3 0, 9, g
[Rayna ") m,’s metadata 0, 0, 0] 0, o, 9]’
SENT, = [0, 1, 1, =~ undeliverablex
0, 0, 1, vk. DELIV,[K] 2 [1,
increment 9, 0, 0] 0,
SENT,[2,3] 0]

SENTl = [@, @, 1,

0, 9, 0,

increment 8, 0, 0]
SENT,[1,3] S

SENT1=[@, 1, 1,

o, 0, 0O,

increment 0, 0, 0]
SENT,[1,2] T

A receiver-side protocol
[Raynal et al., 1991]

DELIV, =[0, 0, @]

SENT, = [e, o, o,

0, 0, 0,
9, 0, 0]

increment
SENT,[1,2]
and merge with
m,’s metadata

increment
SENT,[2,3]

DELIV, = [1,

SENT, = [0,
9,
9,
SENT, = [0,
9,
9,

Q)

o

)

)

)

o

® O B O O BB

)

A message with metadata SENT,,
is deliverable at process i if:

for all k, DELIVi[k] = SENT[k,i]

deliverable
vk.DELIV,[k] > [,
9,
@] [e)
M3 0, o
0, o,

DELIVz = [0, @, @]

SENT; = [0, @, @,
0, 0, 0,
0, 0, 0]

undeliverable x
vk.DELIV;[k] 2 [1,

9,
0]

deliverable
vk.DELIV;[k] 2 [0,

9,
0]

SENTl = [@, @, 1,

0, 9, 0,

increment 8, 0, 0]
SENT,[1,3] S

SENT1=[@, 1, 1,

o, 0, 0O,

increment 0, 0, 0]
SENT,[1,2] T

A receiver-side protocol
[Raynal et al., 1991]

DELIV, =[0, 0, @]

SENT,; =[e, o, o,
9, 9, 9,
0, 0, 0]

increment
SENT,[1,2]
and merge with
m,’s metadata

increment
SENT,[2,3]

DELIV, = [1,

SENT, = [0,
9,
9,
SENT, = [0,
9,
9,

Q)

o

)

)

)

o

® O B O O BB

)

A message with metadata SENT,,
is deliverable at process i if:

for all k, DELIVi[k] = SENT[k,i]

deliverable
vk.DELIV,[k] 2 [0,
9,
[e, 1
%) >4 1,
] m3 9, o, o,
0, 0, 0]
DELIVZ = [1, @,
increment
SENT,[1,3] SENT; = [0, o,
and merge with 9, 90, ©

m;’s metadata 0, 0,

DELIVz = [0, @, @]

SENT; = [0, @, @,
0, 0, 0,
0, 0, 0]

undeliverable x
vk.DELIV;[k] 2 [1,

9,
0]

deliverable
vk.DELIV;[k] 2 [0,

9,
0]

SENTl = [@, @, 1,

0, 9, 0,

increment 8, 0, 0]
SENT,[1,3] S

SENT1=[@, 1, 1,

o, 0, 0O,

increment 0, 0, 0]
SENT,[1,2] T

A receiver-side protocol
[Raynal et al., 1991]

DELIV, =[0, 0, @]

SENT, = [e, o, o,

0, 0, 0,
9, 0, 0]

increment
SENT,[1,2]
and merge with
m,’s metadata

increment
SENT,[2,3]

DELIV, = [1,

SENT, = [0,
9,
9,
SENT, = [0,
9,
9,

Q)

o

)

)

)

o

® O B O O BB

)

A message with metadata SENT,,
is deliverable at process i if:

for all k, DELIVi[k] = SENT[k,i]

deliverable
vk.DELIV,[k] 2 [0,
9,
[e, 1
%) >4 1,
] m3 0, o, 0.
0, 0, 0]
)
Y 4
Y 4
7 4
! 4
q
[]
[
|
|
DELIVZ = [1, @)™
increment "
SENT,[1, 3] SENTz = [, 0,\‘1,
and merge with 9, 0, 9‘,
m;’s metadata 0, 0, 0f
‘

4

DELIVz = [0, @,

SENT; = [0, @,
0, 0
0, 0

undeliverable x
vk.DELIV;[k] 2 [1,

9,
0]

deliverable
vk.DELIV;[k] 2 [0,

9,
0]

SENTl = [@, @, 1,

0, 9, 0,

increment 8, 0, 0]
SENT,[1,3] S

SENT1=[@, 1, 1,

o, 0, 0O,

increment 0, 0, 0]
SENT,[1,2] T

A receiver-side protocol
[Raynal et al., 1991]

DELIV, =[0, 0, @]

SENT, = [e, o, o,

0, 0, 0,
9, 0, 0]

increment
SENT,[1,2]
and merge with
m,’s metadata

increment
SENT,[2,3]

DELIV, = [1,

SENT, = [0,
9,
9,
SENT, = [0,
9,
9,

Q)

o

)

)

)

o

® O B O O BB

)

A message with metadata SENT,,
is deliverable at process i if:

for all k, DELIVi[k] = SENT[k,i]

deliverable
vk.DELIV,[k] 2 [0,
9,
[e, 1
%) >4 1,
] m3 9, o, 0.
9% 0, o]
)
Y 4
Y 4
7 4
! 4
q
[]
[
|
|
DELIVZ = [1, @)@
increment "
SENT,[1, 3] SENTz = [, 0,\‘1,
and merge with 9, 0, 9‘,
m;’s metadata 0, 0, 0f
‘
4

DELIVz = [0, @,

SENT; = [0, @,
0, 0
0, 0

undeliverable x
vk.DELIV;[k] 2 [1,

9,
0]

deliverable
vk.DELIV;[k] 2 [0,
9,
0]
deliverable
vk.DELIV;[k] 2 [1,

9,
0]

DELIV, =[0, 0, @]

SENT, = [e, o, o,

DELIVz = [0, @, @]

SENT; = [0, @, o,

9: @J @J 0, 0, 0,
e, 0, 9] 0, 0, 0]
SENT1=[@, @, 1, %
N 9, 0, 0, 74 le . A message with metadata SENT,,
@, @’ @ 9_, a o o . e
SENT,[1,3]] 0’ 0 ee’ is deliverable at process i if:
) 9)
SENT, = [0, 1, 1, 7 %7 for all k, DELIVi[k] = SENTu[k,]
9, 0, 9, 2 [@ 6
increment 0, 0, 0] 9: OJ 1,
SENT,[1,2] 0, OJ 0, -
> 6] DELIV- = 12 Bv) deliverable (4
. 27 L vk.DELIV,[k] > [@,
Increment SENT. = [@ 11 0
A receiver-side protocol >ENT,[1,2] 2o ol 1 [0, 1, 4,
[Raynal et al., 1991] e ot e S gk
y * m,’s metadata 0, 90, 0] % e, ej
SENT, =[e, 1, 1, —~> undeliverablex
0, 0, 1, .7 | vk.DELIV;[k] 2 [1,
increment 9, 0, 0] . 0,
SENT,[2,3] N 0]
'
i
DELIVZ = [1, 05~ _
3= 11, @, :
crement) deliverable
SENT,[1,3] SENTz = [0, 0,,1, vk.DELIV;[k] =[O,
and merge with e, 0, o, 9,
m;’s metadata 0, 0, @‘g 0]
‘
DELIV; = [1, 1, 0] | deliverable (2
increment vk.DELIV,;[k] 2 [1,
SENT,[2,3] SENTz =6, 1, 1, 0,
and merge with 9, 0, 1, 0]
v v

m’s metadata 0, 0, 0] V

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:
1.

2.
3.
4

n

wait for a message to appear
dequeue & transmit next message
wait for acknowledgment

go to step 1

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:
1.

2.
3.
4

n

wait for a message to appear
dequeue & transmit next message
wait for acknowledgment

go to step 1

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:
1.

2.
3.
4

wait for a message to appear
dequeue & transmit next message
wait for acknowledgment

go to step 1

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:
1.

&

2.
3.
4

wait for a message to appear
dequeue & transmit next message
wait for acknowledgment

go to step 1

output buffer

output buffer

output buffer algorithm: output buffer output buffer
1. wait for a message to appear

2. dequeue & transmit next message
3. wait for acknowledgment
/72] 4. gotostepl

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm: output buffer output buffer
1. wait for a message to appear

2. dequeue & transmit next message
3. wait for acknowledgment
/72] 4. gotostepl

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:

. wait for a message to appear

dequeue & transmit next message
wait for acknowledgment
go to step 1

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:

. wait for a message to appear

dequeue & transmit next message
wait for acknowledgment
go to step 1

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:

. wait for a message to appear

dequeue & transmit next message
wait for acknowledgment
go to step 1

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:

. wait for a message to appear

dequeue & transmit next message
wait for acknowledgment
go to step 1

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:
1. wait for a message to appear

dequeue & transmit next message
wait for acknowledgment
go to step 1

2.
3.
4

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:
1. wait for a message to appear

dequeue & transmit next message
wait for acknowledgment
go to step 1

2.
3.
4

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:
1. wait for a message to appear

dequeue & transmit next message
wait for acknowledgment
go to step 1

2.
3.
4

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:
1. wait for a message to appear

dequeue & transmit next message
wait for acknowledgment
go to step 1

2.
3.
4

output buffer

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

output buffer algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment

. gotostep1

output buffer

ack(ms)

D R R AR }

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

n

output buffer algorithm:

1.

2.
3.
4

wait for a message to appear
dequeue & transmit next message
wait for acknowledgment

go to step 1

output buffer

Causal delivery:

For all messages m; and m: delivered at process p,
send(m;) — send(mz) = deliver(m;) —, deliver(my)

(total order of events
on process p)

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

approximates
synchronous
communication

output buffer algorithm:

1. wait for a message to appear

2. dequeue & transmit next message
3. wait for acknowledgment

go to step 1

output buffer

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(m;) —, deliver(my)

(total order of events
on process p)

ack(ms)

D R R AR }

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

approximates
synchronous
communication

output buffer algorithm:

1. wait for a message to appear

2. dequeue & transmit next message
3. wait for acknowledgment

go to step 1

output buffer

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(m;) —, deliver(my)

(total order of events
on process p)

output buffer

A sender-side protocol
[Mattern and Fiinfrocken, 1995]

approximates
synchronous
communication

output buffer algorithm:

1. wait for a message to appear

2. dequeue & transmit next message
3. wait for acknowledgment

4. gotostepl

output buffer

Causal delivery:
For all messages m; and m: delivered at process p,

send(m;) — send(mz) = deliver(m;) —, deliver(my)

+*3urssaoord

(total order of events
on process p)

output buffer

output buffer

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

775 *

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

e

775 *

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

e

775 *

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

e

775 *

*-gurssasoxd

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

€€

eager S end

775 *

R

*-gurssasoxd

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

e

775 *

*-gurssasoxd

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

e

775 *

*-gurssasoxd

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

e

775 *

*-gurssasoxd

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

e

775 *

now You can teH»

*-gurssasoxd

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

e

775 *

*-gurssasoxd

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

e

775 *

*-gurssasoxd

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

e
dger seng

725 *

) DT
— “nOW YOu can tell,,
mo |
ack(ma) L aeeeenettt T
PR

-+-Surssaooxd

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

eager SeHd”
*
725
ack(mz.*?
- “noW you can tellaa
[y

*-gurssasoxd

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

eager SeHd”
775 *
k) e TN
g - “IlOW You can tel]”
[y —
ack(m?)
4,

*-gurssasoxd

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

eager S eHd”
725 *
ack(ﬂ’.l‘z.*?
- “noW you Can tell”
m2 o o
ack(TYl?)
4.

output buffer
se
o
2
E.
0o
N‘
aCk(ml)
s
aCk(mS)
v D AR |

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

eager Send”
775 *
k) e TN
g - “IlOW You can tel]”
[y —
ack(m?)
4,

*-gurssasoxd

output buffer

output buffer

Idea: the “can you
keep a secret?”
protocol

output buffer

&

eager Send”
775 *
k) e TN
g - “IlOW You can tel]”
[y —
ack(m?)
4,

*-gurssasoxd

output buffer

output buffer

some design considerations for the “can you keep a secret?” protocol

some design considerations for the “can you keep a secret?” protocol

o Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?

some design considerations for the “can you keep a secret?” protocol

o Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
o Right away. In fact, for FIFO delivery, the sender shouldn't send now-you-can-tell until the eager send is ack’d!

some design considerations for the “can you keep a secret?” protocol

o Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
o Right away. In fact, for FIFO delivery, the sender shouldn't send now-you-can-tell until the eager send is ack’d!

o Can you do an eager send as a result of an eager send?

some design considerations for the “can you keep a secret?” protocol

o Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
o Right away. In fact, for FIFO delivery, the sender shouldn't send now-you-can-tell until the eager send is ack’d!

o Can you do an eager send as a result of an eager send?
o No. E.g., if Ron can eagerly send ms, then it can overtake m; on the way to Sam, which was the original problem!

some design considerations for the “can you keep a secret?” protocol

o Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
o Right away. In fact, for FIFO delivery, the sender shouldn't send now-you-can-tell until the eager send is ack’d!

o Can you do an eager send as a result of an eager send?
o No. E.g., if Ron can eagerly send ms, then it can overtake m; on the way to Sam, which was the original problem!

« When a process wants to send a message as a result of an eager send it previously received, can the new message go into
the output buffer while waiting for the now-you-can-tell message, or should it not even be buftered yet?

some design considerations for the “can you keep a secret?” protocol

o Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
o Right away. In fact, for FIFO delivery, the sender shouldn't send now-you-can-tell until the eager send is ack’d!

o Can you do an eager send as a result of an eager send?
o No. E.g., if Ron can eagerly send ms, then it can overtake m; on the way to Sam, which was the original problem!

« When a process wants to send a message as a result of an eager send it previously received, can the new message go into
the output buffer while waiting for the now-you-can-tell message, or should it not even be buftered yet?
e Idon’t know!

some design considerations for the “can you keep a secret?” protocol

o Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
o Right away. In fact, for FIFO delivery, the sender shouldn't send now-you-can-tell until the eager send is ack’d!

o Can you do an eager send as a result of an eager send?
o No. E.g., if Ron can eagerly send ms, then it can overtake m; on the way to Sam, which was the original problem!

« When a process wants to send a message as a result of an eager send it previously received, can the new message go into
the output buffer while waiting for the now-you-can-tell message, or should it not even be buftered yet?

e I don’t know!

o (my excuse for giving a distributed systems talk at WGLD) How about some kind of information flow analysis?

some design considerations for the “can you keep a secret?” protocol

o Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
o Right away. In fact, for FIFO delivery, the sender shouldn't send now-you-can-tell until the eager send is ack’d!

o Can you do an eager send as a result of an eager send?
o No. E.g., if Ron can eagerly send ms, then it can overtake m; on the way to Sam, which was the original problem!

« When a process wants to send a message as a result of an eager send it previously received, can the new message go into
the output buffer while waiting for the now-you-can-tell message, or should it not even be buftered yet?
e Idon’t know!

o (my excuse for giving a distributed systems talk at WGLD) How about some kind of information flow analysis?
o if an analysis shows myis in fact not related to m;, I can send m; without regard to whether I've heard back about m;

some design considerations for the “can you keep a secret?” protocol

o Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
o Right away. In fact, for FIFO delivery, the sender shouldn't send now-you-can-tell until the eager send is ack’d!

o Can you do an eager send as a result of an eager send?
o No. E.g., if Ron can eagerly send ms, then it can overtake m; on the way to Sam, which was the original problem!

« When a process wants to send a message as a result of an eager send it previously received, can the new message go into
the output buffer while waiting for the now-you-can-tell message, or should it not even be buftered yet?
e Idon’t know!

o (my excuse for giving a distributed systems talk at WGLD) How about some kind of information flow analysis?
o if an analysis shows myis in fact not related to m;, I can send m; without regard to whether I've heard back about m;
« happens-before is too coarse; we use it because it's an overapproximation of actual causality that's easy to compute

some design considerations for the “can you keep a secret?” protocol

o Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
o Right away. In fact, for FIFO delivery, the sender shouldn't send now-you-can-tell until the eager send is ack’d!

o Can you do an eager send as a result of an eager send?
o No. E.g., if Ron can eagerly send ms, then it can overtake m; on the way to Sam, which was the original problem!

« When a process wants to send a message as a result of an eager send it previously received, can the new message go into
the output buffer while waiting for the now-you-can-tell message, or should it not even be buftered yet?
e Idon’t know!

o (my excuse for giving a distributed systems talk at WGLD) How about some kind of information flow analysis?
o if an analysis shows myis in fact not related to m;, I can send m; without regard to whether I've heard back about m;
« happens-before is too coarse; we use it because it's an overapproximation of actual causality that's easy to compute
o it's 2023 and we're PL people, dang it; let’s use language-level techniques that weren’t available when these protocols
were originally designed in the "90s

