
Causal Message Delivery, Cooked !ree Ways

Lindsey Kuper
UC Santa Cruz

IFP WG 2.16 (Language Design), January 2023

1

2

2

Let’s meet in Claremont to talk

about gradual types!

2

Let’s meet in Claremont to talk

about gradual types!Could you join a meeting with

me and Sam in Claremont?

2

Let’s meet in Claremont to talk

about gradual types!Could you join a meeting with

me and Sam in Claremont?

I heard you’re meeting with
Lindsey — what's it about?

2

Let’s meet in Claremont to talk

about gradual types!Could you join a meeting with

me and Sam in Claremont?

I heard you’re meeting with
Lindsey — what's it about?

…what meeting with Lindsey? !

2

Let’s meet in Claremont to talk

about gradual types!Could you join a meeting with

me and Sam in Claremont?

I heard you’re meeting with
Lindsey — what's it about?

…what meeting with Lindsey? !

happens-before

2

Let’s meet in Claremont to talk

about gradual types!Could you join a meeting with

me and Sam in Claremont?

I heard you’re meeting with
Lindsey — what's it about?

…what meeting with Lindsey? !

happens-before

2

Let’s meet in Claremont to talk

about gradual types!Could you join a meeting with

me and Sam in Claremont?

I heard you’re meeting with
Lindsey — what's it about?

…what meeting with Lindsey? !

happens-before

send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

2

Let’s meet in Claremont to talk

about gradual types!Could you join a meeting with

me and Sam in Claremont?

I heard you’re meeting with
Lindsey — what's it about?

…what meeting with Lindsey? !

happens-before

send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

2

Let’s meet in Claremont to talk

about gradual types!Could you join a meeting with

me and Sam in Claremont?

I heard you’re meeting with
Lindsey — what's it about?

happens-before

send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

✅

❌

2

Let’s meet in Claremont to talk

about gradual types!Could you join a meeting with

me and Sam in Claremont?

I heard you’re meeting with
Lindsey — what's it about?

happens-before

send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

Receiver-side enforcement
of causal delivery ✅

❌

2

Let’s meet in Claremont to talk

about gradual types!Could you join a meeting with

me and Sam in Claremont?

I heard you’re meeting with
Lindsey — what's it about?

send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

3

Let’s meet in Claremont to talk

about gradual types!Could you join a meeting with

me and Sam in Claremont?

I heard you’re meeting with
Lindsey — what's it about?

❌
send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

3

Let’s meet in Claremont to talk

about gradual types!

I heard you’re meeting with
Lindsey — what's it about?

❌
send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

3

Let’s meet in Claremont to talk

about gradual types!

ack(“Let’s meet…")

I heard you’re meeting with
Lindsey — what's it about?

❌
send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

3

Let’s meet in Claremont to talk

about gradual types!

ack(“Let’s meet…")

I heard you’re meeting with
Lindsey — what's it about?

❌

✅
Could you join a meeting with me and Sam in Claremont?

send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

3

Let’s meet in Claremont to talk

about gradual types!

ack(“Let’s meet…")

I heard you’re meeting with
Lindsey — what's it about?

❌

✅
Could you join a meeting with me and Sam in Claremont?

send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

3

Let’s meet in Claremont to talk

about gradual types!

ack(“Let’s meet…")

I heard you’re meeting with
Lindsey — what's it about?

❌

✅

Sender-side enforcement
of causal delivery

Could you join a meeting with me and Sam in Claremont?

send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

3

4

A receiver-side protocol
[Raynal et al., 1991]

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

m1

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

m1

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]increment

SENT1[1,3]

m1

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]increment

SENT1[1,3]

m1

m2

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]increment

SENT1[1,3]

m1

m2

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

m1

m2

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

m1

m2

A message with metadata SENTm
is deliverable at process i if:

for all k, DELIVi[k] ≥ SENTm[k,i]

✅

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

deliverable

✅

∀k. DELIV2[k] ≥ [0,
0,
0]

m1

m2

A message with metadata SENTm
is deliverable at process i if:

for all k, DELIVi[k] ≥ SENTm[k,i]

✅

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

deliverable

✅

∀k. DELIV2[k] ≥ [0,
0,
0]

DELIV2 = [1, 0, 0]

SENT2 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT2[1,2]

and merge with
m2’s metadata

m1

m2

A message with metadata SENTm
is deliverable at process i if:

for all k, DELIVi[k] ≥ SENTm[k,i]

✅

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

deliverable

✅

∀k. DELIV2[k] ≥ [0,
0,
0]

DELIV2 = [1, 0, 0]

SENT2 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT2[1,2]

and merge with
m2’s metadata

m1

m2

m3

A message with metadata SENTm
is deliverable at process i if:

for all k, DELIVi[k] ≥ SENTm[k,i]

✅

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

 [0, 1, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

deliverable

✅

∀k. DELIV2[k] ≥ [0,
0,
0]

DELIV2 = [1, 0, 0]

SENT2 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT2[1,2]

and merge with
m2’s metadata

m1

m2

m3

A message with metadata SENTm
is deliverable at process i if:

for all k, DELIVi[k] ≥ SENTm[k,i]

✅

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

 [0, 1, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

deliverable

✅

∀k. DELIV2[k] ≥ [0,
0,
0]

increment
SENT1[2,3]

SENT2 = [0, 1, 1,
0, 0, 1,
 0, 0, 0]

DELIV2 = [1, 0, 0]

SENT2 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT2[1,2]

and merge with
m2’s metadata

m1

m2

m3

A message with metadata SENTm
is deliverable at process i if:

for all k, DELIVi[k] ≥ SENTm[k,i]

✅

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

 [0, 1, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

deliverable

✅

∀k. DELIV2[k] ≥ [0,
0,
0]

undeliverable

❌

∀k. DELIV3[k] ≱ [1,
0,
0]

increment
SENT1[2,3]

SENT2 = [0, 1, 1,
0, 0, 1,
 0, 0, 0]

DELIV2 = [1, 0, 0]

SENT2 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT2[1,2]

and merge with
m2’s metadata

m1

m2

m3

A message with metadata SENTm
is deliverable at process i if:

for all k, DELIVi[k] ≥ SENTm[k,i]

✅

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

 [0, 1, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

deliverable

✅

∀k. DELIV2[k] ≥ [0,
0,
0]

undeliverable

❌

∀k. DELIV3[k] ≱ [1,
0,
0]

deliverable

✅

∀k. DELIV3[k] ≥ [0,
0,
0]

increment
SENT1[2,3]

SENT2 = [0, 1, 1,
0, 0, 1,
 0, 0, 0]

DELIV2 = [1, 0, 0]

SENT2 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT2[1,2]

and merge with
m2’s metadata

m1

m2

m3

A message with metadata SENTm
is deliverable at process i if:

for all k, DELIVi[k] ≥ SENTm[k,i]

✅

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

 [0, 1, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

deliverable

✅

∀k. DELIV2[k] ≥ [0,
0,
0]

undeliverable

❌

∀k. DELIV3[k] ≱ [1,
0,
0]

deliverable

✅

∀k. DELIV3[k] ≥ [0,
0,
0]

increment
SENT1[2,3]

SENT2 = [0, 1, 1,
0, 0, 1,
 0, 0, 0]

DELIV2 = [1, 0, 0]

SENT2 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT2[1,2]

and merge with
m2’s metadata

increment
SENT3[1,3]

and merge with
m1’s metadata

DELIV3 = [1, 0, 0]

SENT3 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

m1

m2

m3

A message with metadata SENTm
is deliverable at process i if:

for all k, DELIVi[k] ≥ SENTm[k,i]

✅

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

 [0, 1, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

deliverable

✅

∀k. DELIV2[k] ≥ [0,
0,
0]

undeliverable

❌

∀k. DELIV3[k] ≱ [1,
0,
0]

deliverable

✅

∀k. DELIV3[k] ≥ [0,
0,
0]

increment
SENT1[2,3]

SENT2 = [0, 1, 1,
0, 0, 1,
 0, 0, 0]

DELIV2 = [1, 0, 0]

SENT2 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT2[1,2]

and merge with
m2’s metadata

increment
SENT3[1,3]

and merge with
m1’s metadata

DELIV3 = [1, 0, 0]

SENT3 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

m1

m2

m3

A message with metadata SENTm
is deliverable at process i if:

for all k, DELIVi[k] ≥ SENTm[k,i]

✅

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

 [0, 1, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

deliverable

✅

∀k. DELIV2[k] ≥ [0,
0,
0]

undeliverable

❌

∀k. DELIV3[k] ≱ [1,
0,
0]

deliverable

✅

∀k. DELIV3[k] ≥ [0,
0,
0]

deliverable

✅

∀k. DELIV3[k] ≥ [1,
0,
0]

increment
SENT1[2,3]

SENT2 = [0, 1, 1,
0, 0, 1,
 0, 0, 0]

DELIV2 = [1, 0, 0]

SENT2 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT2[1,2]

and merge with
m2’s metadata

increment
SENT3[1,3]

and merge with
m1’s metadata

DELIV3 = [1, 0, 0]

SENT3 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

m1

m2

m3

A message with metadata SENTm
is deliverable at process i if:

for all k, DELIVi[k] ≥ SENTm[k,i]

✅

4

A receiver-side protocol
[Raynal et al., 1991]

DELIV1 = [0, 0, 0]

SENT1 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV2 = [0, 0, 0]

SENT2 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

DELIV3 = [0, 0, 0]

SENT3 = [0, 0, 0,
0, 0, 0,
 0, 0, 0]

 [0, 0, 0,
0, 0, 0,

 0, 0, 0]

 [0, 0, 1, 0, 0, 0, 0, 0, 0]

 [0, 1, 1, 0, 0, 0, 0, 0, 0]

SENT1 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

SENT1 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT1[1,3]

increment
SENT1[1,2]

deliverable

✅

∀k. DELIV2[k] ≥ [0,
0,
0]

undeliverable

❌

∀k. DELIV3[k] ≱ [1,
0,
0]

deliverable

✅

∀k. DELIV3[k] ≥ [0,
0,
0]

deliverable

✅

∀k. DELIV3[k] ≥ [1,
0,
0]

increment
SENT1[2,3]

SENT2 = [0, 1, 1,
0, 0, 1,
 0, 0, 0]

DELIV2 = [1, 0, 0]

SENT2 = [0, 1, 1,
0, 0, 0,
 0, 0, 0]

increment
SENT2[1,2]

and merge with
m2’s metadata

increment
SENT3[1,3]

and merge with
m1’s metadata

increment
SENT3[2,3]

and merge with
m3’s metadata

DELIV3 = [1, 0, 0]

SENT3 = [0, 0, 1,
0, 0, 0,
 0, 0, 0]

DELIV3 = [1, 1, 0]

SENT3 = [0, 1, 1,
0, 0, 1,
 0, 0, 0]

m1

m2

m3

A message with metadata SENTm
is deliverable at process i if:

for all k, DELIVi[k] ≥ SENTm[k,i]

✅

4

5

A sender-side protocol
[Mattern and Fünfrocken, 1995]

5

output bu!eroutput bu!eroutput bu!er

A sender-side protocol
[Mattern and Fünfrocken, 1995]

5

output bu!eroutput bu!eroutput bu!er

A sender-side protocol
[Mattern and Fünfrocken, 1995]

5

output bu!eroutput bu!eroutput bu!er

A sender-side protocol
[Mattern and Fünfrocken, 1995]

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

5

output bu!eroutput bu!eroutput bu!er

A sender-side protocol
[Mattern and Fünfrocken, 1995]

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

5

output bu!eroutput bu!eroutput bu!er

A sender-side protocol
[Mattern and Fünfrocken, 1995]

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

5

output bu!eroutput bu!eroutput bu!er

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1
✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

5

output bu!eroutput bu!eroutput bu!er

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1
✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

5

output bu!eroutput bu!eroutput bu!er

❌

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1
✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

5

output bu!eroutput bu!eroutput bu!er

❌

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

5

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

5

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

5

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

5

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

ack(m2)

5

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

ack(m2)

5

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

✅

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

ack(m2)

5

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

m3

✅

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

ack(m2)

5

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

m3

✅

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

ack(m2)

ack(m3)
5

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

m3

✅

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

ack(m2)

ack(m3)

send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

5

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

m3

✅

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

ack(m2)

ack(m3)

approximates
synchronous

communication

send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

5

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

m3

✅

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

ack(m2)

ack(m3)

approximates
synchronous

communication

processing…

send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

5

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

A sender-side protocol
[Mattern and Fünfrocken, 1995]

m1

m2

✅

✅

algorithm:
1. wait for a message to appear
2. dequeue & transmit next message
3. wait for acknowledgment
4. go to step 1

ack(m2)

approximates
synchronous

communication

processing…

send(m1) → send(m2) ⇒ deliver(m1) →p deliver(m2)

Causal delivery:
For all messages m1 and m2 delivered at process p,

(total order of events
on process p)

5

output bu!eroutput bu!eroutput bu!er

6

output bu!eroutput bu!eroutput bu!er

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

✅

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

✅

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

m1
✅

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

m1
✅

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

❌

m1
✅

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

❌

m1

m2*

✅

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

❌

m1

m2*

✅

“eager send”

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

❌

m1

m2*

✅

“eager send”

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

❌

m1

m2*

✅

processing…

“eager send”

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

❌

m1

m2*

✅

ack(m2*) processing…

“eager send”

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

m1

m2*

✅

ack(m2*) processing…

“eager send”

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

m1

m2*

✅

ack(m2*) processing…

“eager send”

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

m1

m2*

✅

ack(m2*) processing…

m2

“eager send”

6

Idea: the “can you
keep a secret?”

protocol

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

m1

m2*

✅

ack(m2*) processing…

m2

“eager send”

“now you can tell”

6

Idea: the “can you
keep a secret?”

protocol

ack(m2)

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

m1

m2*

✅

ack(m2*) processing…

m2

“eager send”

“now you can tell”

6

Idea: the “can you
keep a secret?”

protocol

ack(m2)

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

m1

m2*

✅

ack(m2*) processing…

m2

“eager send”

“now you can tell”

6

Idea: the “can you
keep a secret?”

protocol

ack(m2)

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

m1

m2*

✅

✅

ack(m2*) processing…

m2

“eager send”

“now you can tell”

6

Idea: the “can you
keep a secret?”

protocol

ack(m2)

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

m1

m2*

m3

✅

✅

ack(m2*) processing…

m2

“eager send”

“now you can tell”

6

Idea: the “can you
keep a secret?”

protocol

ack(m2)

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

m1

m2*

m3

✅

✅

ack(m2*)

ack(m3)

processing…

m2

“eager send”

“now you can tell”

6

Idea: the “can you
keep a secret?”

protocol

ack(m2)

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

m1

m2*

m3

✅

✅

ack(m2*)

ack(m3)

processing…

m2

“eager send”

“now you can tell”

6

Idea: the “can you
keep a secret?”

protocol

ack(m2)

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

m1

m2*

m3

✅

✅

ack(m2*)

ack(m3)

processing…

m2

“eager send”

“now you can tell”

m3*

6

Idea: the “can you
keep a secret?”

protocol

ack(m2)

output bu!eroutput bu!eroutput bu!er

ack(m1)

❌

✅

m1

m2*

m3

✅

✅

ack(m2*)

ack(m3)

processing…

m2

“eager send”

“now you can tell”

m3*
!

6

Idea: the “can you
keep a secret?”

protocol

some design considerations for the “can you keep a secret?” protocol

7

some design considerations for the “can you keep a secret?” protocol

• Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?

7

some design considerations for the “can you keep a secret?” protocol

• Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
• Right away. In fact, for FIFO delivery, the sender shouldn’t send now-you-can-tell until the eager send is ack’d!

7

some design considerations for the “can you keep a secret?” protocol

• Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
• Right away. In fact, for FIFO delivery, the sender shouldn’t send now-you-can-tell until the eager send is ack’d!

• Can you do an eager send as a result of an eager send?

7

some design considerations for the “can you keep a secret?” protocol

• Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
• Right away. In fact, for FIFO delivery, the sender shouldn’t send now-you-can-tell until the eager send is ack’d!

• Can you do an eager send as a result of an eager send?
• No. E.g., if Ron can eagerly send m3, then it can overtake m1 on the way to Sam, which was the original problem!

7

some design considerations for the “can you keep a secret?” protocol

• Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
• Right away. In fact, for FIFO delivery, the sender shouldn’t send now-you-can-tell until the eager send is ack’d!

• Can you do an eager send as a result of an eager send?
• No. E.g., if Ron can eagerly send m3, then it can overtake m1 on the way to Sam, which was the original problem!

• When a process wants to send a message as a result of an eager send it previously received, can the new message go into
the output bu$er while waiting for the now-you-can-tell message, or should it not even be bu$ered yet?

7

some design considerations for the “can you keep a secret?” protocol

• Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
• Right away. In fact, for FIFO delivery, the sender shouldn’t send now-you-can-tell until the eager send is ack’d!

• Can you do an eager send as a result of an eager send?
• No. E.g., if Ron can eagerly send m3, then it can overtake m1 on the way to Sam, which was the original problem!

• When a process wants to send a message as a result of an eager send it previously received, can the new message go into
the output bu$er while waiting for the now-you-can-tell message, or should it not even be bu$ered yet?
• I don’t know!

7

some design considerations for the “can you keep a secret?” protocol

• Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
• Right away. In fact, for FIFO delivery, the sender shouldn’t send now-you-can-tell until the eager send is ack’d!

• Can you do an eager send as a result of an eager send?
• No. E.g., if Ron can eagerly send m3, then it can overtake m1 on the way to Sam, which was the original problem!

• When a process wants to send a message as a result of an eager send it previously received, can the new message go into
the output bu$er while waiting for the now-you-can-tell message, or should it not even be bu$ered yet?
• I don’t know!

• (my excuse for giving a distributed systems talk at WGLD) How about some kind of information %ow analysis?

7

some design considerations for the “can you keep a secret?” protocol

• Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
• Right away. In fact, for FIFO delivery, the sender shouldn’t send now-you-can-tell until the eager send is ack’d!

• Can you do an eager send as a result of an eager send?
• No. E.g., if Ron can eagerly send m3, then it can overtake m1 on the way to Sam, which was the original problem!

• When a process wants to send a message as a result of an eager send it previously received, can the new message go into
the output bu$er while waiting for the now-you-can-tell message, or should it not even be bu$ered yet?
• I don’t know!

• (my excuse for giving a distributed systems talk at WGLD) How about some kind of information %ow analysis?
• if an analysis shows m2 is in fact not related to m1, I can send m2 without regard to whether I've heard back about m1

7

some design considerations for the “can you keep a secret?” protocol

• Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
• Right away. In fact, for FIFO delivery, the sender shouldn’t send now-you-can-tell until the eager send is ack’d!

• Can you do an eager send as a result of an eager send?
• No. E.g., if Ron can eagerly send m3, then it can overtake m1 on the way to Sam, which was the original problem!

• When a process wants to send a message as a result of an eager send it previously received, can the new message go into
the output bu$er while waiting for the now-you-can-tell message, or should it not even be bu$ered yet?
• I don’t know!

• (my excuse for giving a distributed systems talk at WGLD) How about some kind of information %ow analysis?
• if an analysis shows m2 is in fact not related to m1, I can send m2 without regard to whether I've heard back about m1
• happens-before is too coarse; we use it because it's an overapproximation of actual causality that's easy to compute

7

some design considerations for the “can you keep a secret?” protocol

• Should a recipient acknowledge eager sends right away, or wait until it gets the now-you-can-tell message?
• Right away. In fact, for FIFO delivery, the sender shouldn’t send now-you-can-tell until the eager send is ack’d!

• Can you do an eager send as a result of an eager send?
• No. E.g., if Ron can eagerly send m3, then it can overtake m1 on the way to Sam, which was the original problem!

• When a process wants to send a message as a result of an eager send it previously received, can the new message go into
the output bu$er while waiting for the now-you-can-tell message, or should it not even be bu$ered yet?
• I don’t know!

• (my excuse for giving a distributed systems talk at WGLD) How about some kind of information %ow analysis?
• if an analysis shows m2 is in fact not related to m1, I can send m2 without regard to whether I've heard back about m1
• happens-before is too coarse; we use it because it's an overapproximation of actual causality that's easy to compute
• it’s 2023 and we’re PL people, dang it; let’s use language-level techniques that weren’t available when these protocols

were originally designed in the ’90s

7

