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Abstract
We describe ongoing work that models conflict-free replicated data types (CRDTs) from a coalgebraic
point of view. CRDTs are data structures designed for replication across multiple physical locations
in a distributed system. We show how to model a CRDT at the local replica level using a novel
coalgebraic semantics for CRDTs. We believe this is the first step towards presenting a unified theory
for specifying and verifying CRDTs and replicated state machines. As a case study, we consider
emulation of CRDTs in terms of coalgebra.
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1 Introduction

In distributed systems, data replication guards against machine failures and keeps data
physically close to clients who require low-latency access, but it introduces the problem of
keeping replicas consistent with one another in the face of network partitions and unpredictable
message latency. Conflict-free replicated data types (CRDTs) [14, 13] are data structures
whose operations must satisfy certain mathematical properties that can be leveraged to
ensure strong convergence, meaning that replicas are guaranteed to have equivalent state
given that they have received and applied the same (unordered) set of update operations.

A typical use case for CRDTs is that of a text document being made available to n

concurrent users via an online collaborative editor. We can model such a collaborative editing
application as a coalgebra

⟨update, query⟩ : X → XA × S,

where X is some black-box state (representing the editor internals), A a finite set of arguments,
e.g, add or delete a character at a particular location via update : X → XA, and S being the
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observable state: the text string itself accessible through query : X → S. As a shorthand, we
use u and q for update and query, respectively.

Viewing each client as acting on the text document via u : X → XA, we can define
u∗ : X → XA∗ by recursion as an iterated update that consumes a list of commands σ ∈ A∗

and gives the current state: u∗(x)(⟨⟩) = x and u∗(x)(a · σ) = u∗(u(x)(a))(σ). Hence we may
understand that all client interactions are represented as words in σ ∈ A∗, and the state of
the object x ∈ X is generated by u∗(x)(σ). Observe that the coalgebra ⟨u, q⟩ : X → XA × S

is a
(
(−)A × S

)
-coalgebra, and hence by standard results [4]:

▶ Proposition 1. The final
(
(−)A × S

)
-coalgebra is given by

SA∗ ⟨ζ1,ζ2⟩−−−−→ (SA∗
)
A

× S,

where ζ1(φ)(a) = λ(σ ∈ A∗). φ(a·σ) and ζ2(φ) = φ(⟨⟩). That is, for any
(
(−)A ×S

)
-coalgebra

⟨u, q⟩ : X → XA ×S, there is a unique coalgebra homomorphism beh : X → SA∗ that satisfies
beh(x) = λ(σ ∈ A∗). q(u∗(x)(σ)).

The final coalgebra ⟨ζ1, ζ2⟩ : SA∗ → (SA∗)A ×S thus defines all possible infinite behaviors
of the collaborative text editor, under the assumption that it is implemented by some
centralized server that totally orders and executes all client requests. However, such a
centralized approach is often infeasible or simply undesirable. Instead, each client may be
working on a local copy – a replica – of the object and propagating changes between replicas.

To keep replicas consistent, specialized algorithms and communication middleware can be
used. For example, the state machine replication [11] approach guarantees strong consistency
(informally, where clients cannot tell that the data is replicated) by ensuring that each
replica executes the same sequence of commands. However, this approach requires expensive
coordination between replicas. CRDTs take a different approach: they avoid the need for
coordination by carefully constraining the state space X and the implementation of the
update and query methods, and sacrifice strong consistency in favor of strong convergence.
Under strong convergence, replicas that have received the same set of updates (in any order)
agree in state, but clients may observe differing intermediate states.

In this short paper, we propose studying CRDTs under a coalgebraic lens. We find that
CRDTs lend themselves to a coalgebraic interpretation: they are implemented as replicated
objects at multiple locations, where each replica has an opaque internal state, but publicly
available methods centered around calls to update or query; strong convergence and emulation
of CRDTs are primarily about observable behavior from perspective of a client. By taking
the coalgebraic approach, we can use the well-developed theory of universal coalgebra to
reason about strong convergence of CRDTs. Moreover, the coalgebraic approach lets us make
precise a notion of emulation of CRDTs that has until now been known only informally.

2 Coalgebraic Semantics of CRDTs

CRDTs may be specified in an operation-based (or op-based) style or in a state-based style.
Op-based CRDTs require that replicas transmit messages containing the effects of a local
update downstream to other replicas. Updates are applied to replicas in a way that respects
causality [5]: when an update is applied to replica i, any causally preceding updates must
have already been applied to i, but concurrently applied updates do not need to be restricted
to any particular order; an op-based CRDT converges regardless. State-based CRDTs, on
the other hand, converge by restricting their (observable) state to be a join-semilattice
⟨S, ⊔⟩, and updates are propagated between replicas by simply passing copies of state s ∈ S
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between replicas, and merging states via a least-upper-bound operator ⊔. The two styles are
equivalent in the sense that given a state-based CRDT, one can construct a corresponding
op-based CRDT that emulates it, and vice versa [14].

We show that the semantics of a CRDT can be described as a coalgebra c : X → F (X),
where F : Sets → Sets is a Kripke-polynomial functor [4], beginning with the semantics for
state-based CRDTs. Similarly to the text-editing example, the CRDT consists of a state
space X, a set S of observables, an update map u : X → XA and a query map q : X → S.
In addition, we assume an abstract set of events E and equip the CRDT with a “history”
morphism h : X → P(E), interpreted as a kind of log for events e ∈ E that have happened
at the replica. Intuitively, events are given by a map that “wraps” interactions (e.g., inputs
a ∈ A) with the environment and tag it with meta-data, such as a sequence number.

To model the least-upper-bound operator ⊔, we require a map merge : X → XS that
allows an object with state x to receive an input state s = q(x′) ∈ S from some other replica
x′, along with rules requiring that merge is inflationary wrt to queries. Strong convergence is
defined as the property ∀x, x′ ∈ X.(h(x) = h(x′) =⇒ q(x) = q(x′)), which CRDT coalgebras
must satisfy: when two replica states have observed the same set of events, then their query
state is the same.

▶ Definition 2. A state-based CRDT consists of a state space X, inputs A, events E, a
payload S where S = ⟨S, ⊔⟩ is a join-semilattice, and maps

⟨u, q, h, ξ, merge⟩ : X → XA × S × P(E) × P(E)A+S × XS ,

s.t. the following hold for all x ∈ X, s ∈ S, a ∈ A,
(i) q(merge(x)(s)) = q(x) ⊔ s;
(ii) q(x) ⊔ q(u(x)(a)) = q(u(x)(a));
(iii) h(u(x)(a)) = h(x) ∪ ξ(x)(a);
(iv) h(merge(x)(s)) = h(x) ∪ ξ(x)(s);
(v) ∀x′ ∈ X. (h(x) = h(x′) =⇒ q(x) = q(x′)).

Op-based CRDTs are similar, except they define local updates u : X → XA in terms
of two other methods: a side-effect free prepare method prep : X → MA and an effectful
apply method app → XM , where M is a set of messages. We assume M is equipped with
a partial order ≺hb, the so-called happens-before relation [5, 12]. This implies that M is
equipped with metadata sufficient for ≺hb to make sense. Say elements m, m′ are concurrent
and write m ∥ m′ if ¬((m ≺hb m′) ∨ (m′ ≺hb m)). Upon a client invoking a local update of
type a ∈ A, op-based CRDTs first generate a message m ∈ M with prep, and then send m

downstream to neighboring replicas using some communication middleware that ensures that
messages are delivered in an order consistent with causality [12]. The middleware delays
delivery of m to a replica with state x until a decider (assumed sufficient to ensure causality)
dlvr? : X → 2M returns “yes”, after which the message is applied with app. The decider
dlvr? can be implemented independently of the CRDT application. A common approach is
the vector clock protocol [8, 2].

▶ Definition 3. An operation-based CRDT consists of a state space X, inputs A, events E,
payload S, and maps

⟨u, q, h, ξ, dlvr?, prep, app⟩ : X → XA × S × P(E)M × P(E)E × 2E × EA × XE

s.t. the following hold for all x ∈ X, a ∈ A, m, m′ ∈ M

(i) u(x) = λ(a ∈ A).app(x)(prep(x)(a));
(ii) h(u(x)(a)) = h(x) ∪ ξ(x)(prep(x)(a));
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(iii) h(app(x)(m)) = h(x) ∪ ξ(x)(m)
(iv) if dlvr?(x)(m) = dlvr?(x)(m′) = ⊤, then updates m, m commute. I.e., q(x′) = q(x′′)

where x′ = app(app(x)(m))(m′) and x′′ = app(app(x)(m′))(m).
(v) ∀x′ ∈ X. (h(x) = h(x′) =⇒ q(x) = q(x′))

Critically, the coalgebra above models a single replica, of which there are n many,
initialized from some starting state x0 ∈ X. Communication, from this point of view, is
abstracted to the communication middleware.

3 Emulation of CRDTs

Much existing work on CRDT semantics (e.g., [1, 3, 9, 7, 6, 10]) has treated op-based and
state-based CRDTs as distinct classes of objects, often only considering one class or the other.
The justification for this approach is that a state-based CRDT can emulate a corresponding
op-based CRDT, and vice versa [14]. Despite this commonly cited fact, a notion of emulation
is never made precise. Here we aim to fill this gap by showing that emulation of CRDTs may
be thought of in terms of bisimulation of transition systems.

▶ Definition 4. A transition system on a state space X with observations S is a coalgebra
⟨next, obs⟩ : X → P(X) × S s.t. x −→ x′ ⇐⇒ x′ ∈ next(x), and x ↓ s ⇐⇒ s = obs(x).
Given two transition systems ⟨next1, obs1⟩ : X → P(X)×S and ⟨next2, obs2⟩ : Y → P(Y )×S,
a relation R ⊆ X × Y is a bisimulation iff ∀(x, y) ∈ X × Y , if R(x, y), then

x ↓ s =⇒ y ↓ s;
x −→ x′ =⇒ ∃y′. y −→ y′;
y −→ y′ =⇒ ∃x′. x −→ x′.

It can be shown [4] that coalgebras c : X → F (X) may be mapped to transition systems
d : X → P(X).For the coalgebra of definition 2, define x −→ x′ ⇐⇒ (∃a ∈ A. u(x)(a) =
x′) ∨ (∃s ∈ S. merge(x)(s) = x′), and x ↓ s ⇐⇒ q(x) = s. The construction for definition
3 is similar, with the restriction that x −→ x′ ⇐⇒ (∃a ∈ A. u(x)(a) = x′) ∨ (∃m ∈
M. app(x)(m) = x′ ∧ dlvr?(x)(m)).

This translation to transition systems exposes the similarity of state-based and operation-
based CRDTs by revealing there are really only two “kinds” of transition steps: local steps
via u : X → XA and synchronization steps via merge : X → XS for state-based CRDTs,
and app : X → XM for operation-based CRDTs. For both kinds of CRDTs, the observable
payload is given by x ↓ s.

▶ Proposition 5 (Emulation of state-based CRDTS by op-based CRDTs). Let F, G : Sets →
Sets be appropriate functors s.t. given coalgebra X

⟨u,q,h,ξ,merge⟩−−−−−−−−−→ F (X) satisfying definition
2, with transition system semantics X

⟨next1,obs1⟩−−−−−−−→ P(X) × S. Then there is a coalgebra
Y

⟨u′,q′,h′,ξ′,dlvr?,prep,app⟩−−−−−−−−−−−−−−−−→ G(Y ) satisfying definition 3 with transition semantics Y
⟨next2,obs2⟩−−−−−−−→

P(Y ) × S s.t. there is a bisimulation relation R : X × Y between X
⟨next1,obs1⟩−−−−−−−→ P(X) × S to

Y
⟨next2,obs2⟩−−−−−−−→ P(Y ) × S.

4 Future Work

There are two main directions for future work.
First, the semantics given here can be lifted to consider the semantics of CRDTs (and

possible state machine replication in general) from a more global point of view, i.e., as
interacting asynchronous processes.
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Second, the above proposition only gives one direction of the emulation result. The
other direction is left to future work. More generally, both operation-based and state-based
CRDTs need exhibit strong convergence, which can be thought of as a form of observational
equivalence, similar to how emulation is approached here. However, a more interesting
approach might be to frame both operation-based and state-based CRDTs as satisfying
strong convergence as a universal property, showing that the difference between CRDTs
amounts to nothing more than choice of construction.
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