
NUS PLSE Seminar

12 October 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Verified Causal Broadcast

with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

NUS PLSE Seminar

12 October 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Verified Causal Broadcast

with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

NUS PLSE Seminar

12 October 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Verified Causal Broadcast

with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

NUS PLSE Seminar

12 October 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Verified Causal Broadcast

with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

NUS PLSE Seminar

12 October 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Verified Causal Broadcast

with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

NUS PLSE Seminar

12 October 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Verified Causal Broadcast

with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

NUS PLSE Seminar

12 October 2022

Patrick Redmond Gan Shen Niki Vazou Lindsey Kuper

Verified Causal Broadcast

with Liquid Haskell

github.com/lsd-ucsc/cbcast-lh

2

Lost my …

2

Lost my …

Found it!

2

Lost my …

Found it!

😕

2

Lost my …

Found it!

😕

happens-before

2

Lost my …

Found it!

😕

happens-before

2

Lost my …

Found it!

🙂
FIFO delivery

happens-before

2

Lost my …

Found it!

🙂 Yay!
FIFO delivery

happens-before

2

Lost my …

Found it!

🙂

😮

Yay!
FIFO delivery

😮

happens-before

2

Lost my …

Found it!

🙂

😮

Yay!
FIFO delivery

😮

happens-before

2

Lost my …

Found it!

🙂

😮

Yay!
FIFO delivery

😮

happens-before

2

Lost my …

Found it!

🙂 Yay!
FIFO delivery

happens-before

🙂🙂

2

Causal broadcast with vector clocks [Birman et al., 1991] 3

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …
[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …
[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …
[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …
[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅
[0,0,0,1]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …
[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅
[0,0,0,1]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …
[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅
[0,0,0,1]

[0,0,0,1]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅
[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,1]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,1]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

Yay!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[1,0,0,2]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

Yay!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[1,0,0,2]

[1,0,0,2]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

Yay!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

❌
❌

❌

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[1,0,0,2]

[1,0,0,2]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

Yay!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

✅

❌
❌

❌

[0,0,0,2]

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[0,0,0,2]

[1,0,0,2]

✅

[1,0,0,2]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Lost my …

Found it!

Yay!

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

✅

❌
❌

❌

[0,0,0,2]

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[0,0,0,2]

[1,0,0,2]

✅

✅✅

[1,0,0,2]

[1,0,0,2][1,0,0,2]

A message is deliverable

if its VC is:

• 1 greater than recipient’s

VC in sender’s position

• ≤ recipient’s VC elsewhere

✅

Causal broadcast with vector clocks [Birman et al., 1991] 3

Programmers should be able to…

express and prove interesting correctness properties

4

Programmers should be able to…

express and prove interesting correctness properties
…of deployable implementations of distributed systems

4

Programmers should be able to…

express and prove interesting correctness properties
…of deployable implementations of distributed systems
…using language-integrated verification tools

4

Programmers should be able to…

express and prove interesting correctness properties
…of deployable implementations of distributed systems
…using language-integrated verification tools (i.e., types!)

4

5

Refinement types

5

type Nat = { v:Int | v >= 0 }

Refinement types

5

type Nat = { v:Int | v >= 0 }

Refinement types

5

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

Refinement types

5

vcMerge ::

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

VectorClock -> VectorClock -> VectorClock

Refinement types

5

vcMerge ::

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

vcMerge = zipWith max
VectorClock -> VectorClock -> VectorClock

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

Refinement types

5

vcMerge ::

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

vcMerge = zipWith max
VectorClock -> VectorClock -> VectorClock

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

type VCsized N = { vc:VectorClock | len vc == N }

Refinement types

5

vcMerge ::

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

vcMerge = zipWith max
VectorClock -> VectorClock -> VectorClock

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

Refinement types

5

vcMerge ::

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

vcMerge = zipWith max
VectorClock -> VectorClock -> VectorClock

e.g., vcMerge [1,0,0,0] [0,2,0,1] = [1,2,0,1]

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}

Refinement types

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Refinement types

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Refinement reflection

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Refinement reflection

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Refinement reflection

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Refinement reflection

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Refinement reflection

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Refinement reflection

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Refinement reflection

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Refinement reflection

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge
vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Refinement reflection

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge
vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

Refinement reflection

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge
vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max application code

Refinement reflection

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge
vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

6

type VectorClock = [Nat]
type Nat = { v:Int | v >= 0 }

type VCsized N = { vc:VectorClock | len vc == N }
type VCsameLength V = VCsized {len V}

vcMerge :: v:VectorClock -> VCsameLength {v} -> VCsameLength {v}
vcMerge = zipWith max

verification code

application code

Refinement reflection

type Commutative a A = x:a -> y:a -> { _:Proof | A x y == A y x }

vcMergeComm :: n:Nat -> Commutative (VCsized n) vcMerge
vcMergeComm _n [] [] = ()
vcMergeComm n (_x:xs) (_y:ys) = vcMergeComm (n - 1) xs ys

verification code

7

✅

✅

✅

✅

✅

✅

❌
❌

❌

✅

✅
✅

’s process history (pHist):
[(Deliver “Lost my ”),
 (Deliver “Found it!”),
 (Broadcast “Yay!”),
 …]

(Local) causal delivery as a refinement type

verification code

7

✅

✅

✅

✅

✅

✅

❌
❌

❌

✅

✅
✅

type LocalCausalDelivery P =
 = { m1 : Message | elem (Deliver (pID P) m1) (pHist P) }
 -> { m2 : Message | elem (Deliver (pID P) m2) (pHist P)
 && vcLess (mVC m1) (mVC m2) }
 -> { _: Proof | processOrder (pHist P) (Deliver (pID P) m1)
 (Deliver (pID P) m2) }

’s process history (pHist):
[(Deliver “Lost my ”),
 (Deliver “Found it!”),
 (Broadcast “Yay!”),
 …]

(Local) causal delivery as a refinement type

verification code

7

✅

✅

✅

✅

✅

✅

❌
❌

❌

✅

✅
✅

type LocalCausalDelivery P =
 = { m1 : Message | elem (Deliver (pID P) m1) (pHist P) }
 -> { m2 : Message | elem (Deliver (pID P) m2) (pHist P)
 && vcLess (mVC m1) (mVC m2) }
 -> { _: Proof | processOrder (pHist P) (Deliver (pID P) m1)
 (Deliver (pID P) m2) }

’s process history (pHist):
[(Deliver “Lost my ”),
 (Deliver “Found it!”),
 (Broadcast “Yay!”),
 …]

(Local) causal delivery as a refinement type

verification code

7

✅

✅

✅

✅

✅

✅

❌
❌

❌

✅

✅
✅

type LocalCausalDelivery P =
 = { m1 : Message | elem (Deliver (pID P) m1) (pHist P) }
 -> { m2 : Message | elem (Deliver (pID P) m2) (pHist P)
 && vcLess (mVC m1) (mVC m2) }
 -> { _: Proof | processOrder (pHist P) (Deliver (pID P) m1)
 (Deliver (pID P) m2) }

’s process history (pHist):
[(Deliver “Lost my ”),
 (Deliver “Found it!”),
 (Broadcast “Yay!”),
 …]

(Local) causal delivery as a refinement type

verification code

7

✅

✅

✅

✅

✅

✅

❌
❌

❌

✅

✅
✅

type LocalCausalDelivery P =
 = { m1 : Message | elem (Deliver (pID P) m1) (pHist P) }
 -> { m2 : Message | elem (Deliver (pID P) m2) (pHist P)
 && vcLess (mVC m1) (mVC m2) }
 -> { _: Proof | processOrder (pHist P) (Deliver (pID P) m1)
 (Deliver (pID P) m2) }

’s process history (pHist):
[(Deliver “Lost my ”),
 (Deliver “Found it!”),
 (Broadcast “Yay!”),
 …]

(Local) causal delivery as a refinement type

verification code

7

✅

✅

✅

✅

✅

✅

❌
❌

❌

✅

✅
✅

type LocalCausalDelivery P =
 = { m1 : Message | elem (Deliver (pID P) m1) (pHist P) }
 -> { m2 : Message | elem (Deliver (pID P) m2) (pHist P)
 && vcLess (mVC m1) (mVC m2) }
 -> { _: Proof | processOrder (pHist P) (Deliver (pID P) m1)
 (Deliver (pID P) m2) }

’s process history (pHist):
[(Deliver “Lost my ”),
 (Deliver “Found it!”),
 (Broadcast “Yay!”),
 …]

(Local) causal delivery as a refinement type

application code

8

verification code

Running the protocol preserves (local) causal delivery

data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver

step :: Op r -> Process -> Process
step (OpBroadcast r) p = …
step (OpReceive m) p = …
step (OpDeliver) p = …

application code

8

verification code

Running the protocol preserves (local) causal delivery

data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver

step :: Op r -> Process -> Process
step (OpBroadcast r) p = …
step (OpReceive m) p = …
step (OpDeliver) p = …

application code

8

verification codelcdStep :: op : Op r
 -> p : Process
 -> LocalCausalDelivery p
 -> LocalCausalDelivery (step p op)
lcdStep op p lcdp =
 case op ? step op p of
 OpBroadcast r -> … -- short proof
 OpReceive m -> … -- short proof
 OpDeliver -> … -- long proof

Running the protocol preserves (local) causal delivery

data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver

step :: Op r -> Process -> Process
step (OpBroadcast r) p = …
step (OpReceive m) p = …
step (OpDeliver) p = …

application code

8

verification codelcdStep :: op : Op r
 -> p : Process
 -> LocalCausalDelivery p
 -> LocalCausalDelivery (step p op)
lcdStep op p lcdp =
 case op ? step op p of
 OpBroadcast r -> … -- short proof
 OpReceive m -> … -- short proof
 OpDeliver -> … -- long proof

Running the protocol preserves (local) causal delivery

data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver

step :: Op r -> Process -> Process
step (OpBroadcast r) p = …
step (OpReceive m) p = …
step (OpDeliver) p = …

application code

8

verification codelcdStep :: op : Op r
 -> p : Process
 -> LocalCausalDelivery p
 -> LocalCausalDelivery (step p op)
lcdStep op p lcdp =
 case op ? step op p of
 OpBroadcast r -> … -- short proof
 OpReceive m -> … -- short proof
 OpDeliver -> … -- long proof

Running the protocol preserves (local) causal delivery

data Op r = OpBroadcast r | OpReceive (Message r) | OpDeliver

step :: Op r -> Process -> Process
step (OpBroadcast r) p = …
step (OpReceive m) p = …
step (OpDeliver) p = …

application code

8

verification codelcdStep :: op : Op r
 -> p : Process
 -> LocalCausalDelivery p
 -> LocalCausalDelivery (step p op)
lcdStep op p lcdp =
 case op ? step op p of
 OpBroadcast r -> … -- short proof
 OpReceive m -> … -- short proof
 OpDeliver -> … -- long proof

Running the protocol preserves (local) causal delivery

Running the protocol

for one step

preserves local causal delivery

= “relies on”

9

Running the protocol

for one step

preserves local causal delivery

= “relies on”

lcdS
tep

9

Running the protocol

for one step

preserves local causal delivery

broadcast, receive, deliver

each preserve local causal delivery

(deliver is the hard part)

= “relies on”

lcdS
tep

9

Running the protocol

for one step

preserves causal delivery

Running the protocol

for one step

preserves local causal delivery

broadcast, receive, deliver

each preserve local causal delivery

(deliver is the hard part)

= “relies on”

lcdS
tep

9

Running the protocol

for one step

preserves causal delivery

Running the protocol

for one step

preserves local causal delivery

broadcast, receive, deliver

each preserve local causal delivery

(deliver is the hard part)

= “relies on”

lcdS
tep

9

verification codetype CausalDelivery X =
 pid : PID -- a pid in the domain of execution X
 -> { m1 : Message | elem (Deliver pid m1) (pHist (X pid)) }
 -> { m2 : Message | elem (Deliver pid m2) (pHist (X pid))
 && happensBefore X (Broadcast m1) (Broadcast m2) }
 -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m1) (Deliver pid m2) }

Running the protocol

for one step

preserves causal delivery

Running the protocol

for one step

preserves local causal delivery

whole execution observes

causal delivery →

each process observes

local causal delivery

broadcast, receive, deliver

each preserve local causal delivery

(deliver is the hard part)

= “relies on”

lcdS
tep

9

verification codetype CausalDelivery X =
 pid : PID -- a pid in the domain of execution X
 -> { m1 : Message | elem (Deliver pid m1) (pHist (X pid)) }
 -> { m2 : Message | elem (Deliver pid m2) (pHist (X pid))
 && happensBefore X (Broadcast m1) (Broadcast m2) }
 -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m1) (Deliver pid m2) }

Running the protocol

for one step

preserves causal delivery

Running the protocol

for one step

preserves local causal delivery

whole execution observes

causal delivery →

each process observes

local causal delivery

vector clocks reflect

happens-before

broadcast, receive, deliver

each preserve local causal delivery

(deliver is the hard part)

= “relies on”

lcdS
tep

9

verification codetype CausalDelivery X =
 pid : PID -- a pid in the domain of execution X
 -> { m1 : Message | elem (Deliver pid m1) (pHist (X pid)) }
 -> { m2 : Message | elem (Deliver pid m2) (pHist (X pid))
 && happensBefore X (Broadcast m1) (Broadcast m2) }
 -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m1) (Deliver pid m2) }

Running the protocol

for one step

preserves causal delivery

Running the protocol

for one step

preserves local causal delivery

whole execution observes

causal delivery →

each process observes

local causal delivery

each process observes

local causal delivery →

whole execution observes

causal delivery

vector clocks reflect

happens-before

broadcast, receive, deliver

each preserve local causal delivery

(deliver is the hard part)

= “relies on”

lcdS
tep

9

verification codetype CausalDelivery X =
 pid : PID -- a pid in the domain of execution X
 -> { m1 : Message | elem (Deliver pid m1) (pHist (X pid)) }
 -> { m2 : Message | elem (Deliver pid m2) (pHist (X pid))
 && happensBefore X (Broadcast m1) (Broadcast m2) }
 -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m1) (Deliver pid m2) }

Running the protocol

for one step

preserves causal delivery

Running the protocol

for one step

preserves local causal delivery

whole execution observes

causal delivery →

each process observes

local causal delivery

each process observes

local causal delivery →

whole execution observes

causal delivery

vector clocks reflect

happens-before

vector clocks preserve

happens-before

broadcast, receive, deliver

each preserve local causal delivery

(deliver is the hard part)

= “relies on”

lcdS
tep

9

verification codetype CausalDelivery X =
 pid : PID -- a pid in the domain of execution X
 -> { m1 : Message | elem (Deliver pid m1) (pHist (X pid)) }
 -> { m2 : Message | elem (Deliver pid m2) (pHist (X pid))
 && happensBefore X (Broadcast m1) (Broadcast m2) }
 -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m1) (Deliver pid m2) }

Running the protocol

for any number of steps

preserves causal delivery

Running the protocol

for one step

preserves causal delivery

Running the protocol

for one step

preserves local causal delivery

whole execution observes

causal delivery →

each process observes

local causal delivery

each process observes

local causal delivery →

whole execution observes

causal delivery

vector clocks reflect

happens-before

vector clocks preserve

happens-before

(+ induction)

broadcast, receive, deliver

each preserve local causal delivery

(deliver is the hard part)

= “relies on”

lcdS
tep

9

verification codetype CausalDelivery X =
 pid : PID -- a pid in the domain of execution X
 -> { m1 : Message | elem (Deliver pid m1) (pHist (X pid)) }
 -> { m2 : Message | elem (Deliver pid m2) (pHist (X pid))
 && happensBefore X (Broadcast m1) (Broadcast m2) }
 -> { _: Proof | procOrder (pHist (X pid)) (Deliver pid m1) (Deliver pid m2) }

Programmers should be able to…

express and prove interesting correctness properties

…of deployable implementations of distributed systems

…using language-integrated verification tools (i.e., types!)

10

Programmers should be able to…

express and prove interesting correctness properties

…of deployable implementations of distributed systems

…using language-integrated verification tools (i.e., types!)

10

[HATRA 2021]

11

github.com/lsd-ucsc/cbcast-lh

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

✅

❌
❌

❌

[0,0,0,2]

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[0,0,0,2]

[1,0,0,2]

✅

✅
✅

[1,0,0,2]

[1,0,0,2][1,0,0,2]

Thank you!

Languages, Systems, and Data Lab: lsd.ucsc.edu

Lindsey’s research blog: decomposition.al

http://lsd.ucsc.edu
http://decomposition.al

11

github.com/lsd-ucsc/cbcast-lh

[0,0,0,1]

[0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

✅

✅

✅

✅

✅

✅

❌
❌

❌

[0,0,0,2]

[0,0,0,1]

[0,0,0,1]
[0,0,0,2]

[0,0,0,2]
[0,0,0,1]

[0,0,0,2]

[1,0,0,2]

✅

✅
✅

[1,0,0,2]

[1,0,0,2][1,0,0,2]

Thank you!

Languages, Systems, and Data Lab: lsd.ucsc.edu

Lindsey’s research blog: decomposition.al

http://lsd.ucsc.edu
http://decomposition.al

