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The Lamport diagram is a pervasive and intuitive tool for informal reasoning about causality in a concurrent
system. However, traditional axiomatic formalizations of Lamport diagrams can be painful to work with
in a mechanized setting like Agda, whereas inductively-defined data would enjoy structural induction and
automatic normalization. We propose an alternative, inductive formalization — the causal separation diagram
(CSD) — that takes inspiration from string diagrams and concurrent separation logic. CSDs enjoy a graphical
syntax similar to Lamport diagrams, and can be given compositional semantics in a variety of domains. We
demonstrate the utility of CSDs by applying them to logical clocks — widely-used mechanisms for reifying
causal relationships as data — yielding a generic proof of Lamport’s clock condition that is parametric in a
choice of clock. We instantiate this proof on Lamport’s scalar clock, on Mattern’s vector clock, and on the
matrix clocks of Raynal et al. and of Wuu and Bernstein, yielding verified implementations of each. Our
results and general framework are mechanized in the Agda proof assistant.

1 INTRODUCTION
Concurrent systems are famously difficult to reason about. Since concurrent actions can inter-
leave in an arbitrary order, we cannot reason about just one sequence of actions; we must contend
with a combinatorial explosion of potential linearizations. Bringing (partial) order to this chaos
is causality, the principle that an effect cannot happen before its cause. In both shared-memory
and message-passing systems, causality undergirds every protocol for strengthening the commu-
nication model beyond asynchrony: we commit to performing certain actions only once we have
observed others, so that observers of the effects of our action will understand that we have, indeed,
observed the effects of the first.

A ubiquitous device for visualizing causal relationships over space and time is the Lamport dia-
gram.1 Figure 1 shows diverse examples of Lamport diagrams spanning six decades of computing
literature. In a Lamport diagram, agents (or “processes”) evolve over time along straight through-
lines, and messages travel laterally between them. Importantly, causal relationships are reduced
to simple geometric paths: two points in space and time are causally ordered if, and only if, they
are connected by a forward path along the diagram.

As illustrations, Lamport diagrams are by nature informal. To support formal reasoning about
concurrent systems, we need formal models that capture the same scenarios displayed by these
diagrams. Lamport [1978]’s own model of executions consists of a set of processes, each with a
sequence of local actions, together with a set of pairs of actions indicating send/receive communi-
cations between processes. From this data, Lamport’s causal happens-before relation can be derived,
capturing all causally-related points in the execution. A similar model has arisen in the context
of message sequence charts (MSCs), a more expressive cousin of the Lamport diagram [Alur et al.
2000; Ladkin and Leue 1993; Broy 2005; ITU-T 2011]. Because Lamport’s executions and MSCs are
so similar (indeed, equivalent in their current formulations), we will refer to both of them simply
as formal executions (or just executions).

Formal executions provide a strong mathematical basis for reasoning about causality in con-
current systems. However, they are typically characterized axiomatically rather than inductively.
While this makes them well-suited to traditional mathematical proofs, our experience has been
1Lamport diagrams go by many other names, including time diagrams, spacetime diagrams, sequence diagrams, and more.
While Lamport [1978]’s analysis of causality in the context of distributed systems was an early use of such diagrams, it
appears to not have been the first in the published literature; the oldest we have found is via Le Lann [1977].
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Fig. 1. An assortment of Lamport diagrams from the literature. In these examples, time flows from top to
bottom [Ellis and Gibbs 1989; Weil et al. 2006; Mathur et al. 2022], from left to right [Castro and Liskov
1999; Lesani et al. 2016], or, rarely, from bottom to top [Lamport 1978], and parallel through-lines represent
processes, threads, or spatially-separated sites, while arrows represent communication between them.

that applying them to mechanized proof is a considerable struggle. Proof assistants founded on
constructive type theory, such as our choice of Agda, excel at problems leveraging inductive data;
and some of the most powerful tools in the canon of programming language theory, including the
pervasive dichotomy of syntax and semantics, are founded on inductive definitions. Ideally, then,
we want to inductively factor a concurrent system into smaller pieces for local analyses, then build
them back up into a global analysis. However, the collections of sets in a formal execution do not
lend themselves easily to factorization without making arbitrary choices: to split an execution into
a “before” and an “after”, we must make a particular choice of consistent cut through the execution.
While executions can be (and certainly have been) mechanized axiomatically, we would prefer to
play better to the strengths of our tools.

To that end, we return to the Lamport diagram to derive a different kind of formal execution: a
causal separation diagram (or CSD). CSDs enjoy an inductive definition, built up from a small
set of primitive features (emission and reception of messages, together with local actions) together
with syntactic operators for sequential and concurrent composition. CSDs then constitute a syntax
for describing executions of a concurrent system; and like any syntax, we can interpret CSDs
into a variety of semantics. We take inspiration from concurrent separation logic in modeling the
concurrent composition of actions over distributed state, and from the method of string diagrams
in monoidal category theory for describing formal objects using a two-dimensional, graphical
syntax. However, no familiarity with either discipline is required to read this paper.

We recover a proof-relevant analogue of Lamport’s happens-before relation by interpreting the
syntax of CSDs into a semantic domain of causal paths. A causal path describes a particular poten-
tial flow of information from one point in a diagram to another: where a Lamport diagram makes
causal relationships visible to the eye via geometric paths, we capture those paths directly as data.
The proposition that “𝑒1 happens before 𝑒2” then becomes a type 𝑒1 ⇝ 𝑒2, and the terms that
inhabit this type are particular paths witnessing that relationship. Because paths are also defined
inductively, they become much more useful than mere truth values for further proofs.
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As an in-depth case study of the application of CSDs, we consider the verification of logical
clocks, a common class of devices for reifying causal information into a system at runtime. A logi-
cal clock associates some metadata (a “timestamp”) with every event, with the condition (Lamport
[1978]’s “clock condition”) that whenever two events are causally ordered, their timestamps are
ordered likewise. The contents of a timestamp will vary with the choice of clock; some clocks reify
more causal information than others. For instance, Lamport’s original scalar clock [Lamport 1978]
flattens the partial order of events into the total order of integers, while vector clocks [Mattern
1989; Fidge 1988] andmatrix clocks [Wuu and Bernstein 1984; Raynal et al. 1991] yield (predictably)
vector and matrix timestamps, which provide progressively higher-fidelity information.

Existing proofs of the clock condition — including mechanized proofs [Mansky et al. 2017] —
apply only to individual clocks. Other work on mechanized verification of distributed systems
that use logical clocks typically focuses on higher-level properties, such as causal consistency of
distributed databases [Lesani et al. 2016; Gondelman et al. 2021], convergence of replicated data
structures [Nieto et al. 2022], or causal order of message delivery [Nieto et al. 2022; Redmond et al.
2023].Thosemechanized proofs take the clock condition as an axiom (either explicitly or implicitly)
on the way to proving those higher-level properties. We address this situation by giving a generic
mechanized proof of the clock condition for any realizable clock that can be realized by a system of
runtime replicas — in other words, a clock defined in terms of standard “increment” and “merge”
functions. Realizable clocks include the well-known scalar, vector, and matrix clocks, which we
instantiate within our framework to yield a proof of the clock condition for each, in a handful of
lines of Agda code. Notably, while the clock condition has previously been proved for the matrix
clocks of Raynal et al. [1991] and of Wuu and Bernstein [1984], we give what appear to be the first
mechanized proofs for these clocks.

In summary, the main contributions of this paper are as follows:
• Causal separation diagrams (CSDs). After presenting informal intuitions in Section 2,

we describe a new formal diagrammatic language for reasoning about executions of con-
current systems (Section 3). CSDs are inspired by Lamport diagrams — a well-established
visual language for expressing the behavior of distributed systems — but they are induc-
tively defined, which makes them amenable to interpretation into many semantic domains.

• Interpreting CSDs. We present interpretations of CSDs into three semantic domains:
– Into types: We provide an interpretation of CSDs into the domain of causal paths

(Section 4). Causal paths are a proof-relevant analogue of Lamport’s happens-before
relation, where any given path inductively describes a particular flow of information.

– Into functions:We provide an interpretation of CSDs into a domain of clocks; that is,
functions that compute a logical timestamp at every event (Section 5). Our interpreta-
tion is parametric in the particular choice of logical clock, so long as it is realizable as
a local data structure with increment and merge operations (Section 5.1).

– Into proofs relating types and functions:We relate the above interpretations via a
third interpretation of CSDs into proofs that clocks respect causality (Section 6). This
yields a proof of Lamport’s clock condition for any realizable clock whose timestamps
increase with successive operations.

• Applying CSDs: verified logical clocks. Finally, we instantiate our interpretations on
the clocks of Lamport, Mattern, Raynal et al., and Wuu and Bernstein, yielding mechani-
cally verified implementations of each (Section 7). In particular, we give the first (to our
knowledge) mechanized proofs of the clock condition for both matrix clocks.

All of our contributions are mechanized in the Agda proof assistant; moreover, we have pub-
lished an open-source library for working with CSDs, available at github.com/lsd-ucsc/csds.

https://github.com/lsd-ucsc/csds
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Fig. 2. An example Lamport diagram.

2 DERIVING A NEW FORMAL MODEL OF EXECUTIONS
In this section we recall the construction and properties of the existing model of formal executions,
then manufacture a “just-so” story for their derivation from Lamport diagrams. By changing one
essential step in this story, we are led to a derivation of our proposed model, the causal separation
diagram (CSD).

Definition 2.1 (Formal executions [Lamport 1978; Alur et al. 2000]). A formal execution is:
• A set 𝑃 of processes, each of which is a sequence of atoms called actions2; together with
• A set 𝑀 of messages, each of which is an ordered pair of actions across two processes (the

message’s associated “send” and “receive” actions).

Definition 2.2 (Happens-before [Lamport 1978]). Given a formal execution, the happens-before
relation on actions, written 𝑎1 ≤ 𝑎2, is the reflexive-transitive closure3 of the execution’s set of
messages together with the total orders given by each process.

By tradition, we exclude from consideration executions for which happens-before fails to be
antisymmetric, as these indicate a failure of causality.

The data of a formal execution can be visualized in a Lamport diagram, an informal graphical
representation in which process histories become parallel lines; the actions on each history be-
come dots along those lines; and the messages between them become arrows crossing laterally
between parallel process lines. Importantly, the happens-before relation can be inferred directly
from a Lamport diagram: we have 𝑎𝑖 ≤ 𝑎 𝑗 if and only if there exists a forward path along the
diagram from 𝑎𝑖 to 𝑎 𝑗 .

For example, the Lamport diagram in Figure 2 depicts an execution involving three processes, 𝑝1,
𝑝2, and 𝑝3, each having performed a few actions. Some of the actions in this execution are causally
ordered. For instance, we see that 𝑎1 ≤ 𝑎4 since 𝑎1 and 𝑎4 are the send and receive actions of
message𝑚1, and 𝑎4 ≤ 𝑎5 because they occur in sequence on 𝑝2. Therefore, by transitivity, 𝑎1 ≤ 𝑎5.
We also have that 𝑎3 ≤ 𝑎4 and 𝑎3 ≤ 𝑎7, among other relationships. However, 𝑎1 and 𝑎3 are not
related by happens-before, nor are 𝑎4 and 𝑎7. Such pairs of actions are said to be concurrent or
causally independent.

We can also take an informal diagram and formalize the scenario it displays as a formal exe-
cution. Therefore, we can consider the diagram to come first, with the derivation of an execution
from an informal diagram serving as an origin story for the formal model itself. We can rederive
the traditional execution by first splitting a diagram along spatial boundaries — separating the
2We avoid the traditional term “event”, for now, because the causal relation we define in Section 4 does not (directly) relate
actions. A causal order ought to relate “events”; so we reserve that term and speak of “actions” here instead.
3Lamport’s own characterization of happens-before is irreflexive, unlike ours. Since reflexive and irreflexive partial orders
are in one-to-one correspondence, the choice comes down to a matter of preference.
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(a) (b)

Fig. 3. Twoways to decompose the Lamport diagram of Figure 2 into “tiles”. On the left (a), we split first along
spatial boundaries (dashed red lines), yielding individual processes, and then along temporal boundaries
(solid blue lines). On the right (b), we split first along temporal boundaries, yielding consistent cuts, and
then along spatial boundaries.

process lines from one another — and then separating the sequential actions along each process
line by temporal boundaries. Doing so for the diagram in Figure 2 yields the decomposition in Fig-
ure 3(a). However, we could also have begun by laying down a sequence of temporal boundaries
— demarcating global steps over the entire system — and only then separating the atomic steps
within each global step by spatial boundaries. This yields the decomposition in Figure 3(b).

Both decompositions yield a partition of the diagram into graphical tiles; and it is precisely the re-
lationships between these tiles, witnessed by the dataflow lines passing between them, whichmust
be captured formally. In the traditional decomposition in Figure 3(a), tiles may be related across
both temporal and spatial boundaries. Process orders record the relationships across temporal
boundaries, while messages record relationships across spatial boundaries.4 This data, comprising
a traditional formal execution, is sufficient to capture all information presented in the diagram.

The state of affairs for our alternative decomposition in Figure 3(b) is notably different. First,
information flows between tiles only at temporal boundaries; spatial boundaries only separate
causally-independent actions which cannot influence each other. Intuitively, it takes time to move
through space – spatial boundaries separate actions which may as well occur simultaneously, so
the propagation of information from one place to another can only occur across temporal bound-
aries. However, this also means that differing quantities of state can leave a global step than enter
it: a process may consume a message to decrease the quantity of data floating around, or emit a
message to increase the quantity of data. Without bracing ourselves against the suggestive global
geometry of fixed parallel lines for each process, we cannot even distinguish process state from
message state: a global step simply transforms one configuration of separated state into another.
Because of this indistinguishability, instead of referring to “processes” and “messages” we will
refer only to sites: a site is a place where state exists, encompassing both processes and messages.

Second, we could have drawn different temporal boundaries — different consistent cuts — and
found a different decomposition. Consistent cuts [Mattern 1989; Chandy and Lamport 1985] are
of fundamental importance to the analysis of concurrent systems, as they model the realizable
global states of a system. Thus, the formal representation for a diagram will embed a choice of

4Depending on the execution being visualized, wemay need to drawmessage-lines passing through tileswhich neither send
nor receive them; an effective visualization would be decidedly non-planar. Nonetheless, we consider that the relationship
remains one of passing through the spatial medium.
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Fig. 4. Global steps in our example diagram.

consistent cuts; and as we will find in Sections 5 and 6, working with global information from the
start enables simpler proof methods for reasoning about concurrent systems.5

Process lines can be recovered as chosen paths spanning the diagram — that is, a chosen total
order of actions, just as in the traditional execution.These path essentially names pieces of state as
they evolves over time; any state not on some path is, morally, a message. We can even interpret
this in a shared-memory setting: the configuration of sites along a consistent cut describe a shared
heap, with each individual sitemodeling an exclusive region ofmemory. A global step then updates
the heap, claiming regions by merging them and releasing regions by splitting them apart.

Figure 4 illustrates this notion of sites in more detail for our example. The shaded global step
on the left has three incoming sites and five outgoing sites, so we might compactly say it has type
3 ⇒ 5 (“three to five”). The next two global steps have types 5 ⇒ 3 and 3 ⇒ 3, respectively.
Adjacent global steps must “match up” the sites on their incident site configurations; but during a
global step, sites may be joined with or forked from others.

In Section 3, we will describe a novel formal model for concurrent executions based on these
observations. However, we can already see the shape this formalization must take:

• Since we have essentially transposed the sequential and concurrent boundaries compared
to the traditional formalization, our formal data will consist of a sequence of global steps
acting over separated state.

• Each global step will decompose into a collection of concurrent, atomic steps, no two of
which act over the same site — data flowing into and out of a global step must flow through
precisely one of its constituent atomic steps. These steps include individual local actions
𝑎1, but also include fork actions (which split one site into two) and join actions (which fuse
two sites into one).

• A causal relationship between actions 𝑎1 ≤ 𝑎2 will be witnessed by a sequence (or path) of
atomic steps, running forward from 𝑎1 to 𝑎2, such that adjacent steps share a site.

Our unification of messages and processes into sites makes our formalization “natively” suited
for reasoning about shared-memory concurrent systems as well as distributed systems. While
Lamport diagrams can effectively visualize shared-memory systems as well as distributed ones,
Lamport’s formal executions are not well suited for the shared-memory domain, since processes
and messages are often not the right abstractions. With CSDs, we have a diagrammatic syntax and
a formal model that fit both domains.
5We expect there to be a means of algebraically transforming a CSD to manipulate which consistent cuts it embeds; this
would then yield a completely syntactic account of consistent cuts. However, we defer this to future work.
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3 SYNTAX AND SEMANTICS OF CAUSAL SEPARATION DIAGRAMS
In Section 2 we discussed the intuitions behind causal separation diagrams (CSDs), and how they
arise from Lamport diagrams. In this section we give a formal treatment of CSDs as terms of an
inductive data type, and develop a concept of semantic interpretations of CSDs that we will make
heavy use of in later sections.

3.1 Site configurations
Recall from Section 2 that Lamport diagrams can be decomposed into a sequence of global steps,
where each adjacent pair of steps meets at a collection of sites called a site configuration (or just
configuration). The configuration at the start of a global step describes the state of the sites before
that step takes place, while the configuration at the end describes the state of the sites after the
step.The diagram as a whole also starts and ends on a pair of configurations — namely, the starting
configuration of its first step, and the ending configuration of its last step. A formally-defined CSD
will have type Γ1 ⇒ Γ2, where Γ1 and Γ2 are bounding configurations — the configurations the
diagram begins and ends on, respectively. Site configurations are themselves terms, so Γ1 ⇒ Γ2
will be a dependent type. (In fact, nearly every type we define will be dependent.)

Definition 3.1 (Site configurations). Let 𝜏 be a universe of types with products. Then a site config-
uration Γ is a binary tree with leaves drawn from 𝜏 , i.e., a term of the following grammar:

Γ B Γ ⊗ Γ | [𝜏]
𝜏 B 𝜏 × 𝜏 | . . .

The leaf constructor [−] gives the type of some state that is isolated at one site, while the spatial
product ⊗ models a kind of separating conjunction6, giving the type of state that is spatially dis-
tributed over multiple sites. For instance, if the type universe 𝜏 includes naturalsN and booleansB,
then [N×B] ⊗ [B] is a configuration with two sites, one carrying a pair of a natural and a boolean,
and the other carrying a single boolean.

The spatial product ⊗ is like a “lifted” version of the local product ×; and like the local product,
we will wish to treat ⊗ as associative and commutative. Since reordered/rebalanced binary trees
are syntactically distinct terms, however, we introduce a type of permutations 𝜎 : Γ1 ≃ Γ2 to
mediate between equivalent configurations.

Definition 3.2 (Sites). The type Site(Γ), defined recursively over the structure of configuration Γ,
is the type of paths from the root of Γ to each of its leaves:

Site([𝜏]) = ⊤
Site(Γ1 ⊗ Γ2) = Site(Γ1) + Site(Γ2)

Definition 3.3 (Permutations of sites (≃)). The type of permutations Γ1 ≃ Γ2 is an equivalence rela-
tion on site configurations, defined so that its elements 𝜎 correspond to type-preserving bijections
Site(Γ1) → Site(Γ2). By abuse of notation, we denote by 𝜎 (and 𝜎−1) the bijection witnessed by 𝜎 .

In Definition 3.2, ⊤ is the unit type (with single value •), and + gives sum types (with injections
injℓ and inj𝑟 ). For example, the type of sites for ( [N] ⊗ [B]) ⊗ [B] is (⊤ + ⊤) + ⊤. To address the
site of type N, we write the term injℓ (injℓ (•)), which tells us we can isolate this site by focusing
along the left-hand subtrees of this configuration.
6Separating conjunction is a logical connective found in separation logic, where two properties of heaps can be conjoined
if a heap can be split into two factors, one of which satisfies one property and one of which satisfies the other. A site
configuration can thus be thought of as a particular factorization of a distributed heap.



8 Castello, Redmond, and Kuper

3.2 Causal separation diagrams
From Section 2, we know that CSDs have two forms of composition: sequential composition and
concurrent composition.7 Just as conjunctive normal formmakes Boolean formulae easier to work
with, we will restrict concurrent composition to appear only under sequential composition. Every
CSD, then, has two layers: an outer list modeling sequencing, and an inner tree modeling concur-
rency. To separate these layers, we give them distinct symbols: a diagram 𝑥 : Γ1 ⇒ Γ2 is a diagram
proper, and can be composed sequentially, while a diagram 𝑥 : Γ1 ⊸ Γ2 is a global step, and can
be composed concurrently. These are morally both diagrams — a global step is just a diagram in
the process of being built — and we will generally not distinguish between them.
Definition 3.4 (Causal separation diagrams (⇒)). A causal separation diagram is a sequence of

global steps (see Definition 3.5, next), constructed according to the following rules:

id : Γ ⇒ Γ

𝑥 : Γ1 ⇒ Γ2 𝑦 : Γ2 ⊸ Γ3
(𝑥 ;𝑦) : Γ1 ⇒ Γ3

The id and sequencing (;) constructors play the same roles, respectively, as “nil” and “cons” do for
inductive lists. We take our sequences to grow to the right (a “snoc” list) from an initial id seed,
and moreover require that adjacent global steps be compatible: if a step ends on one configuration,
the following step must begin on the same configuration.
Definition 3.5 (Global steps (⊸)). A global step is a binary tree of atomic steps, constructed ac-

cording to the rules below:

𝑥 : Γ1 ⊸ Γ2 𝑦 : Γ′1 ⊸ Γ′2
(𝑥 ∥ 𝑦) : Γ1 ⊗ Γ′1 ⊸ Γ2 ⊗ Γ′2 fork : [𝜏 × 𝜏 ′] ⊸ [𝜏] ⊗ [𝜏 ′]

𝜎 : Γ1 ≃ Γ2
perm 𝜎 : Γ1 ⊸ Γ2 tick : [𝜏1] ⊸ [𝜏2] join : [𝜏] ⊗ [𝜏 ′] ⊸ [𝜏 × 𝜏 ′]

The atomic steps tick, fork, join, and perm describe the elementary ways in which sites can
be transformed over time. The concurrence (∥) operator fuses two global steps into one. Since
the two steps must operate over distinct configurations, no atomic step can share a site with any
concurrent step. Thus, just as ⊗ acts like a separating conjunction, ∥ acts like the concurrency rule
of concurrent separation logic. (We discuss future work following this analogy in Section 9.)

The perm constructor transforms a configuration into any equivalent configuration according
to the type of permutations ≃ of Definition 3.3. It will be convenient to have shorthand for three
special cases of perm:

• noop : Γ ⊸ Γ is a step over the identity permutation;
• swap : [𝜏] ⊗ [𝜏 ′] ⊸ [𝜏 ′] ⊗ [𝜏] is a step commuting two sites; and
• assoc : Γ1 ⊗ (Γ2 ⊗ Γ3) ⊸ (Γ1 ⊗ Γ2) ⊗ Γ3 is a step reassociating a configuration.

The tick constructor models any arbitrary local transformation of state. For instance, a tick of
type [N] ⊸ [N × B] might describe an action which prepares a (boolean) message depending on
the current (numeric) state.We deliberately leave the local transformations unconstrained to avoid
parameterizing CSDs over yet another type. Concrete information about each individual tick can
instead be associated to a CSD by way of labeling, which we will discuss in Section 3.3.

The fork and join constructors reify the connection between spatial and local products alluded
to in Section 3.1. If we have a local pair of state at one site — for instance, a pair [N×B] of numeric
7Some readers will recognize the syntax of CSDs as a (free) symmetric monoidal category. We will have more to say about
categorical connections in Section 9; for now, we acknowledge the connections but proceed concretely.
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tick fork join

noop swap assoc

Fig. 5. Atomic steps of a CSD, depicted as graphical tiles. The noop, swap, and assoc tiles characterize the
more general perm atomic step.

state and prepared message — we can spatially separate its components onto two sites with fork.
Conversely, state distributed over two sites can be fused into a local product on one site with join.
Therefore, these steps are our analogues of the send/receive actions found in Lamport executions.

Although a traditional Lamport diagram treats send and receive actions as state-modifying ac-
tions, we factor them into two separate steps: a Lamport-style send is realized as a tick followed
by a fork, and a Lamport-style receive is realized as a join followed by a tick.8 This factorization
allows us to treat all modifications of local state uniformly via tick, which helps us greatly when
associating concrete operations to each tick (Section 3.3).

Figure 5 depicts the tick, fork, join, noop, swap, and assoc atomic steps graphically. These
tiles can be freely composed along like boundaries (that is, solid blue lines compose with solid blue
lines, and dashed red lines compose with dashed red lines) to construct whole diagrams, so long
as any sequenced pair of diagrams agree on the arrangement of sites crossing between them. For
instance, consider the CSD given by the term id; (tick ∥ fork) ;assoc; (join ∥ noop). As a (snoc)-list,
this CSD begins from an empty diagram (id) to which successive global steps are appended (with ;).
Each constituent global step is built up as a concurrent composition of atomic steps (with ∥). We
can better display the structure of this CSD diagrammatically:

We begin on some site configuration [𝜏1] ⊗ [𝜏2×𝜏3], and perform a tick on the first site and a fork
on the second site to reach configuration [𝜏 ′1] ⊗ ([𝜏2] ⊗ [𝜏3]), where 𝜏 ′1 is the result type of the tick.
With assoc, we then rebalance the configuration into ([𝜏 ′1] ⊗ [𝜏2]) ⊗ [𝜏3], so that the following
step can join the first two sites (while leaving the third alone with noop). This CSD thus ends on
configuration [𝜏 ′1 × 𝜏2] ⊗ [𝜏3]. Since the type 𝜏2 ends up migrating from one site to another, this
CSD might describe a message sent from one process to another.

8To obtain a legitimate CSD from Figure 3(b), we would need to extract the implicit tick from each send and receive action.
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Abuses of notation. Since CSDs are lists of global steps, we can define a version of concurrent
composition that acts over entire CSDs by zipping them together (with noop padding if their
lengths are mismatched) and composing each pair. Likewise, we can sequentially extend a CSD by
another CSD using the equivalent of a concat operator. Rather than allocate new symbols to these
binary operators, we will abuse notation, letting ∥ and ; stand in for them.

In our Agda mechanization, the indexed types⇒ and⊸ are unified in a type with an auxiliary
index over {Seq, Par}. Throughout the rest of this paper, we take advantage of this technical con-
trivance to define single functions that can pattern-match through both sequential and concurrent
layers of a CSD, instead of defining a separate function for each layer.

3.3 Labeled CSDs
Recall that a tick step is meant to model a local transformation of state. However, up to this point,
there is no way to specify what that local transformation actually is for each tick. If we only have
one transformation in a given setting, we can interpret each tick as that specific transformation.
But this is clearly too much of a limitation — most systems can do more than one thing!

While we could parameterize CSDs over a type of actions (and construct each tickwith a choice
of action), this would complicate the type signature of CSDs, and introduce data for which the CSD
itself is simply a carrier. Instead, we follow the pattern of container types [Altenkirch and Morris
2009], in which the places where data can be held are characterized separately from the assignment
of data to those places. For example, the generic type of lists List(𝑇 ) can be factored into two parts:
a Peano natural 𝑛 : N and an assignment Fin(𝑛) → 𝑇 of values to indices. The Peano natural 𝑛
describes a particular shape of list (with zero playing the role of the empty list, and the successor
constructor playing the role of list consing), while Fin(𝑛) characterizes the positions within a list
of that shape. The assignment Fin(𝑛) → 𝑇 then fills those positions with concrete values.

Definition 3.6 (The type of ticks). For a CSD𝑋 , the type Tick(𝑋 ) has precisely one value for every
tick in 𝑋 , and is defined recursively over the structure of 𝑋 :

Tick(tick) = ⊤
Tick(fork) = ⊥
Tick(join) = ⊥
Tick(perm 𝜎) = ⊥ Tick(id) = ⊥
Tick(𝑥 ∥ 𝑦) = Tick(𝑥) + Tick(𝑦) Tick(𝑥 ; 𝑦) = Tick(𝑥) + Tick(𝑦)

Here, ⊥ is the empty type, ⊤ is the unit type (with only value •), and + gives sum types (with
injections injℓ , inj𝑟 ).

Definition 3.7 (Labeled CSDs). A 𝑇 -labeling 𝑓 : Tick(𝑋 ) → 𝑇 assigns a value of type 𝑇 to every
tick in 𝑋 . A 𝑇 -labeled CSD, written ⟨𝑋, 𝑓 ⟩ : Γ1 ⇒𝑇 Γ2, is a diagram together with a 𝑇 -labeling.

Given a labeled CSD, we can restrict its labeling to a subdiagram by pre-composing with the left
or right injection for sums. For instance, the prefix of the labeled CSD ⟨(𝑥 ;𝑦), 𝑓 ⟩ can be obtained
as ⟨𝑥, 𝑓 ◦ injℓ⟩. In the base case, we end up with ⟨tick, • ↦→ 𝑣⟩ — precisely a tick annotated with a
value. This makes labeled CSDs an excellent solution for specifying the behavior of each tick.

In a traditional execution (Definition 2.1), every local action comes with some information built
in— notwhat the action is, butwho performed it.This is because every action occurs on a particular
process’s total order. Although CSDs do not treat process lines specially, we can include this same
information by positing a type Pid of process identifiers, and working in terms of Pid-labeled CSDs.
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3.4 Semantic interpretations of CSDs
The construction of the Tick type in Definition 3.6 is our first example of an interpretation of
CSDs: we assigned some type to each atomic step, and described how sequential and concurrent
composition act over those types to yield a type for larger diagrams. This pattern is emblematic
of denotational semantics: “the meaning of the composition is the composition of the meanings.”9
By itself, the CSD representation is not much use; its utility comes from its interpretability.

Definition 3.8 (Semantic interpretations). A semantic interpretation (or semantics, or interpreta-
tion) of CSDs is a function (Γ1 ⇒ Γ2) → 𝐹 (Γ1, Γ2) mapping each CSD to a semantic domain 𝐹
indexed by site configurations.10

In the case of Tick, we take 𝐹 (−,−) to be Type, so its semantic domain does not vary with the
particular bounding configurations. Much of the rest of this paper will be devoted to the construc-
tion and analysis of additional interpretations, following the landmarks given in the introduction:

• In Section 4, we give a semantics in 𝐹 (Γ1, Γ2) = Site(Γ1) → Site(Γ2) → Type, a domain of
types⇝ whose elements 𝑝12 : 𝑠1 ⇝ 𝑠2 are causal paths between sites at the boundaries
of the diagram. This yields a proof-relevant analogue of Lamport’s happens-before relation,
where a path gives concrete evidence for why its endpoints are causally related.

• In Section 5, we give a semantics in 𝐹 (Γ1, Γ2) = Valuation(Γ1) → Valuation(Γ2), a domain of
functions C, parametric in a choice of logical clock. A valuation 𝜈 : Valuation(Γ1) is an as-
signment Site(Γ1) → Time of timestamps to each site; so functions C compute timestamps
C𝜈 on Γ2 from timestamps 𝜈 on Γ1.

• In Section 6, we give a semantics in 𝐹 (Γ1, Γ2) = ∀𝑠1 𝑠2. (𝑠1 ⇝ 𝑠2) → (∀𝜈. 𝜈 (𝑠1) ≤ C𝜈 (𝑠2)),
a domain of proofs relating the first two interpretations via Lamport’s clock condition.11
The resulting proof is constructed modularly, by composing proofs over atomic steps into
proofs over whole diagrams, and is parametric in a choice of logical clock.

Our target domains (happens-before, logical clocks, and the clock condition) are all pre-existing
concepts in the literature. However, the interpretations sketched above only directly relate points
on the beginning and ending boundaries of a diagram, while these concepts traditionally speak of
points interior to a diagram. To bridge this gap, we provide a general, two-phase recipe for building
interpretations.

• First we define a “spanning” interpretation, restricting the target domain to relationships
between the initial and final sites of a CSD. These interpretations are typically easy to
implement recursively over the structure of a CSD. For the causal paths of Section 4, this
will yield a domain of “spanning paths” giving causal relationships only between the sites
on the boundary of a diagram.

• Next we define an “interior” interpretation, extending the first interpretation to include
relationships between points on the interior of a diagram 𝑋 . For causal paths, an “interior
path” will be a spanning path across any subdiagram of 𝑋 , so our interpretation will relate
sites in any of the site configurations visited by 𝑋 .

The interpretations presented in Sections 4 to 6 all follow this same recipe.

9This compositionality principle appears to be folklore in denotational semantics; we cannot find a canonical source. It
dates at least to Frege, in the context of natural languages.
10The domain 𝐹 ought to be a symmetric monoidal category, with an interpretation being a functor from⇒ to 𝐹 . However,
we neither prove nor require that⇒ be such a category — although we are eager to make such connections in the future.
11Although it looks like Γ1 and Γ2 are not used in this domain, we are using the⇝ and C obtained from the other two
interpretations, which very much do depend on the given configurations.



12 Castello, Redmond, and Kuper

4 THE INDUCTIVE TYPE OF CAUSAL PATHS
In this section we develop a notion of causal order within CSDs that captures the potential flows
of information through a concurrent system. These flows are traditionally visualized in Lamport
diagrams as geometric paths, reducing causality to a kind of connectivity between two points in
space and time. We take these paths seriously as bona fide data: the type of causal paths is defined
by a semantic interpretation of CSDs, following the pattern established in Section 3.4. This results
in a causal relation that is proof-relevant: rather than the mere fact that “𝑒1 happens-before 𝑒2”
observed in traditional executions, we have concrete (and potentially multiple) paths 𝑝 : 𝑒1 ⇝ 𝑒2.
Such witnesses become extremely useful in proof by induction, including those we present in
Section 6 for logical clocks.

4.1 Spanning paths
We first restrict our attention to causal relationships between sites in the bounding configurations
of a diagram, which we will hereafter call bounding sites. In Section 4.2, we will extend these
relationships to sites on any configuration visited by a diagram.

Definition 4.1 (Spanning relations). A spanning relation between configurations Γ1, Γ2 is a type
family Site(Γ1) → Site(Γ2) → Type taking a pair of sites to a type of relationships between them.

If⇝ is a spanning relation, an element of type 𝑠1 ⇝ 𝑠2 describes a potential flow of information
between sites 𝑠1 and 𝑠2. Because information might take one of many branching and converging
paths en route between any pair of sites, 𝑠1 ⇝ 𝑠2 may have multiple distinct values. This makes
spanning relations proof-relevant: knowing that 𝑠1 ⇝ 𝑠2 means knowing why that fact is true.

Given two spanning relations⇝1 and⇝2, we can compose them sequentially or concurrently.
Sequential composition is standard relational composition (◦): we have a path across the sequence
of two spanning relations if we have paths across each individually that meet at some common
site. Concurrent composition is a disjoint sum (+): we have a path across the concurrence of two
spanning relations if we have a path across either individually.

Every CSD induces a spanning relation modeling the concrete ways information can flow from
one side of the diagram to the other.These are precisely the paths that the Lamport diagrammakes
evident graphically.

Definition 4.2 (Spanning paths). The type family Span(𝑋 ) of spanning paths through a CSD 𝑋 :
Γ1 ⇒ Γ2 is a spanning relation, and is defined inductively over the structure of 𝑋 :

Span(tick) = 𝜆𝑠1 𝑠2. ⊤
Span(fork) = 𝜆𝑠1 𝑠2. ⊤
Span(join) = 𝜆𝑠1 𝑠2. ⊤
Span(perm 𝜎) = 𝜆𝑠1 𝑠2. (𝑠2 ≡ 𝜎 (𝑠1)) Span(id) = 𝜆𝑠1 𝑠2. (𝑠2 ≡ 𝑠1)
Span(𝑥 ∥ 𝑦) = Span(𝑥) + Span(𝑦) Span(𝑥 ; 𝑦) = Span(𝑦) ◦ Span(𝑥)

When 𝑋 is understood, we write 𝑠1 ⇝ 𝑠2 to mean Span(𝑋 )(𝑠1, 𝑠2).
The tick, fork, and join steps are interpreted trivially into the unit type ⊤, because those steps

have precisely one path for every opposing pair of bounding sites: join, for instance, relates two
input sites to one output site, and information on both inputs will flow into the single output.
Meanwhile, id relates a configuration to itself (so only matching indices are connected by paths);
and perm 𝜎 relates inputs to outputs according to the permutation of sites performed by 𝜎 .

For example, the CSD depicted in Figure 6 goes from configuration 𝑠1⊗𝑠2 to configuration 𝑠3⊗𝑠4.
Because 𝑠2 is causally related to 𝑠4 by two distinct paths, the type 𝑠2 ⇝ 𝑠4 has two inhabitants.
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Fig. 6. In this diagram, the bolded paths identify distinct witnesses to the causal relationship between initial
site 𝑠2 and final site 𝑠4.

4.2 Interior paths
Next, we will extend our spanning relation between bounding sites to a relation on all points of
interest within a diagram. To do this, we need to refer not only to sites in the bounding configu-
rations of 𝑋 , but on any site configuration visited by 𝑋 . A CSD with a sequence of 𝑁 global steps
visits 𝑁 + 1 site configurations: one at the start of the diagram, and one at the end of each global
step. Hence, an event will be a choice of site configuration in a diagram, together with a choice of
site within that configuration.

Definition 4.3 (Cuts). The type Cut(𝑋 ) of cuts within a diagram 𝑋 : Γ1 ⇒ Γ2 has one inhabitant
for every site configuration visited by 𝑋 , and is defined recursively over the structure of 𝑋 . The
associated function cut (−) picks out the site configuration for each index of Cut(𝑋 ).

Cut(id) = ⊤ cut (•) = Γ2

Cut(𝑥 ; 𝑦) = Cut(𝑥) + ⊤ cut (injℓ (𝑡)) = cut (𝑡) cut (inj𝑟 (•)) = Γ2

Definition 4.4 (Events). The type Event(𝑋 ) of events in a diagram 𝑋 is the type of points in
spacetime consisting of a temporal coordinate (a cut) together with a spatial coordinate (a site):

Event(𝑋 ) = (𝑡 : Cut(𝑋 ), 𝑠 : Site(cut (𝑡)))

This order of coordinates inverts the convention for events in a traditional execution, where we
first select a process (a spatial coordinate) and then select an action occurring on that process (a
temporal coordinate). In our figures (such as Figure 6), events exist wherever a line modeling the
flow of data (in black) intersects a consistent cut (in blue).

Care should be taken not to confuse events with actions. In the traditional model of executions,
an “event” is modeled by a local action — the equivalent of our tick. However, since an action is
effectively a discontinuous, instantaneous change to state, this leads to questions about what the
state of a system is “at” a local action: Has the action actually happened yet or not? Is the action
included in its own causal history? These ties are usually broken by interpreting events to occur
either slightly before or slightly after an action — and sometimes both, depending on context. We
prefer not to conflate these concepts in the first place: for us, an event is no more than a point in
space at a point in time, with no presumption that it is special in any particular way.

Next, we need a way to describe paths between any two events. For any two cuts in a CSD, we
can consider the global steps between them as a subdiagram.Then a path between two events is no
more than a path spanning the subdiagram between their cuts. Order matters, however: if a CSD
passes through distinct cuts 𝑡1, 𝑡2 (in that order), the subdiagram “from 𝑡2 to 𝑡1” does not really exist
— at least not in the expected sense. To preclude such inversions, we will define subdiagrams only
over legal intervals.
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Definition 4.5 (Intervals). The interval 𝑡1 · · · 𝑡2 between cuts 𝑡1, 𝑡2 in a diagram 𝑋 is the type with
a (unique) inhabitant 𝑡12 if and only if 𝑋 visits 𝑡1 no later than 𝑡2.
Definition 4.6 (The subdiagram over an interval). The subdiagram over an interval 𝑡12 : 𝑡1 · · · 𝑡2,

denoted during(𝑡12), is the CSD consisting of the global steps appearing strictly between cuts 𝑡1, 𝑡2
in a diagram 𝑋 .

Since CSDs are effectively (snoc-)lists at the top level, using during(−) is akin to using the
common list functions drop and take: we drop everything after both cuts, then take everything
that remains after the first cut.

Finally, we can obtain a causal relation between events:
Definition 4.7 (Causal relations). For a diagram 𝑋 , a causal relation is a type family Event(𝑋 ) →

Event(𝑋 ) → Type taking every pair of events to a type of relationships between them.
Definition 4.8 (Causal paths). The type family ⇝ of causal paths (sometimes interior paths)

through a diagram 𝑋 is a causal relation. The inhabitants of 𝑒1 ⇝ 𝑒2 are (dependent) pairs consist-
ing of an interval between the events together with a spanning path under that interval:

(𝑡1, 𝑠1) ⇝ (𝑡2, 𝑠2) = (𝑡12 : 𝑡1 · · · 𝑡2, 𝑝12 : Span(during(𝑡12)) (𝑠1, 𝑠2))
We consistently pun⇝ to mean either spanning paths or causal paths depending on whether

its arguments are sites or events. Similar liberties will be taken (and acknowledged) with the in-
terpretations of Sections 5 and 6.

The causal relation⇝ enjoys reflexivity, antisymmetry, and transitivity, making it a partial or-
der. As a proof-relevant type, reflexivity arises from the existence of unit paths, and transitivity
arises from the composition of paths — which is, moreover, strictly associative. Unlike traditional
executions (Definition 2.1), antisymmetry is guaranteed by construction for every CSD: it is impos-
sible to introduce a causal loop because state flows only forward in time. Proofs of these properties
can be found in our Agda development; we elide them here for brevity.

An order on actions. Here and in Section 2, we were careful to distinguish the actions related by
happens-before from the spacetime coordinates we call events. Nonetheless, the two notions are
closely related: every local action 𝑎 has a pair of associated events 𝑒ℓ𝑎, 𝑒𝑟𝑎 before and after it. We can
choose one of these events to act as proxy for the actions in our system to recover an irreflexive
order on actions: 𝑎𝑖 < 𝑎 𝑗 if and only if 𝑒𝑟𝑎𝑖 ⇝ 𝑒ℓ𝑎 𝑗

. For example, in Figure 6, we have 𝑎1 < 𝑎2, since
𝑒𝑟𝑎1 ⇝ 𝑒ℓ𝑎2 . Because of this correspondence, we speak only of events in what follows — we can
always choose a suitable event to stand in for any action of interest.

5 INTERPRETING CSDS INTO LOGICAL CLOCKS
In this section (and Sections 6 and 7) we apply CSDs to the analysis of logical clocks, a common
class of devices for reifying causal information into a concurrent system at runtime. As Lamport
[1978] observed, we often cannot rely on physical timekeeping to coordinate agents in a concur-
rent system: one agent’s clock may drift relative to the others, and messages may take variable (or
unbounded) amounts of time to propagate from sender to recipient. Logical clocks solve this prob-
lem by measuring time against the occurrence of intentional actions of the agents in the system.

In the setting of Lamport [1978], a logical clock (or just clock) is a global assignment of partially-
ordered values (called timestamps) to actions in a concurrent execution. Figure 7 gives examples
of these assignments for two widely used logical clocks: the scalar clock [Lamport 1978] and the
vector clock [Mattern 1989; Fidge 1988], which respectively use scalar and vector timestamps. We
will discuss the specifics of these clocks in more detail in Section 7, along with matrix clocks [Wuu
and Bernstein 1984; Raynal et al. 1991].
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(a) (b)

Fig. 7. An example execution with an assignment of timestamps by the (a) Lamport clock and (b) vector
clock.

In our setting, a clock will assign a timestamp to every event in a CSD. Just as in Section 4.2, we
can assign timestamps to actions by choosing an adjacent event to represent that action.

We will use a common formulation of clocks as implementations of an abstract data type with
local increment andmerge operations [Raynal and Singhal 1996], andwe bridge this local character-
ization of clocks into a global assignment of timestamps via interpretation. We begin by justifying
this choice of formulation; then, just as in the case of causal paths (Section 4), we construct an in-
terpretation of CSDs 𝑋 : Γ1 ⇒ Γ2 into a spanning domain, in which an assignment of timestamps
(or “valuation”) on the sites of Γ1 is updated into a valuation on Γ2. We conclude by extending this
interpretation to an interior domain, which will assign timestamps to all events within a diagram.

5.1 Realizable clocks
In practical implementations, a logical clock is realized as a data structure, instantiated by each
agent in a concurrent system, that tracks the passage of (logical) time from the perspective of
that agent. The timestamp associated to any action is that displayed by the clock of the agent
when it performed the action. The archetypal logical clock is the scalar clock of [Lamport 1978],
in which every agent’s clock maintains a single monotonically-increasing integer. To ensure that
every action occurs at a later “time” than those that occur causally prior, the scalar clock increments
with each action, and updates to the maximum of its timestamp and that of any message received
at that agent. This property — that causally-related actions have like-ordered timestamps — is so
important that it is called the clock condition, and is required of any prospective logical clock.12

While we can always build a global assignment of timestamps from a system of clock replicas,
we cannot always go in the reverse direction: a clock in the global sense may not be realizable as a
data structure. For instance, given an execution with 𝑛 actions, if C[−] is a monotone assignment
of integer timestamps to this execution, then so is C[−]+𝑛. But an agent early in the execution has
no knowledge of how many actions will occur in total: any prediction it makes may be invalidated
depending on what transpires in the future. So even if C[−] can be realized as a system of local
clock instances, C[−] + 𝑛 certainly cannot be.

We restrict our attention to such realizable clocks, as these make up the majority of clocks in
the literature.13 Following Raynal and Singhal [1996], we treat logical clocks as an abstract data
type (ADT) with two operators, increment andmerge. In addition, we assume a type Act of actions
performable by any agent in the system.

12Lamport [1978] uses an irreflexive relation, while our formulation is reflexive. While we can easily recover an irreflexive
relation on actions from our reflexive relation on events, our version of the clock condition does not guarantee forward
progress: a broken clock is yet a clock. In practice, the inverse clock condition satisfied by other clocks covers the difference.
13Actually, we are not directly aware of any unrealizable clocks as such; though offline analyses of recorded execution
traces might make good use of them.



16 Castello, Redmond, and Kuper

Definition 5.1 (Clocks as an ADT). A logical clock is a type Time together with
• a family of operations increment𝑎 of type Time → Time for every 𝑎 : Act,
• an operation ⊔ (pronounced merge) of type Time × Time → Time.

Moreover, Time must be preordered by a relation ≤, such that for all timestamps 𝑡1, 𝑡2 : Time,
the above operations are inflationary:

• 𝑡1 ≤ increment𝑎 (𝑡1),
• 𝑡1 ≤ (𝑡1 ⊔ 𝑡2), and
• 𝑡2 ≤ (𝑡1 ⊔ 𝑡2).

The incrementa operation advances the clock’s time depending on what the action 𝑎 is. For
instance, a vector clock maintains an index for every agent, and it increments a different index
depending on which agent performed the action. Since a CSD doesn’t carry information about the
provenance of an action, we take the elements of Act to include that information themselves.14

Themerge operation advances the clock’s time to any time after the two given timestamps.This
operation is used when an agent receives a message decorated with the sender’s timestamp: by
merging the sender’s timestamp with the recipient’s timestamp, any action occuring from that
point on is guaranteed to have a timestamp no less than than anything in its causal history.

5.2 Update functions
Given a logical clock, our goal is to derive a global assignment of timestamps to events for any CSD.
Following the pattern in Section 3.4, we first restrict our attention to an assignment of timestamps
to the bounding sites of an Act-labeled diagram 𝑋 : Γ1 ⇒Act Γ2.

Intuitively, we will want to interpret every ⟨tick, 𝑎⟩ as an increment𝑎 operation, and every
⟨join, •⟩ as a merge over the input timestamps. An Act-labeled CSD is then an expression arrang-
ing any number of clock operations on timestamps into a one-shot, compound operation over an
entire configuration of clocks. In other words, every Act-labeled CSD yields a function mapping
an assignment of timestamps on its input sites to an assignment of timestamps on its output sites.

Definition 5.2 (Valuations). The type of valuations on Γ, written Valuation(Γ), is the type of func-
tions 𝜈 : Site(Γ) → Time assigning a timestamp to each site in Γ.

Definition 5.3 (Update functions). For every logical clock, the interpretation J−K of Act-labeled
CSDs 𝑋 : Γ1 ⇒Act Γ2 into update functions of type Valuation(Γ1) → Valuation(Γ2) is defined as:Jtick, • ↦→ 𝑎K = 𝜆𝜈. 𝜆−. increment(𝑎)(𝜈 (•))Jfork,−K = 𝜆𝜈. 𝜆−. 𝜈 (•)Jjoin,−K = 𝜆𝜈. 𝜆−. 𝜈 (injℓ (•)) ⊔ 𝜈 (inj𝑟 (•))Jperm 𝜎,−K = 𝜆𝜈. 𝜈 ◦ 𝜎−1 Jid,−K = 𝜆𝜈. 𝜈J𝑥 ∥ 𝑦, 𝑓𝑥 + 𝑓𝑦K = J𝑥, 𝑓𝑥K + J𝑦, 𝑓𝑦K J𝑥 ; 𝑦, 𝑓𝑥 + 𝑓𝑦K = J𝑦, 𝑓𝑦K ◦ J𝑥, 𝑓𝑥K
When the diagram 𝑋 is understood, we will write C𝜈 [𝑠] to mean J𝑋 K(𝜈) (𝑠).

Because a tick transforms a valuation on one site into a valuation on one site, it serves as a
very thin wrapper around increment𝑎 . The new valuation can ignore its argument, because there
is only one input to a tick. Likewise, fork ignores its argument because both outputs receive their
timestamp from the same input site, and join merges both input sites onto the single output site.

14Alternatively, we can take Act to be the type of process identifiers, so that any agent may increment any index of the
clock — even one not intended to track that agent. Section 7.1 develops this perspective in more depth.
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Fig. 8. The execution from Figure 7 as a CSD, with Lamport timestamps assigned to events.

In contrast, the perm constructor doesn’t manipulate any timestamps directly. Instead, any
given site is translated by the permutation 𝜎 into an index on the input valuation: the requested
timestamp is just one of those in the input. The id constructor behaves similarly.

Finally, sequential and concurrent composition each combine the evaluation functions from
each subdiagram. Sequential composition is given by the usual composition of functions (◦); and
concurrent composition is given by the usual pairing of two functions over a sum type (+). We
abuse pattern-matching notation somewhat by writing 𝑓𝑥 + 𝑓𝑦 on the left-hand side, where we
would otherwise write simply 𝑓 and compose its uses with the appropriate injection.

5.3 Clock functions
The interpretation of Definition 5.3 only tells us what timestamps a system terminates on, not
the timestamps along the way. To obtain the latter, we must extend our function C𝜈 to accept
any event (Definition 4.4), not just output sites. That is, we want a function C : Valuation(Γ1) →
(Event(𝑋 ) → Time), computing an assignment of timestamps to all events given an initial assign-
ment of timestamps.

Following Section 4.2, we will select a subdiagram with the event of interest on its boundary.
The timestamp at an event is then one of the timestamps on which that subdiagram terminates.

Definition 5.4 (The subdiagram before a cut). The subdiagram before a cut 𝑡 , denoted before(𝑡), is
the CSD consisting of the global steps appearing strictly before the cut 𝑡 in a diagram 𝑋 .

Definition 5.5 (Clock function). For every choice of logical clock and Act-labeled diagram 𝑋 , the
clock function C of type Valuation(Γ1) → (Event(𝑋 ) → Time) is given by

C𝜈 [(𝑡, 𝑠)] = Jbefore(𝑡)K(𝜈) (𝑠).
We consistently pun C𝜈 to mean either the update function (Definition 5.3) or the clock function

depending on whether its argument is a site or an event.
Figure 8 depicts the execution from Figure 7 as a CSD, with timestamps assigned to events

according to the Lamport clock, given a starting valuation of zeroes and using the interpretation
in Definition 5.3. As discussed in Section 4.2, we can associate timestamps to actions rather than
events just by selecting one of the neighboring events for each action to represent it. In this case,
convention suggests adopting the timestamp of the event immediately following each action.

6 RELATING CAUSAL PATHS TO CLOCKS
In Section 4, we introduced an interpretation into paths 𝑒1 ⇝ 𝑒2, giving a proof-relevant causal
order on events; and in Section 5, we introduced a family of interpretations into clock functions
C𝜈 [−], giving an assignment of timestamps to events. In this section, we will relate these two
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interpretation via a third, ultimately yielding a proof of the clock condition: if 𝑒1 ⇝ 𝑒2, then
C𝜈 [𝑒1] ≤ C𝜈 [𝑒2]. Following the recipe in Section 3.4, we will again begin with a spanning proof
relating paths and timestamps on the bounding sites, then extend to an interior proof relating paths
and timestamps on all events.

6.1 Inflationarity of update functions
The clock condition relates any two events in a diagram: if 𝑒1 ⇝ 𝑒2, then C𝜈 [𝑒1] ≤ C𝜈 [𝑒2]. If we
restrict our attention to sites 𝑠1, 𝑠2 at the start and end of the diagram, respectively, then C𝜈 [𝑒1]
reduces to simply 𝜈 (𝑠1), because the diagram before an initial site is the empty diagram id. This
leads us to the following statement:

TheoRem 6.1 (The update function is inflationaRy). Fix a choice of logical clock, and let 𝑋
be an Act-labeled CSD Γ1 ⇒Act Γ2 with an initial valuation 𝜈 : Valuation(Γ1). Then the clock’s update
function C is inflationary on causally related sites:

∀(𝑠1 : Site(Γ1)) (𝑠2 : Site(Γ2). (𝑠1 ⇝ 𝑠2) → (𝜈 (𝑠1) ≤ C𝜈 [𝑠2]) .

This property is an analogue of the inflationary property satisfied by the clock operations of
Definition 5.1: if an output can be influenced by an input, then the output must be bounded below
by the input. In some ways, it would be surprising if Theorem 6.1 didn’t hold of C, as it is built
entirely from inflationary clock operations. Our proof will be built in kind, compsing proofs over
atomic steps to yield proofs for entire diagrams.We sketch the proof at a high level here; the details
are available in our Agda development.

• The proof for a tick step uses the fact that the clock’s increment operator is inflationary:
𝑡 ≤ increment𝑎 (𝑡) for every action 𝑎 and timestamp 𝑡 . This is true by construction for any
clock implementing Definition 5.1.

• The proof for a join step uses the fact that the clock’s ⊔ operator is inflationary on both
arguments: both 𝑡1 ≤ (𝑡1 ⊔ 𝑡2) and 𝑡2 ≤ (𝑡1 ⊔ 𝑡2) for every pair of timestamps 𝑡1, 𝑡2. Again,
this is definitionally true.

• The proof for a fork step uses the fact that the clock’s ordering relation is reflexive: we
simply copy the input timestamp onto both outputs, so the actual values are unchanged.
Indeed, this is true of perm and id, too: all outputs are precisely the same as the (unique)
inputs they are causally related to.

• The proof for a sequential composition (;) uses the fact that the clock’s ordering relation
is transitive. If we have a path through an intermediate site, where the time at the inter-
mediate site is bounded below at the input and bounded above at the output, we must use
transitivity to obtain a direct relationship between the input and output.

• The proof for a concurrent composition requires no information about the clock; however,
the proof-relevance of our causal relation plays an essential role. We know that 𝑠1 and 𝑠2 are
causally ordered because we were given a specific path witnessing the fact; and any given
path through a concurrent composition is a path wholly through one concurrent half of
the diagram or the other. Thus, we can simply dispatch to whichever sub-proof applies to
the path at hand.

Somewhat surprisingly, nowhere do we require antisymmetry: even though partial orders are
traditionally used in logical clocks, preorders are enough.This proof also holds for every CSD, even
those not reflecting a well-behaved system. All we require is that updates are inflationary — the
clock condition is not actually sensitive to what those updates are, or who performs them. This
reveals a clean separation between clocks as ADTs and the protocols they are employed in; the
clock condition is solely concerned with the ADT itself.
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6.2 Monotonicity of clock functions
Just as in Sections 4.2 and 5.3, we need to be a little creative to leverage Theorem 6.1 into a proof
of the full clock condition. The key insight is that, if we have a path of type 𝑒1 ⇝ 𝑒2 and an initial
valuation 𝜈 , we can run the clock’s update function on the subdiagram before 𝑒1. The resulting
valuation is an initial valuation for the subdiagram between 𝑒1 and 𝑒2, on which we can apply
inflationarity. Once more, we leave the finer details to our Agda implementation.

TheoRem 6.2 (The clocK function is monotonic). Fix a choice of logical clock, and let 𝑋 be an
Act-labeled CSD Γ1 ⇒Act Γ2 with an initial valuation 𝜈 : Valuation(Γ1). Then the clock function C is
monotonic on causally related events:

∀(𝑒1 𝑒2 : Event(𝑋 )) . (𝑒1 ⇝ 𝑒2) → (C𝜈 [𝑒1] ≤ C𝜈 [𝑒2]) .

Theorem 6.2 tells us that every logical clock implementing the clock ADT of Definition 5.1 must
necessarily satisfy the clock condition. In Section 7, we will actually instantiate these results on
several clocks from the literature.

7 VERIFIED LOGICAL CLOCKS
In Sections 4 to 6, we developed a framework for reasoning about causal relationships and logical
clocks, culminating in a generic proof of the clock condition for implementations of the standard
clock abstract data type. In this section we apply our results to several well-known clocks: Lam-
port’s scalar clock [1978], Mattern’s vector clock [1989], Raynal et al.’s matrix clock [1991], and
Wuu and Bernstein’s matrix clock [Raynal et al.]. Implementations of these clocks are included in
our Agda development, each with an instantiation of our generic proof of the clock condition.

Although there is only one “scalar” clock and “vector” clock in common use, there are two
distinct “matrix” clockswith two-dimensional timestamps.The clock of Raynal et al., like the others
we discuss, merges timestamps strictly pointwise; in contrast, the clock of Wuu and Bernstein
[1984] additionally merges a row at one index into a row at another, yielding a noncommutative
merge operator. To avoid confusion, we will refer to the former as the RST clock, and the latter as
the Wuu-Bernstein clock. We will have more to say about the characteristics of the Wuu-Bernstein
clock in Section 7.2; for now, we restrict our attention to the scalar, vector, and RST clocks.

7.1 Classifier clocks
Thescalar, vector, and RST clocks all follow a similar template: we classify actions by some application-
specific criterion, then maintain a count of observed actions for every class.

• The scalar clock classifies all actions into one single, universal class. Its timestamp consists
of a single natural number, assessing a lower bound on the total number of actions that
have occurred prior.

• Thevector clock classifies actions based onwho performed them, i.e. by actor. Its timestamp
consists of a vector of natural numbers — or, equivalently, a function assigning a natural
to every actor.

• The RST clock classifies actions based on subject and object: that is, every action is per-
formed by some subject against some object. For Raynal et al. [1991], these actions are the
submission of messages, where every message has both a sender (the subject) and a recipi-
ent (the object). The RST clock’s timestamp is thus a table counting messages sent between
any two actors — or, equivalently, a function assigning a natural to every pair of actors.

Surprisingly, these clocks turn out to be structurally identical, differing only in their indexing
classes 𝐼 . In all cases, timestamps are maps 𝐼 → N ordered pointwise; the increment operation
increments the value for a chosen class 𝑖 ∈ 𝐼 by one; and the merge of two timestamps is their
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pointwise maximum. From elementary properties of natural numbers, this pointwise order is a
preorder, and both operations are inflationary. Thus, we model all three clocks with one imple-
mentation, which we call a classifier clock, parametric in a classification function giving each
action its class.

By instantiating Definition 5.5 and Theorem 6.2 on the classifier clock, we obtain a global as-
signment of timestamps for every CSD, together with a proof that this assignment is monotone
(i.e., the clock condition). When specialized to sender-recipient classes (that is, indices Pid × Pid),
this yields the first mechanized proof (to our knowledge) of the clock condition for the RST clock.

7.2 Tensor clocks
The Wuu and Bernstein clock [1984] differs from the others in that it merges a row at the sender’s
index into a row at the recipient’s, in addition to the usual pointwise merge. This merge operation
is noncommutative, since it depends on which timestamp is considered the sender’s, and which is
considered the recipient’s.

Kshemkalyani [2004] constructs a whole tensor clock hierarchy of clocks with noncommutative
merge, where a general index (𝑐, 𝑜1, 𝑜2, . . . ) models information of the form “𝑜1 knows that 𝑜2
knows that . . . 𝑐 occurred at least 𝑁 many times.” Clocks in this hierarchy model a kind of tran-
sitive knowledge: if one agent observes some population of actions, and they send a message to
another agent, then the recipient transitively observes that same population of actions. The Wuu
and Bernstein clock falls out as a special case of Kshemkalyani’s hierarchy.15

Wehave implemented and verified the clock condition for theWuu-Bernstein clock in our frame-
work. However, the noncommutative merge operation poses some theoretical problems for the
model of interpretation we developed in Section 5, which interprets the join atomic step into the
clock’s merge operator. We want to treat join as commutative (up to isomorphism), as with the
products of sets or types. Therefore, an interpretation via Definition 5.3 of join into a noncommu-
tative merge operator would take equivalent CSDs to non-equivalent update functions. That said,
since all such update functions are increasing, our proof of the clock condition inTheorem 6.2 still
holds — there is no pair of equivalent CSDs for which the clock condition holds on one but not
the other. Nonetheless, we hope to construct a more adequate interpretation that accounts for the
full tensor clock hierarchy in the future.

8 RELATEDWORK
MSCs and their semantics. Message sequence charts (MSCs) are a diagrammatic language for

representations of message-passing computations, widely used by practitioners and researchers
(e.g., Lohrey and Muscholl [2004]; Alur et al. [2000]; Bollig et al. [2021]; Di Giusto et al. [2023], as
a small sampling). There have been various efforts to formalize MSCs or MSC-like diagrammatic
languages, including the MSC standard itself [ITU-T 2011] and others [Schätz et al. 1996], and
investigations of the semantics of MSCs [Ladkin and Leue 1993; Broy 2005; Alur et al. 1996; Mauw
and Reniers 1994; Gehrke et al. 1998]. However, we are not aware of any formalizations of MSCs
that define them inductively, as we have done for CSDs. Rather, existing MSC formalizations are
in terms of a given set of messages and a given set of processes.

Alur et al. [1996] note thatMSCs admit “a variety of semantic interpretations”, seemingly similar
in spirit to our interpretations of CSDs. However, Alur et al.’s interpretations yield refinements of
causal order – for example, they note that the meaning of a given MSC may depend on the choice
of network model and fault model (e.g., whether message loss or reordering are possible). While

15The vector clock also appears as a member of the tensor clock hierarchy, though it exists as something of a base case —
unlike higher tensor clocks, its merge is commutative.
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we give an interpretation of CSDs into a causal order, our range of possible semantic domains is
greater: we also give interpretations into computable functions and into proofs.

Mechanized reasoning about clocks and causality in concurrent systems. In distributed systems,
the notion of causal ordering arises in a myriad of settings, including causally consistent data
stores [Ahamad et al. 1995; Lloyd et al. 2011], distributed snapshot protocols [Mattern 1989; Acharya
and Badrinath 1992; Alagar and Venkatesan 1994], causal message delivery protocols [Birman and
Joseph 1987a; Schiper et al. 1989; Birman and Joseph 1987b; Birman et al. 1991], and conflict-free
replicated data types (CRDTs) [Shapiro et al. 2011]. In shared-memory systems, the need to reason
about causality arises in the setting of data race detection for multithreaded programs [Poznian-
sky and Schuster 2003; Flanagan and Freund 2009]. It is typical for such applications to use logical
clocks of one kind or another to reify causal information.

There are several mechanically verified implementations of distributed algorithms that use logi-
cal clocks [Lesani et al. 2016; Gondelman et al. 2021; Nieto et al. 2022; Redmond et al. 2023]. These
proof developments focus on verifying properties of those higher-level algorithms (such as causal
consistency of replicated databases [Lesani et al. 2016; Gondelman et al. 2021], convergence of
CRDTs [Nieto et al. 2022], or safety of causal message broadcast [Nieto et al. 2022; Redmond et al.
2023]), and they (implicitly or explicitly) take the clock condition as an axiom.

The only other work that we are aware of on mechanized verification of the clock condition
itself is by Mansky et al. [2017], whose work focuses on the verification of dynamic race detection
algorithms. As part of their larger proof development, Mansky et al. proved in Coq that vector
clocks precisely characterize the causal order. That is, they proved not only the clock condition
for vector clocks, as we do here, but also the inverse clock condition: if 𝑒𝑖 ’s timestamp is less than
𝑒 𝑗 ’s timestamp, then 𝑒𝑖 causally precedes 𝑒 𝑗 . Unlike the (forward) clock condition, the inverse
clock condition depends on the particular protocol governing use of the clock: a process must
not increment an index owned by another process. While our proof development works for any
clock that can be expressed as an ADT, we cannot yet prove protocol-dependent properties like
the inverse clock condition. We hope to approach such properties in future work.

Separation logics. Separation logics [Reynolds 2002] are program logics for reasoning about the
correct use of resources — concrete resources such as memory, but, excitingly, also logical re-
sources such as permissions and execution history. Concurrent separation logics [O’Hearn 2007]
enable such reasoning about concurrent programs. The literature on separation logics and concur-
rent separation logics is too vast to summarize here, although O’Hearn [2019] offers an accessible
introduction and Brookes and O’Hearn [2016] give an overview of important developments. CSDs
are heavily inspired by concurrent separation logic, but we have not yet pursued a program logic
based on CSDs. Wickerson et al. [2013]’s ribbon proofs, a diagrammatic proof system based on
separation logic, could be an inspiration for future work in this direction.

Separation logic has been used in the service of reasoning about causality. Gondelman et al.
[2021] and Nieto et al. [2022] both use the Aneris concurrent separation logic framework [Krogh-
Jespersen et al. 2020], itself built on the Iris [Jung et al. 2018] framework, to verify the correctness
of distributed systems in which causality is a central concern. However, the Aneris framework
does not offer any particular support for reasoning about causality. In fact, we are not aware
of program logics or verification frameworks that are specifically intended for reasoning about
causality, which is perhaps surprising, considering the importance of causality in concurrent sys-
tems. Rather than reasoning about causal relationships as logical resources, as one would do when
using Iris or Aneris, causality in a CSD-based proof system would manifest in the structure of the
proof itself.
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String diagrams. Our CSDs are inspired by the string diagrams employed in category theory,
which formally describe compositions of morphisms in amonoidal category (i.e., with a concurrent
composition operator) using a graphical syntax.The standard reference for string diagrams is Joyal
and Street [1991], though Piedeleu and Zanasi [2023] give an accessible introduction for computer
scientists. We hope to establish firmer connections between CSDs and string diagrams in future
work, e.g., by proving that CSDs form a (symmetric) monoidal category. Moreover, recent work by
Nester [2021] has described execution traces in concurrent systems using string diagrams in which
data can be transferred between tiles both in time (in the forward direction) and in space (in the
sideways direction).This contrasts with our CSDs, in which data is only transferred in time. Nester
leverages double categories to formalize these two-dimensional interfaces. It would be interesting
to investigate what a treatment of causality might look like in such a setting.

A completely different application of string diagrams can be found in the tape diagrams of
Bonchi et al. [2023], which give a graphical syntax to set-theoretic relations. A tape diagram is a
two-layer presentation of relations, with disjunction on one layer and conjunction on another.The
two-layer structure of CSDs, with global actions over global state decomposing into local actions
over local state, is reminiscent of Bonchi et al.’s approach.Wewould like to explore the connections
between these ideas in future work.

9 CONCLUSION
Causality is of central importance in concurrent systems, including both shared-state andmessage-
passing systems. In this paper, we presented causal separation diagrams (CSDs), a new formal
model of concurrent executions that is inductively defined and enjoys a diagrammatic syntax rem-
iniscent of Lamport diagrams. The inductive nature of CSDs makes them amenable tomechanized
reasoning and interpretation.

As a case study, we used CSDs to reason about logical clocks, ubiquitous mechanisms for reify-
ing causal information in concurrent systems. By interpretating CSDs into a variety of semantic do-
mains, we built up a generic proof of Lamport’s clock condition that holds for any realizable logical
clock, including the Wuu-Bernstein clock and the RST clock, neither of which were mechanically
verified previously. A proof-relevant analogue of Lamport’s happens-before relation, witnessing
concrete causal paths in an execution, plays an essential role in these proofs. Our framework and
results are available as an Agda development.

While logical clocks were a focus of this paper, we see CSDs (and interpretations of CSDs) as a
valuable reasoning tool beyond their application to logical clocks. In future work, we hope to flesh
out the connection between CSDs and symmetric monoidal categories in more detail, including
notions of equivalence and refinement for CSDs, which will hopefully yield well-behavedness
conditions for interpretations.
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