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o if an analysis shows myis in fact not related to m;, I can send m; without regard to whether I've heard back about m;
« happens-before is too coarse; we use it because it's an overapproximation of actual causality that's easy to compute
o it's 2023 and we're PL people, dang it; let’s use language-level techniques that weren’t available when these protocols
were originally designed in the "90s



