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ABSTRACT
Serverless runtime systems are complex software artifacts and dif-
ficult to make reliable. We present a large-scale empirical study of
bugs in serverless runtimes, in the context of the popular open-
source Knative Serving serverless platform. We analyze issues re-
ported against Knative Serving over a three-year period and identify
broad trends. Our findings shed light on the challenges of building
correct, efficient serverless runtimes and suggest fruitful directions
for further research.
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1 INTRODUCTION
Serverless computing promises to drastically simplify distributed
system deployments by automatically deploying and managing the
compute infrastructure underlying an application’s code. In partic-
ular, the approach automatically deploys more compute resources
when system load increases and removes compute resources when
system load decreases, potentially even decommissioning all re-
sources and “scaling-to-zero”. Thus, in the ideal case, serverless
computing achieves perfect utilization: every deployed resource
performs useful work for the application, and when there is no
work to be done, the application can remain available without any
backing resources.

Unfortunately, the ideal serverless vision is elusive since it re-
quires that a serverless runtime (i.e., the system that manages re-
sources for a serverless application) attain complex, and sometimes
even contradictory, design goals.

For example, serverless runtimes aim to maintain application
availability while supporting dynamic changes to an application’s
configuration and its load. Autoscaling can help attain this goal, yet
a runtime’s autoscaling must balance utilization and performance.

For utilization, a runtime decommissions resources that are not
in use by an application to reduce waste. However, decommission-
ing resources can lead to the notorious “cold-start” problem, in
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which subsequent invocations require applications to execute on re-
cently deployed resources that are “cold” (i.e., performance-critical
system caches are empty and code must be loaded from storage
into memory) [Mohan et al. 2019]. These challenges are made even
more complex by emergent properties that arise when seemingly
independent design goals interact.

In this paper, we empirically study the key challenges faced
when building a correct and efficient serverless runtime. We first
present the first large scale study of bugs in serverless runtimes. In
particular, we study all the 103 reported bugs that cause an issue
in runtime behavior from the last three years in Knative [Kna-
tive Authors 2023], a popular open-source serverless platform. We
choose Knative because: (1) Knative is open-source and has a public
issue tracker; (2) Knative is in active development, with new fea-
tures and bug fixes released each day; (3) Knative is mature, having
been in development since July 2018; (4) Knative is integrated into
Kubernetes [Kubernetes Authors 2023a], the industry standard con-
tainer orchestration platform; and (5) Knative is an enterprise-level
solution, with adoption from major companies including Google,
VMWare and IBM. Section 2 provides additional details on Knative
including its design and integration into Kubernetes.

We then taxonomize the bugs in our study into seven overlapping
categories based upon the design goals that they violate as well as
the system component involved in the bug. Our taxonomy reveals
that the majority of bugs fall into one (or more) of four categories,
with each of the four categories accounting for at least 25% of all
bugs: (1) status condition bugs, i.e., bugs relating to how Knative de-
termines the health and readiness of its components; (2) Kubernetes
interaction bugs, i.e., bugs relating to how Knative interacts with
Kubernetes; (3) configuration bugs, i.e., bugs in which Knative does
not correctly support a configuration parameter or combination of
parameters; and (4) autoscaling bugs, i.e., bugs in which Knative’s
Autoscaler does not work correctly. Section 3 details our study
methodology and bug taxonomy, and provides examples for each
category.

We identify three key takeaways from our survey and propose
three corresponding directions for future work (Section 5). First, we
observe that Knative’s intended semantics are often poorly under-
stood, even by Knative developers. Thus, we suggest formalizing
a more accurate and precise serverless runtime semantics. Sec-
ond, Knative developers often lack an understanding of how code
changes will interact with different parts of the system, as shown by
the high number of Kubernetes interaction bugs. Thus, we suggest
investigating automated testing for Knative. Finally, we observe
that while Knative configuration bugs are not misconfiguration
bugs, configuration bugs are often “fixed” by changing the value
of default parameters. Thus, we suggest work to apply automated
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testing, automated configuration checking tools, or formal methods
to configurations.

In summary, we make the following contributions:
• We perform the first large-scale study of bugs in serverless
runtimes.

• We taxonomize serverless runtime bugs into seven groups
and identify broad trends.

• Based on our analysis of bugs, we identify promising areas
of future work on serverless runtimes.

2 A KNATIVE AND KUBERNETES PRIMER
In this section, we provide background on Knative and Kubernetes.
We study Knative due in large part to its popularity in the computing
industry. Moreover, we observe that Knative is highly flexible and
extensible; it avoids locking its users into any particular design
trade-off [Kaviani et al. 2019]. As a result, whereas a highly tailored
serverless runtime might only illuminate a few interesting design
tradeoffs faced by a serverless runtime, Knative’s generality means
that it explores a significantly larger design space. In sum: we
observe that Knative is perhaps an ideal single system to study in
order to understand the set of issues that will arise when building
a serverless runtime.

In the remainder of this section, we describe Kubernetes (Sec-
tion 2.1), with particular emphasis on the concepts and patterns
that Knative inherits from Kubernetes. Then, we describe the core
components of Knative and how Knative extends Kubernetes to
provide a serverless programming model and runtime (Section 2.2).

2.1 Relevant Kubernetes Concepts
Kubernetes is the container orchestration platform underlying the
Knative serverless platform. In Kubernetes, applications are de-
ployed using a combination of resources, which are abstract repre-
sentations of computing components that can be created, managed,
and deleted through the Kubernetes API. Resources are defined via
manifest files containing attributes which specify their behavior
and characteristics. Knative relies upon three Kubernetes resources
— pods, deployments, and services — to deploy and invoke functions:

• pod: The smallest deployable unit of compute; a thin wrapper
around one or more containers.

• deployment: A resource that identifies how to create or mod-
ify pods that run an application.

• service: A collection of pods running the same application
that can be addressed through the same network endpoint.

Kubernetes manages resources with controllers, which are rou-
tines that implement a control loop to manage a resource’s desired
state. The control loop continuously monitors the current state of
the resource, compares it to the desired state specified in a Kuber-
netes manifest, and takes corrective action to bring the system back
into the desired state as necessary. In addition to configuration
values provided by the user, a resource’s desired state may include
values maintained dynamically by the system. For example, the
deployment controller maintains the desired number of pods in a
deployment and will create replacement pods in response to a pod
failure. The deployment controller may also create or remove pods
if an autoscaling policy causes the deployment’s desired number of
pods to change.

Figure 1: The primary resources involved with deploying a
container application on Knative Serving

2.2 Knative Components
The Knative project consists of three subcomponents: Knative Serv-
ing, Knative Functions, and Knative Eventing. Knative Serving
represents Knative’s serverless runtime; it defines and controls how
serverless workloads are deployed on Kubernetes and contains the
infrastructure that supports Knative’s autoscaling and scale-to-zero
functionality. Knative Functions provides the programming model
that allows users to write stateless functions for Knative without
knowledge of Kubernetes, the Knative runtime, or even contain-
ers. Knative Eventing exposes a collection of APIs for building
event-driven applications with Knative.

The Knative Functions Command Line Interface packages a
user’s serverless “function” into a container environment. Kna-
tive Serving then uses this image and an associated configuration
to generate the resources that underlie a Knative service.

The three primary resources involved with deploying an appli-
cation on Knative Serving are configurations, revisions, and routes.
A configuration specifies the desired state of the Knative applica-
tion and manages the creation of new revisions. A revision is an
immutable snapshot of a container application together with its
configuration; whenever a user modifies an application’s code or
updates its configuration, Knative creates a new revision. Finally,
routes map a network endpoint to one or more revisions.

Together, these resources implement a network service on Ku-
bernetes. Knative orchestrates these resources with a dedicated con-
troller for each resource. For example, when a user deploys a Kna-
tive function, the configuration controller creates a revision. The
revision controller then creates a Kubernetes deployment, which
ultimately runs the application’s container instances.

Knative coordinates these resources to support various deploy-
ment strategies such as enabling progressive roll-out and roll-back
of application changes. Knative can shift application traffic to a
new revision gradually, and can replace a buggy revision with the
previous version if issues arise during deployment. The relationship
between these resources is depicted in Figure 1.

Conditions. Knative provides high-level status reporting on the
health and readiness of its resources by extending the Kubernetes
pattern of conditions [Kubernetes Authors 2023b]. Knative Serving
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Figure 2: A high-level depiction of the data paths and com-
ponents involved in scaling a revision’s instances from zero.

implements a number of condition types, including Ready, Ac-
tive, Container Initialized, etc. Knative controllers read and update
conditions as the state of the system changes; as follows, status
conditions serve as a means of communication between controller
control loops. Namely, in each control loop, a resource’s controller
will observe the state of its dependencies by reading their status
conditions. A controller may then use these observations to update
the status condition values for the resource it manages.

Autoscaling. A key feature of Knative Serving is its autoscaling
and scale-to-zero functionality. The runtime automatically manages
the number of pods in a revision to account for changes in the
request load in the system. The key components include:

• Autoscaler: A component that updates the number of pods
in a revision’s deployment based upon traffic metrics, which
then triggers the Kubernetes’s deployment controller to mod-
ify the number of pods that are deployed.

• Activator: The component that forwards traffic metrics to
the Autoscaler. Additionally, when a revision has no pods,
the activator buffers any requests that arrive to that revision
until the Kubernetes’s deployment controller has created
new pods.

• Ingress Gateway: A component that manages traffic rout-
ing and network programming to make Knative services
accessible from the outside world.

Figure 2 depicts how these components work together to imple-
ment Knative’s autoscaling and scale-to-zero functionality.

3 WHAT ARE THE BUGS?
Wenext present our bug survey.We survey all the runtime-behavior
bugs in Knative’s serverless runtime that were reported on the

Category Name # Tagged % Resolved Example Issues

status conditions 40 74% #10267, #8539
Kubernetes interactions 32 78% #13204, #12538
configuration 28 85% #11926
autoscaling 27 81% #8610, #8685
request routing 18 66% #12593, #11532
version semantics 7 71% #12538
invocation history 5 60% #6504

Table 1: The number of bugs we identified in each category,
and a sampling of representative issues from each category.

Knative Serving public issue tracker between January 2020 and
February 2023, resulting in a dataset of 103 bugs.1

We taxonomize the bugs into seven overlapping categories, based
upon the design principle that the bug violates, the component that
the bug involves, or the bug’s root cause. Table 1 identifies the
number of bugs and a list of representative issues for each category;
a single issue may be resident in multiple categories. In brief, the
categories are:

• status conditions (Section 3.2.1): issues relating to how Kna-
tive determines the health and readiness of its components.

• Kubernetes interactions (Section 3.2.2): issues relating to the
interaction of controller processes within Knative and Ku-
bernetes.

• configuration (Section 3.2.3): issues relating to how the plat-
form responds to configuration parameters.

• autoscaling (Section 3.2.4): issues relating to Knative’s au-
toscaling functionality, including scale-to-zero.

• request routing (Section 3.2.5): issues relating to how incom-
ing requests are distributed to available function instances.

• version semantics (Section 3.2.6): issues relating to how the
platform manages function versions and their updating.

• invocation history (Section 3.2.7): issues where the platform
handled a function invocation differently based on whether
it had been invoked before or not.

In the rest of this section, we first describe the methodology that
we followed to gather our dataset (Section 3.1), and then describe
the bug categories in detail (Section 3.2).

3.1 Methodology
We survey all the publicly reported runtime-behavior bugs in Kna-
tive’s serverless runtime between January 2020 and February 2023.
To limit the survey to issues in the serverless runtime, we limited
the survey to issues in the public GitHub issue tracker for Knative
Serving2 (2063 issues). To limit the survey to only bugs, we fur-
ther filtered issues to only select those that were tagged with the
“kind/bug” label (482 issues remaining). To limit the survey to only
include bugs in runtime behavior, we then filtered out issues that
were tagged with “area/build” or “area/test-and-release” (418 issues
remaining), or those containing the keywords “install”, “registry”,
“test”, “metrics”, “prometheus”, or “grafana” in the issue title (325
issues remaining). Finally, we manually analyzed the remaining
issues and further filtered out 18 bugs that did not include enough

1Our dataset is publicly available at: https://github.com/lsd-ucsc/knative-runtime-bugs
2https://github.com/knative/serving/issues

https://github.com/knative/serving/issues/10267
https://github.com/knative/serving/issues/8539
https://github.com/knative/serving/issues/13204
https://github.com/knative/serving/issues/12538
https://github.com/knative/serving/issues/11926
https://github.com/knative/serving/issues/8610
https://github.com/knative/serving/issues/8685
https://github.com/knative/serving/issues/12593
https://github.com/knative/serving/issues/11532
https://github.com/knative/serving/issues/12538
https://github.com/knative/serving/issues/6504
https://github.com/lsd-ucsc/knative-runtime-bugs
https://github.com/knative/serving/issues
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discussion to understand and 204 bugs that did not relate to run-
time behavior and were therefore out of scope for our survey (most
of these out-of-scope bugs involved user error in configuring or
operating Knative). After all of our filtering, we were left with 103
issues that we believed to be genuine bugs in Knative that involved
Knative’s runtime behavior.

Threats to Validity. Our survey has the following threats to va-
lidity. First, our survey relies on a public bug tracker, and is thus
inherently incomplete in that not all bugs in Knative’s serverless
runtime will result in issues posted on Knative’s GitHub. Similarly,
our survey is incomplete since there may be runtime behavior
problems that were reported in the wrong project (e.g., reported in
Knative Functions), reported without the “kind/bug” label, incor-
rectly tagged (e.g., tagged as “area/build”), or contained keywords
that indicated the wrong type of behavior (e.g., included the key-
word “install”). Our survey is also incomplete since there were some
bugs that contained insufficient discussion and thus we had to elide.
Finally, while Knative is an interesting and popular serverless run-
time, it represents only a single point in the possible design space
of serverless runtimes. Thus, while we believe that many trends
in our survey would extend to other serverless runtime designs,
we cannot offer any assurance that our findings generalize beyond
Knative.

3.2 Problem Areas in Runtime Behavior
In the remainder of this section, we discuss each bug category, or
problem area, that we observed in our survey, in the order of most
prevalent to least prevalent.

3.2.1 Status Condition Bugs. The plurality of bugs in our survey
are related to how Knative uses status conditions to represent the
readiness of its resources. As discussed in Section 2, status condi-
tions indicate the health status and readiness of Knative resources
to other Knative controllers and operators.

Status condition bugs arise when controllers contain errors in
how they read and update conditions to coordinate resources. An
insidious class of status condition bugs arise due to race conditions
in how (potentially multiple) controllers interact with (potentially
multiple) status conditions. Namely, Knative’s use of control loops
results in status conditions that do not update immediately. Rather,
they are reconciled eventually, as controllers act upon them. So,
when multiple controllers update status conditions based on the
values of other conditions, the controllers may encounter race
conditions, many of which involve reading a status condition that
has not yet updated to reflect a change in the component state it
represents.

These bugs reveal that although status conditions provide a
flexible way to represent the status of a resource, using them to
coordinate system components in the dynamic environment of a
serverless runtime requires careful handling of their semantics and
how the dependencies between them are managed.

Example. Issue #8539 describes a race condition across status
conditions that resulted in a revision failing to deploy. In particular,
the bug involves a race condition between a revision’s Ready status
condition and its Pod Autoscaler’s Ready status condition (each
revision includes a Pod Autoscaler to interact with the Knative

...,
StartupProbe: nil,
Lifecycle: nil,

- TerminationMessagePath: "/dev/termination-log",
+ TerminationMessagePath: "",
- TerminationMessagePolicy: "File",
+ TerminationMessagePolicy: "",
- ImagePullPolicy: "IfNotPresent",
+ ImagePullPolicy: "",

...

Figure 3: Log excerpt from ameaningless deployment update.
The revision controller replaces default values set by Kuber-
netes with empty values because Knative does not specify
them in the resource’s manifest.

Autoscaler). The Pod Autoscaler’s Ready status condition is based
upon the revision’s Active status condition, which signals the exis-
tence of active revision pods. In turn, the revision’s Ready status
condition depends on the Pod Autoscaler’s Ready status condition
being set to true. Thus, for a revision’s Ready status condition to
be set, it would need to have already deployed pods. The bug was
fixed by removing the dependency between the Pod Autoscaler’s
Ready status condition and the revision’s Active status condition.

3.2.2 Kubernetes Interaction Bugs. Knative components are tightly
integrated into Kubernetes (see Section 2), so controllers from both
systems must work together to orchestrate the resources required
for function deployments and invocations. A large class of bugs
arises from issues involving unintentional interference between
Knative controllers and Kubernetes controllers. One common re-
frain in Kubernetes interaction bugs involves a Knative controller
interfering with a Kubernetes controller because it misunderstands
the nature of a Kubernetes state change. Another common issue
involves Knative controllers and Kubernetes controllers interfering
because the controllers respond to the same state change without a
mutual awareness of their respective reconciliation efforts. Kuber-
netes interaction bugs often lead to unavailability, lead to excess
resource utilization, or cause the system to enter an incorrect stable
state.

Example. Issue #13204 describes a case of excess resource utiliza-
tion because a Knative controller did not understand the behavior
of an existing Kubernetes controller. In this bug, a Knative revision
controller created a deployment without specifying all available
configuration parameters. Then, a Kubernetes controller set default
values for these omitted parameters. The Knative revision con-
troller observed a difference between the deployment’s intended
configuration and the active configuration (depicted in Figure 3)
and issued an update command to the Kubernetes API to reconcile
the difference. This interaction would occur when Knative would
reconcile all revisions, for example due to the revision controller
restarting. The ensuing chain of deployment updates put unnec-
essary strain on the Kubernetes API server and wastes Knative’s
API quota (update commands are rate limited). The issue highlights
the difficulty in reasoning about which of the many possible state
changes a controller must react to, and those which it should ignore.
The bug has yet to be fixed as of the writing of this paper.

https://github.com/knative/serving/issues/8539
https://github.com/knative/serving/issues/13204
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3.2.3 Configuration Bugs. Knative exposes many configuration
parameters so that users can optimize availability, performance,
and resource usage. Many bugs we observed (27%) involve Knative
Serving incorrectly implementing a configuration setting or behav-
ing incorrectly when configuration values interfere with each other.
By “configuration bugs” we are not referring to misconfiguration
of Knative by users; rather, we are referring to situations when
users chose a combination of configuration values that should have
worked correctly, but did not, due to a bug in Knative Serving itself.
Configuration bugs often result in suboptimal resource utilization
and performance degradation.

Example. Issue #11926 describes a configuration setup in which
the system’s steady state was at an inflection point such that the sys-
tem repeatedly toggled a performance optimization; the frequent
churn degraded performance more than just leaving the perfor-
mance optimization permanently unused would have. In particular,
a user deployed Knative with the minimum pods per function set
to 2, a request capacity per function pod of 100 (the default), and a
target burst capacity of 200 (the default). In periods of high load,
Knative improves system performance by moving the Activator
component (Figure 2) out of the request processing data-path. Kna-
tive initiates the optimization when a revision’s remaining request
capacity (i.e., its total capacity minus its current load) dips below
the target burst capacity. In the user’s deployment, the total revi-
sion capacity was 200 (two revisions with a request capacity of 100
per revision), as was the default target burst capacity, so Knative
toggled its faster data-path optimization on and off for each request.
Knative developers resolved the issue by modifying the default
target burst capacity to 211, a prime number, to make it less likely
that a revision’s total capacity would collide with the default target
burst capacity. This does not solve the oscillation issue, but it does
make the problem less likely since it will not occur on the default
configuration.

3.2.4 Autoscaling Bugs. Roughly a quarter of all bugs in our survey
involve issues with how Knative dynamically manages function
resources in accordance with request load. Autoscaling bugs arise
when Knative does not scale resources up as load increases, leading
to unavailability and poor performance, or does not scale resources
down as load decreases, leading to excess resource consumption.

Examples. Issue #8610 describes a scenario where a network out-
age caused a revision to scale down below what was required for
the current load. As described in Section 2, Knative’s Autoscaler
receives metrics from each revision’s activator when determining
how many pods to deploy. In this bug, a transient network issue
caused the Autoscaler to stop receiving activator metrics; the Au-
toscaler incorrectly interpreted the lack of messages as a period of
no traffic. Consequently, the Autoscaler scaled the revision below
its target capacity.

Issue #8685 describes excess utilization because a single request
handled by a single pod prevented other pods from being scaled
down. To limit request failures when scaling down a pod, Knative
allows outstanding requests to complete before terminating the
pod. In this issue, a long-running request was being processed by
a terminating pod. Knative miscalculated the request capacity of
the revision: it accounted for the long-running request that was

running on the terminating pod but did not account for the capacity
of the terminating pod. To maintain acceptable request capacity
(i.e., positive capacity), the Autoscaler kept an additional pod sitting
idle while the long-running request ran to completion.

3.2.5 Request Routing Bugs. Roughly 20% of bugs in our survey
involved issues in how Knative routes requests to the available
function pods within a revision. In these bugs, Knative’s routing
logic consistently sent requests to revision pods that were at or near
capacity even while other pods in the revision remained idle; thus,
Knative’s request load balancing was worse than a naive round-
robin approach. These bugs can impact application performance
and degrade resource utilization since the bugs prevent revisions
from making effective use of their configured pods.

Examples. Issue #12593 describes a scenario in which all revision
traffic is routed to a single pod. In this issue, a developer configured
Knative to maintain a minimum 2 function pods per revision, with
each pod configured to handle a single request at a time. A bug
in the Knative Activator resulted in requests only being sent to
one of the pods, where they would then queue up. This behavior
drastically limited the utilization of the revision’s resources and
degraded average request latency.

Similarly, issue #11532 describes a scenario where two Activator
components were deployed for high availability, and function pods
were similarly configured to process one request at a time.

When two long-running requests were made to the revision,
the first request began processing and the Autoscaler correctly
provisioned a new pod to handle the second request. Yet, the second
request was routed to the already busy first instance, leaving the
newly scaled instance unutilized.

3.2.6 Version Semantics Bugs. A small, but not insignificant, per-
centage (7%) of bugs in our survey are related to Knative failing to
correctly handle multiple revisions of the same function. As dis-
cussed in Section 2, Knative aims to reduce application downtime
by automatically managing function revisions. Namely, the runtime
can automatically “roll-back” a buggy revision to a previous revi-
sion. In a version semantics bug, the Knative runtime mismanages
a function due to an incorrect assessment of the function’s revision
history, such as which revision was the most recent to have been
marked as healthy. These bugs are especially frustrating for users,
as a given version may contain critical bug fixes or business logic
changes for a serverless application.

Example. Issue #12538 describes a scenario in which Knative and
Kubernetes controllers interfere (Section 3.2.2) in a way that caused
a healthy revision to be replaced by a previous version. In this case, a
node preemption event set the Failed status condition for a revision.
In response, Knative’s configuration controller erroneously replaced
the revisionwith an older version of the function, since it incorrectly
determined that this older revision was the highest version known
to be healthy. At the same time, Kubernetes’ deployment controller
replaced the preempted pod with a new one, thereby creating a new
instance of the original revision. However, Knative’s configuration
controller had already updated the function’s route configuration
such that all traffic went to the older revision. Eventually, Knative’s
Autoscaler scaled the new revision to zero, as it received no traffic.
In the end, the same preemption event caused both Knative and

https://github.com/knative/serving/issues/11926
https://github.com/knative/serving/issues/8610
https://github.com/knative/serving/issues/8685
https://github.com/knative/serving/issues/12593
https://github.com/knative/serving/issues/11532
https://github.com/knative/serving/issues/12538
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Kubernetes controllers to interfere in a manner that resulted in (1)
wasted resources, when the system had pods deployed for both
revisions, and (2) the system converging to a stable but incorrect
state in which an old revision was deployed instead of the most
recent one. Knative developers fixed the issue by changing the
Knative configuration controller so that it would not consider older
revisions over newer ones in the case of a preemption. This fix still
leaves the potential for similar bugs from interference between the
Knative configuration and Kubernetes deployment controllers.

3.2.7 Invocation History Bugs. Finally, a few bugs in our survey
(roughly 5%) are bugs that only occur when a function has a partic-
ular invocation history. In an invocation history bug, the runtime
handles a function’s failure differently if the runtime has executed
the function before. In particular, the invocation history bugs in our
survey involve the runtime behaving differently if the function has
previously succeeded compared to if the function has never been
executed. These bugs result in suboptimal resource utilization.

Example. Issue #6504 describes a scenario in which Knative
leaves a failed revision in a crash loop indefinitely, provided that
the function had previously been completed in the past.

If the function was not executed, then the runtime instead termi-
nates the revision. This bug has not yet been fixed as of the writing
of this paper.3 The issue’s discussion suggests that Knative devel-
opers are struggling to resolve invocation history bugs because
Knative’s design poorly handles pod issues that arise after the first
pod invocation.

3.3 Takeaways
In addition to our bug taxonomy, we identify three takeaways
from our survey. First, Knative’s runtime semantics are difficult to
specify; the first few developer comments in many issues illumi-
nate a difficulty in even determining Knative’s correct behavior. A
formal semantics for Knative’s complex runtime behavior would
help Knative developers with this task. Second, many of Knative’s
bugs involve complex interactions across numerous system com-
ponents interacting with a vast, and sometimes buggy, space of
configurations. Manually testing this space is cumbersome and
likely insufficient. Finally, even though Knative configuration bugs
are not misconfigurations, Knative developers often “fix” them by
changing default configurations. An automated and/or more prin-
cipled approach to handling configuration issues is warranted. In
Section 5, we discuss some directions for future work inspired by
these takeaways.

4 RELATEDWORK
Recent work has empirically studied the challenges developers face
when building serverless applications. In a survey of Stack Overflow
questions, Wen et al. [2021] provide a comprehensive taxonomy of
developer challenges related to serverless computing. Their survey
is not specific to any particular serverless platform, and is focused
on the developer perspective; the majority of surveyed issues relate
to application implementation rather than bugs in the runtime
behavior of serverless platforms themselves, which is the focus of
our work.
3And was opened in January 2020!

Recent work has also explored the design considerations and per-
formance characteristics of serverless platforms including Knative.
Kaviani et al. [2019] provide a comprehensive overview of Knative
and compare its design with several popular serverless platforms.
Their comparison seeks to explore what a common API layer for
serverless might look like, noting that one has yet to emerge. Li
et al. [2019] evaluate the performance of Knative relative to other
open-source serverless platforms based on Kubernetes. The au-
thors identify the design considerations with the greatest impact
on baseline performance, namely the interface between the plat-
form ingress and the function pods, and highlights insufficiencies
in the auto-scaling approaches existing platforms currently employ.
Mohanty et al. [2018] conduct a similar evaluation of open-source
serverless platforms, focusing on request latency and platform avail-
ability under load.

5 DISCUSSION AND FUTUREWORK
Our bug survey highlights the challenges in implementing a per-
formant and reliable serverless runtime on top of Kubernetes, the
industry standard platform for deploying containerized applica-
tions.

With the line between serverless functions and containerized
applications increasingly blurring [Datadog 2022], we believe that
further research at the interface between serverless platforms and
container orchestration platforms can contribute to the maturation
of serverless programming at large. In this section, we suggest
several directions for future work suggested by our survey.

5.1 Clarifying Runtime Semantics
Our survey reveals that in many places, correct runtime behavior
remains underdefined. Many of the issues we reviewed describe
peculiar or suboptimal behaviors, especially around the platform’s
request routing decisions (Section 3.2.5) and its handling of inactive
function resources (Section 3.2.4). In these cases, the “bugginess”
of the behavior was argued intuitively, and could not be discussed
in terms of a well-understood specification being violated. An in-
formal, prose specification of Knative does exist in the form of
the Knative Runtime Contract [Knative Authors 2022], although it
discusses behavior at too high a level to adequately describe many
of the issues we reviewed in our survey. A comprehensive specifi-
cation of Knative’s runtime behavior has yet to be defined. Existing
works [Burckhardt et al. 2021; Jangda et al. 2019] have aimed at
giving a formal semantics to the serverless programming model,
and could serve as inspiration for an eventual formal specification.

The Cloud Native Computing Foundation has articulated a gen-
eral definition of what a serverless platform should consist of [CNCF
2019], but to our knowledge, no one has attempted to precisely de-
fine how one should behave. The discussions on the issues in our
survey dataset may serve as a starting point for codifying a specifi-
cation for a serverless platform’s runtime behavior.

5.2 Automated Testing
We observe that Knative bugs are often caused by complex interac-
tions across multiple system components ( Section 3.2.2) within a
huge, and even buggy (Section 3.2.3) configuration space. Conse-
quently, Knative developers would benefit from automated testing

https://github.com/knative/serving/issues/6504
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to help navigate a large and complex search space, similar to the
approach taken by Sieve [Sun et al. 2022] to test third-party Ku-
bernetes controllers. Such testing would help Knative developers
limit regression bugs, and would also help mitigate the inherent
incompleteness in our study. Moreover, Knative’s architecture is
conducive to automated testing since it is easy to instrument: the
state-centric interface between Knative components and the overall
state of the system readily supports automated testing strategies.
A good starting point would be to find out to what extent existing
automated testing tools such as Sieve [Sun et al. 2022] can apply
to Knative, and explore which types of bugs Sieve might find in
Knative, or how Sieve’s approach would need to be altered to detect
the bugs we study in this survey.

Many bugs also involved a particular ordering of status condition
reads and updates (Section 3.2.1). Model checking could be used to
evaluate controller coordination among the possible interleavings
of these events, bringing the cost of thoroughly testing Knative’s
condition-based readiness model down to something more tractable.
Such an approach could also be used to identify optimization oppor-
tunities, such as where Knative’s readiness model can be relaxed
safely to improve performance.

5.3 Improving Knative Configuration
While Knative configuration bugs are not misconfigurations, Kna-
tive developers nevertheless often “fix” these bugs by modifying
default configuration parameters such that the issues impact fewer
users. This observation suggests two avenues for future work to
improve the correctness and efficiency of Knative.

First, existing automated misconfiguration detection and reso-
lution tools, such as CTest [Sun et al. 2020] and PCheck [Xu et al.
2016], could find configuration parameters that lead to bugs. While
these systems would not fix the bugs, adopting them in the devel-
opment process would help developers to automate the process
of identifying sensible default configurations. There is a research
challenge in scaling such tools to Knative: Knative configuration
issues are often caused by a combination of configuration values
rather than by a single configuration (Section 3.2.3), so misconfigu-
ration tools would need to explore a combinatorial search space of
potentially buggy configurations.

Second, applying formal methods for verifying Knative configu-
rations, similar to Rehearsal [Shambaugh et al. 2016], could mitigate
Knative’s configuration challenges by preventing serverless users
from specifying configurations that Knative cannot support, al-
though this approach would not suffice to address the root causes
of these buggy configurations.
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