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Abstract

The GlasgowHaskell Compiler is known for its feature-laden
runtime system (RTS), which includes lightweight threads,
asynchronous exceptions, and a slew of other features. Their
combination is powerful enough that a programmer may
complete the same task in many different ways — some more
advisable than others.
We present a user-accessible actor framework hidden in

plain sight within the RTS and demonstrate it on a classic
example from the distributed systems literature. We then
extend both the framework and example to the realm of
dynamic types. Finally, we raise questions about how RTS
features intersect and possibly subsume one another, and
suggest that GHC can guide good practice by constraining
the use of some features.
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1 Introduction

Together with its runtime system (RTS), the GlasgowHaskell
Compiler (GHC) is the most commonly used implementation
of Haskell [3]. The RTS is featureful and boasts support for
lightweight threads, two kinds of profiling, transactional
memory, asynchronous exceptions, and more. Combined
with the base package, a programmer can get a lot done
without ever reaching into the extensive set of community
packages on Hackage.

In that spirit, we noticed that there is nothing really stop-
ping one from abusing the tools throwTo and catch to pass
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data between threads. Any user-defined datatype can be
made into an asynchronous exception. Why not implement
message-passing algorithms on that substrate?
We pursued this line of thought, and in this paper we

present an actor framework hidden just under the surface of
the RTS. The paper is organized as follows:

– Section 2 provides a concise summary of asynchronous
exceptions in GHC and the actor model of programming.

– Section 3 details the implementation of our actor frame-
work. We first show how actors receive messages of a
single type, and then extend the framework to support
dynamically typed actors, which receive messages of
more than one type.

– Section 4 shows an implementation of a classic protocol
for leader election using our actor framework. We then
extend the actors with an additional message type and
behavior without changing the original implementation.

– We reflect on whether this was a good idea in Section 5,
by considering the practicality and performance of our
framework, and conclude in Section 6 that asynchronous
exceptions might be more constrained.

This paper is a literate Haskell program.1

2 Brief Background

In this section, we briefly review the status of asynchro-
nous exceptions in GHC (Section 2.1) and the actor model
of programming (Section 2.2); readers already familiar with
these topics may wish to skip this section. Readers unfa-
miliar with the behavior of throwTo, catch, or mask from
the Control.Exception module may wish to first scan the
documentation of throwTo [4].

2.1 Asynchronous Exceptions in GHC

The Glasgow Haskell Compiler (GHC) is unusual in its sup-
port for asynchronous exceptions. Unlike synchronous ex-
ceptions, which are thrown as a result of executing code in
the current thread, asynchronous exceptions are thrown by
threads distinct from the current one, or by the RTS itself.
They are used to communicate conditions that may require
the current thread to terminate: thread cancellation, user
interrupts, or memory limits.

1We use GHC 9.0.2 and base-4.15.1.0. Our actor framework imports

Control.Exception and Control.Concurrent, and we use the extensions

NamedFieldPuns and DuplicateRecordFields for convenience of presen-

tation. The leader election example of Section 4 additionally imports the

module System.Random and uses the ViewPatterns extension. The appen-

dices have other imports, which we do not describe here.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Asynchronous exceptions allow syntactically-distant parts
of a program to interact in unexpected ways, much like
mutable references. A thread needs only the ThreadId of
another to throw a ThreadKilled exception to it. The stan-
dard library function killThread is even implemented as
(\x -> throwTo x ThreadKilled).2 There is no permis-
sion or capability required to access this powerful feature.
Asynchronous exceptions are peculiar because they

aren’t constrained to their stated purpose of “signaling
(or killing) one thread by another” [7]. A thread may
throw any exception to any thread for any reason. This
absence of restrictions means that standard exceptions may
be reused for any purpose, such as to extend greetings:
(\x -> throwTo x $ AssertionFailed "hello"). Even
user-defined datatypes may be thrown as asynchronous ex-
ceptions by declaring an empty instance of Exception [6].
For example, with the declarations in Figure 1, it is possible
to greet in vernacular: (\x -> throwTo x Hi).

Asynchronous exceptions may be caught by the receiving
thread for either cleanup or, surprisingly, recovery. An ex-
ample of recovery includes “inform[ing] the program when
memory is running out [so] it can take remedial action” [7].
The ability to recover from a termination signal seems in-
nocuous, but it leaves asynchronous exceptions open to be-
ing repurposed.

2.2 The Actor Model

The actor model is a computational paradigm characterized
by message passing. Hewitt et al. [5] write that “an actor
can be thought of as a kind of virtual processor that is never
‘busy’ [in the sense that it cannot be sent a message].” In
our setting, we interpret an actor to be a green thread3 with
some state and an inbox. When a message is received by an
actor, it is handled by that actor’s intent function. An intent
function may perform some actions: send a message, update
state, create a new actor, destroy an actor, or terminate itself.
Unless terminated, the actor then waits to process the next
message in its inbox. We will approximate this model with
Haskell’s asynchronous exceptions as the mechanism for
message passing.

More concretely, we think of an actor framework as having
the characteristics of a concurrency-oriented programming

language (COPL), a notion due to Armstrong [1]. After de-
scribing our framework, wewill make the case (in Section 5.1)
that it has many of the characteristics of a COPL. To sum-
marize Armstrong [1], a COPL (1) has processes, (2) which
are strongly isolated, (3) with a unique hidden identifier, (4)

2These identifiers are variously defined in Control.Concurrent and

Control.Exception in base-4.15.1.0.
3A green thread (also “lightweight thread” or “userspace thread”) is a thread

not bound to an OS thread, but dynamically mapped to a CPU by a language-

level scheduler. As opposed to heavier-weight OS threads, green threads

simplify the implementation of a practical actor framework that supports

large numbers of actors.

data Greet = Hi | Hello deriving Show

instance Exception Greet

Figure 1. Show and Exception instances are all that is re-
quired to become an asynchronous exception.

without shared state, (5) that communicate via unreliable
message passing, and (6) can detect when another process
halts. Additionally, (5a) message passing is asynchronous so
that no stuck recipient may cause a sender to become stuck,
(5b) receiving a response is the only way to know that a
prior message was sent, and (5c) messages between two pro-
cesses obey FIFO ordering. While an actor system within an
instance of the RTS cannot satisfy all of these requirements
(e.g., termination of the main thread is not strongly isolated
from the child threads), we will show that our framework
satisfies many requirements of being a COPL with relatively
little effort.

3 Actor Framework Implementation

In our framework, an actor is a Haskell thread running a
provided main loop function. The main loop function medi-
ates message receipt and makes calls to a user-defined intent
function. Here we describe the minimal abstractions around
such threads that realize the actor model. These abstractions
are so minimal as to seem unnecessary; we have sought to
keep them minimal to underscore our point.

3.1 Sending (Throwing) Messages

To send a message, we will throw an exception to the recipi-
ent’s thread identifier. So that the recipient may respond, we
define a self-addressed envelope data type in Figure 2 and
declare the required instances.

Figure 3 defines a send function, sendStatic, which reads
the current thread identifier, constructs a self-addressed enve-
lope, and throws it to the specified recipient. For the purpose
of explication in this paper, it also prints an execution trace.

3.2 Receiving (Catching) Messages

An actor is defined by how it behaves in response to mes-
sages. A user-defined intent function, with the type Intent
shown in Figure 2, encodes behavior as a state transition
that takes a self-addressed envelope argument.

Every actor thread will run a provided main loop function
to manage message receipt and processing. The main loop
function installs an exception handler to accumulate mes-
sages in an inbox and calls a user-defined intent function on
each. Figure 3 defines a main loop, runStatic, that takes an
Intent function and its initial state and does not return. It
masks asynchronous exceptions so they will only be raised
at well-defined points within the loop: during threadDelay
or possibly during the Intent function.
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The loop in Figure 3 has two pieces of state: that of the
intent function, and an inbox of messages to be processed.
The loop body is divided roughly into three cases by an
exception handler and a case-split on the inbox list:

(1) If the inbox is empty, sleep for an arbitrary length of
time and then recurse on the unchanged actor state and
the empty inbox.

(2) If the inbox has a message, call the intent function and
recurse on the updated actor state and the remainder
of the inbox.

(3) If, during cases (1) or (2), an Envelope exception is
received, recurse on the unchanged actor state and an
inbox with the new envelope appended to the end.

In the normal course of things, an actor will start with an
empty inbox and go to sleep. If a message is received during
sleep, the actor will wake (because threadDelay is defined
to be interruptible), add the message to its inbox, and recurse.
On the next loop iteration, the actorwill process thatmessage
and once again have an empty inbox. Exceptions are masked
(using mask_4) outside of interruptible actions so that the
bookkeeping of recursing with updated state through the
loop is not disrupted.

Unsafety. Before moving forward, let us acknowledge
that this is not safe. An exception may arrive while executing
the intent function. Despite our use of mask_, if the intent
function executes an interruptible action, then it will be
preempted. In this case the intent function’s work will be
unfinished. Without removing the message currently being
processed, the loop will continue on an inbox extended with
the new message. The next iteration will process the same
message as the preempted iteration, effecting a double-send.

To avoid the possibility of a double-send, a careful imple-
mentor of an actor program might follow the documented
recommendations for code in the presence of asynchro-
nous exceptions: use software transactional memory (STM),
avoid interruptible actions, or apply uninterruptibleMask.
However, recall that message sends are implemented with
throwTo, which is “always interruptible, even if it does not
actually block” [4]. A solution is obtained “by forking a new
thread” [7] each time we run an intent function, but this
sacrifices serializable executions — an actor must be safe to
run concurrently with itself. We opt for the simple presenta-
tion in Figure 3 and recommend that users write idempotent
intent functions.

3.3 Dynamic Types

The actor main loop in Figure 3 constrains an actor thread
to handle messages of a single type. An envelope containing

4It is good practice to use mask instead of mask_, and “restore” the prior

masking state of the context before calling a user-defined callback function.

Such functions may be written with the expectation to catch asynchronous

exceptions, for reasons mentioned in Section 2.1 or Marlow et al. [7]. For

our purpose here, mask_ is acceptable.

data Envelope a = Envelope {sender ::�readId,message :: a}

deriving Show

instance Exception a⇒ Exception (Envelope a)

type Intent st msg = st → Envelope msg → IO st

Figure 2.Message values are contained in a self-addressed
envelope. Actor behavior is encoded as a transition system.

sendStatic :: Exception a⇒�readId → a→ IO ()

sendStatic recipient message = do

sender ← my�readId

putStrLn (show sender ++ " send " ++ show message

++ " to " ++ show recipient)

throwTo recipient Envelope {sender,message }

runStatic :: Exception a⇒ Intent s a→ s→ IO ()

runStatic intent initialState = mask_ $ loop (initialState, [ ])

where

loop (state, inbox) =

catch

(case inbox of

[ ] → threadDelay 60000000 (1)

>> return (state, inbox)

x : xs→

(,) ⟨$⟩ intent state x ⟨∗⟩ return xs) (2)

(_e@Envelope { } →

return (state, inbox ++ [e ])) (3)

>>= loop

Figure 3.Message sends are implemented by throwing an
exception. Actor threads run amain loop to receivemessages.

the wrong message type will not be caught by the exception
handler, causing the receiving actor to crash. We think the
recipient should not crash when another actor sends an
incorrect message.5

In this section, we correct this issue by extending the
framework to support actors that may receive messages of
different types. With this extension, our framework could
be thought of as dynamically typed in the sense that a single
actor can process multiple message types. This is similar to
the dynamic types support in the Data.Dynamic module.
Furthermore, any actor may be extended by wrapping it

(“has-a” style) with an actor that uses a distinct message type
and branches on the type of a received message, delegating

5Sending a message not handled by the recipient is like calling a function

with wrong argument types, which would cause the thread to crash in

a dynamically typed language. However, here both caller and callee are

persistent, and we choose to locate the mistake in the caller.
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to the wrapped actor where desired.6 It may seem natural to
encapsulate such actor-wrapping in combinators that gen-
eralize the patterns by which an actor is given additional
behavior. However, here our goal is not to lean into the util-
ity of a dynamically typed actor framework, but to point out
how little scaffolding is required to obtain one from the RTS.

3.3.1 Sending Dynamic Messages. Instead of sending
an Envelope of some application-specific message type we
convert messages to the “any type” in Haskell’s exception
hierarchy, SomeException [6]. Figure 4 defines a new send

function that converts messages, so that all inflight messages
will have the type Envelope SomeException.

3.3.2 Receiving Dynamic Messages. On the receiving
side, messages must now be downcast to the Intent func-
tion’s message type. This is an opportunity to treat messages
of the wrong type specially. In Figure 4 we define a newmain
loop, runDyn, that lifts any intent function to one that can re-
ceive envelopes containing SomeException. If the message
downcast fails, instead of the recipient crashing, it performs
a “return to sender.” Specifically, it throws an exception (not
an envelope) using the built-in TypeError exception.7

These changes do not directly empower actor intent func-
tions to deal with messages of different types. We have
only removed application-specific type parameters from en-
velopes. Actors intending to receive messages of different
types will do so by downcasting from SomeException them-
selves. Such actors will use an intent function handling mes-
sages of type SomeException. We will see an example of
this usage pattern in Section 4.2.

3.4 Safe Initialization

When creating an actor thread, it is important that no ex-
ception arrive before the actor main loop (runStatic in
Figure 3) installs its exception handler. If this happened, the
exception would cause the newly created thread to die. To
avoid this, the fork prior to entering the main loop must be
masked (in addition to the mask within the main loop).

Figure 5 defines the main loop wrapper we will use for ex-
amples in Section 4. It performs a best-effort check and issues
a helpful reminder to mask the creation of actor threads.8

6It is not sufficient to wrap a message type in a sum and write an actor that

takes the sum as its message. Such an actor will fail to receive messages

sent as the un-wrapped type. To correct for this, one would need to change

existing actors to wrap their outgoing messages in the sum. Section 3.3

generalizes this correction without requiring changes to existing actors.
7The extensions ScopedTypeVariables, TypeApplications, and the func-

tion Data.Typeable.typeOf can be used to construct a helpful type error

message for debugging actor programs.
8We do not define a wrapper around forkIO to perform this masking be-

cause actors that perform initialization steps can currently do so before

calling run. Section 4.2.3 is an example of this.

send :: Exception a⇒�readId → a→ IO ()

send recipient = sendStatic recipient ◦ toException

runDyn :: Exception a⇒ Intent s a→ s→ IO ()

runDyn intentStatic = runStatic intentDyn

where

intentDyn state e@Envelope {sender,message } =

case fromException message of

Just m→ intentStatic state e {message = m}

Nothing

→ throwTo sender (TypeError "...")

>> return state

Figure 4. The dynamically typed framework upcasts before
sending and downcasts before processing.

run :: Exception a⇒ Intent s a→ s→ IO ()

run intent state = do

ms← getMaskingState

case ms of

MaskedInterruptible→ runDyn intent state

→ error "mask the forking of actor threads"

Figure 5. Remind users to prevent initialization errors by
masking forks.

4 Example: Ring Leader Election

The problem of ring leader election is to designate one node
among a network of communicating nodes organized in a
ring topology. Each node has a unique identity, and identities
are totally ordered. Nodes know their immediate successor,
or “next” node, but do not know the number or identities of
the other nodes in the ring. A correct solution will result in
exactly one node being designated the leader. This classic
problem from the distributed systems literature serves to
illustrate our actor framework, despite leader election being
unnecessary in the context of threads in a process.
Chang and Roberts [2] describe a solution to the ring

leader election problem that begins with every node sending
a message to its successor to nominate itself as the leader
(Figure 6). Upon receiving a nomination, a node forwards
the nomination to its successor if the identity of the nominee
is greater than its own identity. Otherwise, the nomination
is ignored. We implement and extend that solution below.

4.1 Implementing a Leader Election

Each node begins uninitialized, and later becomes a member
of the ring when it learns the identity of its successor. To
represent this we define two constructors in Figure 7 for
node state type, Node.
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Figure 6. In-progress ring leader election with seven nodes
(Chang and Roberts’ 1979 solution). The node identities are
unique and randomly distributed. Two nomination chains
are shown: Node 5 nominated itself and was accepted by
nodes 3, 1, and 4; next node 4 will nominate 5 to node 6 (who
will reject it). Concurrently, node 6 nominated itself and was
accepted by node 2 but rejected by node 7. For this election
to result in a leader, node 7 must nominate itself.

Three messages (also defined in Figure 7 as type, Msg) will
be used to run the election:

– Init: After creating nodes, the main thread initializes
the ring by informing each node of its successor.

– Start: The main thread rapidly instructs every node to
start the leader election.

– Nominate: The nodes carry out the election by sending
and receiving nominations.

4.1.1 Election Termination. The node with the greatest
identity that nominates itself will eventually receive its own
nomination after it has circulated the entire ring. That same
node will ignore every other nomination. Therefore the al-
gorithm will terminate because node identities are unique
and only one nomination can circumnavigate the ring.9

9In the context of this paper, termination is guaranteed because we have

reliable message passing (see Section 5.1). In the context of a distributed

system, with unreliable message passing, it is possible that no nomination

makes it all the way around the ring. In such a situation, the algorithm

could terminate without a winner.

data Node = Uninitialized | Member {next ::�readId }

data Msg

= Init {next ::�readId }

| Start

| Nominate {nominee ::�readId }

deriving Show

instance Exception Msg

Figure 7. Election nodes can be in one of two states, and
they accept three different messages.

4.1.2 Node-Actor Behavior. The intent function for a
node actor will have state of type Node and receive messages
of type Msg, as defined in Figure 7. We show its implementa-
tion and describe each case below.

node :: Intent Node Msg

When an uninitialized node receives an Init message, it
becomes a member of the ring and remembers its successor.

node Uninitialized

Envelope {message = Init {next } } = do

return Member {next }

When a member of the ring receives a Start message, it
nominates itself to its successor in the ring.

node state@Member {next }

Envelope {message = Start } = do

self ← my�readId

send next $ Nominate self

return state

When a member of the ring receives a Nominate message, it
compares the nominee to its own identity. If they are equal,
then the member wins and the algorithm stops. If the nomi-
nee is greater, then the member forwards the nomination to
its successor.

node state@Member {next }

Envelope {message = Nominate n} = do

self ← my�readId

case () of

| self ≡ n→ putStrLn (show self ++ ": I win")

| self < n→ send next (Nominate n)

| otherwise→ putStrLn "Ignored nomination"

return state

4.1.3 Election Initialization. The election initialization
function is implemented in Figure 8. It takes the size of the
ring and an unevaluated IO action representing node behav-
ior, and takes the following steps to start the election:10

10The implementation shown doesn’t handle rings of size 0 or 1. Also, we

do not show thread cleanup.
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ringElection :: Int → IO () → IO [�readId ]

ringElection n actor = do

nodes← sequence ◦ replicate n ◦mask_ $ forkIO actor (1)

ring ← getStdRandom $ permute nodes (2)

mapM_

(_(t, next) → send t Init {next }) (3)

(zip ring $ tail ring ++ [head ring ])

mapM_ (_t → send t Start) ring (4)

return ring

Figure 8. Ring leader election initialization.

(1) Create actors (with asynchronous exceptions masked).
(2) Randomize the order of actor ThreadIds.11

(3) Inform each actor of the ThreadId that follows it in the
random order (its successor) with an Init message.

(4) Send each actor the Start message to kick things off.

To call the election initialization function, we construct an
IO action by passing the node intent function and the initial
node state to the actor main loop from Figure 5:

ringElection count $ run node Uninitialized

An election execution trace appears in Figure 9.

ThreadId 46 send Init {next = ThreadId 50} to ThreadId 49

ThreadId 46 send Init {next = ThreadId 47} to ThreadId 50

ThreadId 46 send Init {next = ThreadId 48} to ThreadId 47

ThreadId 46 send Init {next = ThreadId 49} to ThreadId 48

ThreadId 46 send Start to ThreadId 49

ThreadId 49 send Nominate {nominee = ThreadId 49} to ThreadId 50

ThreadId 46 send Start to ThreadId 50

Ignored nomination

ThreadId 50 send Nominate {nominee = ThreadId 50} to ThreadId 47

ThreadId 46 send Start to ThreadId 47

ThreadId 47 send Nominate {nominee = ThreadId 50} to ThreadId 48

ThreadId 48 send Nominate {nominee = ThreadId 50} to ThreadId 49

ThreadId 47 send Nominate {nominee = ThreadId 47} to ThreadId 48

ThreadId 46 send Start to ThreadId 48

ThreadId 49 send Nominate {nominee = ThreadId 50} to ThreadId 50

Ignored nomination

ThreadId 50: I win

ThreadId 48 send Nominate {nominee = ThreadId 48} to ThreadId 49

Ignored nomination

Figure 9. An execution trace of the ring leader election.

4.2 Extending the Leader Election

The solution we have shown solves the ring leader election
problem insofar as a single node concludes that it has won.
However, it is also desirable for the other nodes to learn
the outcome of the election. Since it is sometimes necessary
to extend a system without modifying the original, we will
show how to extend the original ring leader election to add
a winner-declaration round.

Since there is no message constructor to inform nodes of
the election outcome, we will define a new message type

11The implementation of permute is in Appendix A.1.

type Exnode = (Node,�readId)

data Winner = Winner �readId deriving Show

instance Exception Winner

Figure 10. Extended nodes store node state alongside the
greatest nominee seen. They accept one message in addition
to those in Figure 7.

whose constructor indicates a declaration of who is the win-
ner. We will extend the existing node intent function by
wrapping it with a new intent function that processes mes-
sages of either the old or the newmessage types, with distinct
behavior for each, leveraging the dynamic types support de-
scribed in Section 3.3. The new behaviors are:

– Each node remembers the greatest nominee it has seen.
– When the winner self-identifies, they will start an extra
round declaring themselves winner.

– Upon receiving a winner declaration, a node compares
the greatest nominee it has seen with the declared-
winner. If they are the same, then the node forwards
the declaration to its successor.

Extended nodes will store the original node state (Figure 7)
paired with the identity of the greatest nominee they have
seen. This new extended node state is shown in Figure 10
as type Exnode. The new message type (Winner, also in Fig-
ure 10) has only one constructor and is used to declare some
node the winner.

4.2.1 Declaration-Round Termination. When an ex-
tended node receives a declaration of the winner that
matches their greatest nominee seen, they have “learned”
that that node is indeed the winner. When the winner re-
ceives their own declaration, everyone has learned they are
the winner, and the algorithm terminates.

4.2.2 Exnode-Actor Behavior. The intent function for
the new actor will have state Exnode and receive messages
of type SomeException. This will allow it to receive either
Msg or Winner values and branch on which is received.

exnode :: Intent Exnode SomeException

Recall the implementation of the actor main loop func-
tion, runDyn from Figure 4. When we apply exnode to
runDyn, the call to fromException in runDyn is inferred to
return Maybe SomeException, which succeeds uncondition-
ally. The exnode intent function must then perform its own
downcasts, and we enable ViewPatterns to ease our presen-
tation. Next we explain the two main cases, corresponding
to the two message types the actor will handle.

The first case of exnode, shown in Figure 11, applies when
an extended node downcasts the envelope contents to Msg.
In each of its branches, node state is updated by delegating
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exnode (n, great)

e@Envelope {message = fromException→ Just m} = do

self ← my�readId

n′@Member {next } ← node n e {message = m} (1)

case m of

Nominate {nominee } →

if self ≡ nominee

then send next (Winner self ) (2)

>> return (n′, great)

else return (n′,max nominee great) (3)

→ return (n′, great)

Figure 11.When exnode receives a Msg, it delegates to node.
It may also update the greatest nominee seen or trigger the
winner-declaration round.

exnode state@(Member {next }, great)

Envelope {message = fromException→ Just m} = do

self ← my�readId

case m of

Winner w

| w ≡ self → putStrLn (show self ++ ": Confirmed")

| w ≡ great → send next (Winner w)

| otherwise→ putStrLn "Unexpected winner"

return state

Figure 12. When exnode receives a Winner, it manages the
winner-declaration round.

part of message handling to the held node. We annotate the
rest of Figure 11 as follows:

(1) Delegate to the held node by putting the revealed Msg

back into its envelope and passing it through the intent
function, node, from Section 4.1.2.

(2) If the message is a nomination of the current node, start
the winner round, because the election is over.

(3) Otherwise, the election is ongoing, so keep track of the
greatest nominee seen.

The second case of exnode applies when a node downcasts
the envelope contents to a winner declaration. Its implemen-
tation is shown in Figure 12. If the current node is declared
winner, the algorithm terminates successfully. If the great-
est nominee the current node has seen is declared winner,
the node forwards the declaration to its successor. State is
unchanged in each of these branches.

4.2.3 Extended Election Initialization. The extended
ring leader election reuses the initialization scaffolding from
before (Figure 8). The only change is that the IO action passed
to ringElection initializes the greatest nominee seen to
itself, prior to calling run:

ringElection count $ do

great ← my�readId

run exnode (Uninitialized, great)

A trace of an extended election appears in Appendix A.8.

5 What Have We Wrought?

Figure 3 shows that we have, in only a few lines of code,
discovered an actor frameworkwithin GHC’s RTS thatmakes
no explicit use of channels, references, or locks and imports
just a few names from default modules. The support for
dynamic types, shown in Figure 4 as separate definitions,
can be folded into Figure 3 for only a few additional lines.12

We find it intriguing that this is possible and shocking that
it is so easy.

5.1 Almost a COPL

In Section 2.2 we described an actor framework as having
the characteristics of a concurrency-oriented programming

language (COPL) [1]. Which of the COPL requirements does
our framework satisfy? Here we review the criteria listed in
Section 2.2:

(1) ✓ Threads behave as independent processes.
(2) ✗/✓ Threads are not strongly isolated because termina-

tion of the main thread terminates all others. However,
if the main thread is excluded as a special case, then the
set of other threads are strongly isolated.

(3) ✓ ThreadID is unique, hidden, and unforgeable.
(4) ✗ Threads may have shared state.
(5) ✗ Asynchronous exceptions do not behave as unreliable

message passing.
(6) ✓ An actor can reliably inform others when it halts

using forkFinally.

The message-passing semantics of our actor framework
is nuanced. Documentation for the interfaces we use indi-
cates that the framework provides reliable synchronous mes-

sage passing with FIFO order. We call it synchronous because
“throwTo does not return until the exception is received by
the target thread” [4].13 This means that a sender may block
if the recipient is not well-behaved (e.g., its intent function
enters an infinite loop in pure computation). We distinguish
well-behaved intent functions, which eventually terminate
or reach an interruptible point, from poorly-behaved intent
functions, which do not. Assuming intent functions are well-
behaved, the framework will tend to exhibit the behavior of
reliable asynchronous message passing with FIFO order and oc-
casional double-sends, because senders will not observe the
blocking behavior of throwTo. By wrapping calls to the send

12Instead of wrapping the intent function, the framework’s message down-

cast is performed in the exception handler.
13“Synchronous for me, but not for thee” might be the most correct char-

acterization. Senders may experience GHC’s asynchronous exceptions as

synchronous, but recipients will always perceive them as asynchronous.
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function with forkIO [7], we can achieve reliable asynchro-
nous message passing without FIFO order even in the presence
of poorly-behaved intent functions.14 FIFO can then be recov-
ered by message sequence numbers or by (albeit, jumping
the shark) use of an outbox thread per actor. With those
caveats in mind, our framework mostly satisfies Armstrong
[1]’s criteria for message-passing semantics:

(5a) ✗/✓ A stuck recipient may cause a sender to become
stuck, unless senders use forkIO or we assume the
recipient is well-behaved.

(5b) ✗/✓ Actors know that a message is received (stored in
the recipient inbox) as soon as send returns. However,
they do not know that a message is delivered (processed
by the recipient) until receiving a response.

(5c) ✓/✗ Messages between two actors obey FIFO ordering,
unless forkIO is used when sending.

Our choice to wrap a user-defined message type in a
known envelope type has the benefit of allowing the actor
main loop to distinguish between messages and exceptions,
allowing the latter to terminate the thread as intended. At
the same time, though, this choice runs afoul of the name

distribution problem [1] by indiscriminately informing all
recipients of the sender process identifier. One strategy to
hide to an actor’s name and restore the lost security isolation
is to wrap calls to the send function with forkIO. Another
strategy would be to define two constructors for envelope,
and elide the “sender” field from one.
We claim that our actor framework is almost a COPL. It

also meets our informal requirements that actors can send
and receive messages, update state, and spawn or kill other
actors (though we have not shown examples of all of these).
However, we do not mean to imply that our actor framework
is practical; we merely mean to point out that it is, indeed,
an actor framework.

5.2 Summary of Performance Evaluation

We have described a novel approach to inter-thread com-
munication. We believe it is prudent to compare the perfor-
mance of this unintended communication mechanism against
the performance of an intended communication mechanism

to restore a sense that the ship is indeed upright. To that end,
we re-implemented the extended ring leader election from
Section 4 using channels — a standard FIFO communication
primitive. We also implemented a “control”15 to establish a
lower bound on the expected running time of the actor-based
and channel-based implementations.

We compared the running time of these implementations
at ring sizes up to 65536 nodes on machines with 8, 32, and

14If thread)1 forks thread)2 to send message"2, and then)1 forks thread

)3 to send message"3, the RTS scheduler may first run)3 resulting in"3

reaching the recipient before"2, violating FIFO if both messages have the

same recipient.
15The “control” forks some number of threads that do nothing and immedi-

ately kills them.
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(b) The growth of allocations by the channel-based implementation

eventually catches up to that of the actor-based implementation.

Figure 13. Representative selection of experimental results.

192 capabilities. We also compared their total allocations
over the program run at various ring sizes.
Our running time results (Figure 13a) show that the

actor-based implementation is significantly slower than the
channel-based implementation for ring sizes less than 8192

nodes, but surprisingly, it is marginally faster for more than
32768 nodes. The total-allocations result (Figure 13b) shows
that allocations made by the channel-based implementation
catch up to that of the actor-based implementation at large
ring sizes, and we hypothesize that this convergence explains
why the running time results swap places. Additionally, our
results show that the running time of the extended ring
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leader election algorithm is invariant to the number of ca-
pabilities used by the RTS, making it a poor choice for a
general evaluation of our actor framework, but sufficient for
our purpose of confirming that channels are faster.

Appendices A.2 to A.5 give the source code for these bench-
marks. Appendix A.6 details our experimental setup, and
Appendix A.7 discusses more of the results.

6 Conclusion

Can we implement an actor framework with Haskell’s
threads and asynchronous exceptions? Our implementation
and results show that we can, and this fact hints that perhaps
asynchronous exceptions are at least as general as actors.
However, the actor framework we present is not an ad-

vancement: It is easy to use, but easy to use wrongly. It has
acceptable throughput, but is slower than accepted tools. It
requires no appreciable dependencies, no explicitly muta-
ble data structures or references, no effort to achieve syn-
chronization, and very little code only because those things
already exist, abstracted within the RTS.

Should it have been possible to implement the actor frame-
work we present here? Like many people, we choose Haskell
because it is a tool that typically prevents “whole classes of
errors,” and also because it is a joy to use. But with the actor
framework we present here, we achieve dynamically typed
“spooky action at a distance” with frighteningly little effort.
Perhaps the user-accessible interface to the asynchronous
exception system should be constrained.
With the 9.6.1 release of GHC, a user of the RTS enjoys

software transactional memory, asynchronous exceptions,
delimited continuations (and perhaps extensible algebraic
effects), together in the same tub. The water is warm — jump
in! Will all the members of this new extended “awkward
squad” [8] bob gently together, or will they knock elbows?
Which of them can be implemented in terms of the others,
and should their full power be exposed so that we can do so?
We hope the reader will draw their own conclusions.
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A Appendix

A.1 Permute Function Implementation

In Section 4 we provided the implementation of a ring leader
election in our actor framework. The implementation used
permute to randomize the list of ThreadId. The permute

function repeatedly pops a random element from the input
and adds it to the output. Its implementation is as follows:

permute :: RandomGen g ⇒ [a] → g → ([a], g)

permute pool0 gen0

= snd

◦ foldr pick (pool0, ( [ ], gen0))

$ replicate (length pool0) ()

where

pick () (pool, (output, g)) =

let (index, g′) = randomR (0, length pool − 1) g

(x, pool′) = pop pool index

in (pool′, (x : output, g′))

pop (x : xs) 0 = (x, xs)

pop (x : xs) n = (x:) ⟨$⟩ pop xs (n − 1)

pop [ ] = error "pop empty list"

A.2 Actor Benchmark Implementation

In the extended ring leader election solution, the time to
termination is the time necessary for the winner’s self-
nomination to pass around the ring once, plus the time for
the winner-declaration to pass around the ring once. Termi-
nation is when a node receives its own winner declaration.
We extend exnode (Section 4.2.2) to make a benchmark-

node with additional behavior: When a benchmark-node is
confirmed as winner, it puts its own ThreadId into an MVar

to signal termination.

benchNode ::MVar �readId → Intent Exnode SomeException

benchNode done state e@Envelope {message } = do

state′ ← exnode state e

self ← my�readId

case fromException message of

Just (Winner w) | w ≡ self → putMVar done w

→ return ()

return state′

The reason we aren’t using message passing to notify
about termination is because it is difficult to communicate
between the “actor world” and the “functional world.” The
functional world expects IO actions to terminate with return
values, but we didn’t bother to implement clean termination
in our actor framework. Lacking that, we could try spawning
an actor and then setting up an exception handler to receive
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messages from it, but we choose not to do this because of
the potential for race conditions.

We benchmark time to termination using the criterion
package. For this, we need an IO action that executes the
algorithm, cleans up its resources, and then returns. The
function benchActors does this: it runs an election with
benchmark-nodes, waits for termination, kills the nodes, and
asserts a correct result.

benchActors :: Int → IO ()

benchActors n = do

-- Start the ring-leader election

done← newEmptyMVar

ring ← ringElection n $ do

great ← my�readId

run (benchNode done) (Uninitialized, great)

-- Wait for termination, kill the ring, assert correct result

w ← takeMVar done

mapM_ kill�read ring

assert (w ≡ maximum ring) (return ())

A.3 Control Benchmark Implementation

The experimental control, benchControl, only forks threads
and then kills them. It is useful to establishwhether or not, for
example, laziness has caused our non-control implementa-
tions to perform no work. The other implementations should
take longer than the control because they do more work.

benchControl :: Int → IO ()

benchControl n = do

nodes← sequence ◦ replicate n $ forkIO (return ())

mapM_ kill�read nodes

A.4 Channel Benchmark Implementation

Each node has references to a send-channel and a receive-
channel in the channel-based implementation. We reuse the
message types from before via an Either.

type ChMsg = Either Msg Winner

type Ch = Ch.Chan ChMsg

It is unnecessary to split the channel-based implementation
into a simple node and an extended node, but we split them
anyway to ease comparison to the actor-based implemen-
tation. This structural similarity hopefully has the added
benefit of focusing benchmark differences onto the commu-
nication mechanisms instead of anecdotal differences.

In chanNode we implement the main loop. The only state
maintained is the greatest nominee seen. It leaves off with
definitions of communication functions in its where-clause.

chanNode ::

MVar �readId → (Ch,Ch) →�readId → IO ()

chanNode done chans st = do

chanNode done chans =<< exnodePart st =<< recv

where

recv = Ch.readChan (fst chans)

sendMsg = Ch.writeChan (snd chans) ◦ Le�

sendWinner = Ch.writeChan (snd chans) ◦ Right

Within the where-clause of chanNode, we define nodePart
to implement the behavior of a ring node from Section 4.1.2.
This part has no state and requires no Init message.

nodePart ::Msg → IO ()

nodePart Start = do

self ← my�readId

putStrLn (show self ++ ": nominate self")

sendMsg $ Nominate self

nodePart (Nominate n) = do

self ← my�readId

case () of

| self ≡ n→ putStrLn (show self ++ ": I win")

| self < n→

putStrLn (show self ++ ": nominate " ++ show n)

>> sendMsg (Nominate n)

| otherwise→ putStrLn "Ignored nominee"

Still within the where-clause of chanNode, we implement
exnodePart with the behavior of the winner-round node
(Section 4.2.2) and the benchmark-node (Appendix A.2).
It signals termination by placing the confirmed winner’s
ThreadId into an MVar.

exnodePart ::�readId → Either Msg Winner → IO �readId

exnodePart great (Le� m) = do

nodePart m

self ← my�readId

case m of

Nominate {nominee } →

if self ≡ nominee

then sendWinner (Winner self )

>> return great

else return $max nominee great

→ return great

exnodePart great (Right m) = do

self ← my�readId

case m of

Winner w

| w ≡ self →

putStrLn (show self ++ ": Confirmed")

>> putMVar done self

| w ≡ great → sendWinner (Winner w)

| otherwise→ putStrLn "Unexpected winner"

return great

Finally, we initialize the algorithm with a function similar
to ringElection, but using channels instead of passing in
ThreadIds. (1) Define a function to run a channel-node on
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the “done” MVar and two provided channels. (2) Construct
channels and a ring of un-evaluated nodes in order. (3) Finally
permute the nodes and fork them out of order. Nodes are
assigned random thread identifiers at this point. (4) Start the
election. (5) Wait for termination and clean up.

benchChannels :: Int → IO ()

benchChannels n = do

done← newEmptyMVar

let mkNode chans = do (1)

great ← my�readId

chanNode done chans great

chans← sequence ◦ replicate n $ Ch.newChan

let nodeActs = map mkNode (2)

(zip chans $ tail chans ++ [head chans ])

ringActs← getStdRandom $ permute nodeActs

ring ← mapM forkIO ringActs (3)

mapM_ (_c → Ch.writeChan c ◦ Le� $ Start) chans (4)

w ← takeMVar done (5)

mapM_ kill�read ring

assert (w ≡ maximum ring) (return ())

A.5 Criterion Benchmark Implementation

Finally, we define a benchmark-heat to run each of the bench-
mark functions defined above for a given ring size. The main
function (not shown) calls benchHeat and passes it to Crite-
rion’s defaultMain.

benchHeat :: Int → Cr .Benchmark

benchHeat n = Cr .bgroup ("n=" ++ show n)

[Cr .bench "control" ◦ Cr .nfIO $ benchControl n

,Cr .bench "actor ring" ◦ Cr .nfIO $ benchActors n

,Cr .bench "channel ring" ◦ Cr .nfIO $ benchChannels n]

A.6 Experimental Setup and Procedure

In all benchmarks, we replace printlines with pure ()

to reduce noise and latency in results. We compile with
the threaded RTS (-threaded) and run on all capabilities
(+RTS -N). Our test machines included:

– MacBookPro11,5; 8 capabilities (NixOS).
– AWS c3.8xlarge; 32 vCPU (Amazon Linux 2023 AMI).

– AWS c6a.48xlarge; 192 vCPU (Amazon Linux 2023 AMI).

Our experiment proceeded as follows:

– We ran the criterion benchmark for ring sizes up to
16384 on the MacBookPro11,5, clocked to 1.6GHz, without
frequency scaling, and with no other programs running
(kernel vtty). Channels took a third the time of actors, but
the performance gap narrowed as ring size increased.

– Figure 13a: We ran the benchmark on the AWS
c3.8xlarge instance with 32 vCPU for ring sizes up to
65536. Actors outperformed channels at high ring sizes.

– Figure 14b: We ran the benchmark on the AWS
c6a.48xlarge instance with 192 vCPU for ring sizes up to
65536. The benchmark segfaulted unpredictably. We used
a shell script to call the benchmark executable once per
set of parameters to work around segfaults. We confirmed
that actors outperform channels at high ring sizes.

– Figure 14a: We repeated the benchmark on the Mac-
BookPro11,5 for ring sizes up to 65536.

– Figure 13b: We ran a different benchmark to measure
total-allocations (+RTS -t --machine-readable) on the
MacBookPro11,5 for ring sizes up to 65536. Here the main
function only ran a single algorithm at a specified ring
size once, and then terminated. We ran ten trials for each
combination of algorithm and ring size, and averaged.

A.7 Experiment Result

Our running time results for 8, 32, and 192 capabilities are in
Figures 13a, 14a and 14b, respectively. We group the running
time of the channel-based implementation over all three
machines in Figure 15 to make its inflection point clearer.
Our total-allocations result is in Figure 13b.
The running time of the extended ring leader election

is $ (2=) in the number of nodes. We hypothesize that it is
invariant to the number of capabilities because after an initial
flood of nominations, the algorithm degenerates quickly to
a single message passing around the ring twice.

A.8 Actor-based (Dynamic Types) Trace

In Section 4.2.3, we showed how to call runElection on
exnode to run a ring leader election with a winner declara-
tion round. Here is an example trace.
> main2 4

ThreadId 53 send Init {next = ThreadId 55} to ThreadId 57

ThreadId 53 send Init {next = ThreadId 56} to ThreadId 55

ThreadId 53 send Init {next = ThreadId 54} to ThreadId 56

ThreadId 53 send Init {next = ThreadId 57} to ThreadId 54

ThreadId 53 send Start to ThreadId 57

ThreadId 57 send Nominate {nominee = ThreadId 57} to ThreadId 55

ThreadId 53 send Start to ThreadId 55

ThreadId 55 send Nominate {nominee = ThreadId 57} to ThreadId 56

ThreadId 56 send Nominate {nominee = ThreadId 57} to ThreadId 54

ThreadId 55 send Nominate {nominee = ThreadId 55} to ThreadId 56

ThreadId 53 send Start to ThreadId 56

ThreadId 54 send Nominate {nominee = ThreadId 57} to ThreadId 57

Ignored nomination

ThreadId 56 send Nominate {nominee = ThreadId 56} to ThreadId 54

ThreadId 53 send Start to ThreadId 54

ThreadId 57: I win

ThreadId 57 send Winner (ThreadId 57) to ThreadId 55

ThreadId 54 send Nominate {nominee = ThreadId 56} to ThreadId 57

ThreadId 55 send Winner (ThreadId 57) to ThreadId 56

Ignored nomination

ThreadId 54 send Nominate {nominee = ThreadId 54} to ThreadId 57

ThreadId 56 send Winner (ThreadId 57) to ThreadId 54

Ignored nomination

ThreadId 54 send Winner (ThreadId 57) to ThreadId 57

ThreadId 57: Confirmed

A.9 Channel-based Extended Election Trace

In Appendix A.3 we defined benchChannels to run a ring
leader election with a winner declaration round using chan-
nels for communication. Here’s an example trace.
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(a) Running time with 8 capabilities.
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(b) Running time with 192 capabilities: The missing datapoint is a

run that consistently crashed with a segmentation fault.

Figure 14. On different machines we replicate Figure 13a in
both the absolute running time, and the actor-based imple-
mentation being faster at the highest ring sizes.

> benchChannels 4

ThreadId 61: nominate self

ThreadId 62: nominate self

Ignored nominee

ThreadId 64: nominate self

Ignored nominee

ThreadId 61: nominate ThreadId 64

ThreadId 63: nominate self

ThreadId 63: nominate ThreadId 64

ThreadId 62: nominate ThreadId 63

ThreadId 62: nominate ThreadId 64

Ignored nominee

ThreadId 64: I win

ThreadId 64: Confirmed
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Figure 15. As ring size increases, the running time of
benchChannels inflects to a higher rate around 2048 nodes.
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