
The Fairy Performance Assessment: Measuring
Computational Thinking in Middle School

Linda W erner
University of California

Santa Cruz, CA
831-459-1017

linda@soe.ucsc.edu

Jill Denner
ETR Associates

4 Carbonero Way
Scotts Valley, CA 95066

831-438-4060
jilld@etr.org

Shannon Campe
ETR Associates

shannonc@etr.org
Damon Chizuru Kawamoto

Brown University
chchchez@aol.com

ABSTRACT
Computational thinking (CT) has been described as an
essential capacity to prepare students for computer science, as
well as to be productive members of society. But efforts to
engage K-12 students in CT are hampered by a lack of
definition and assessment tools. In this paper, we describe the
first results of a newly created performance assessment tool for
measuring CT in middle school. We briefly describe the
context for the performance assessment (game-programming
courses), the aspects of CT that are measured, the results, and
the factors that are associated with performance. We see the
development of assessment tools as a critical step in efforts to
bring CT to K-12, and to strengthen the use of game
programming in middle school. We discuss problems and
implications of our results.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education.

General Terms
Measurement.

Keywords
Assessment, Computational Thinking, Game Programming,
Middle School, Pair Programming, Alice.

1. INTRODUCTION
Computational thinking (CT) was first described by Papert
[10], and then pioneered by Wing [16]. At its core, it is closely
related to scientific reasoning defined as the specification of a
problem, use of resources for inquiry and hypothesis
generation, model building and experimentation to test
hypotheses, and the evaluation of evidence [4] [17].
Additional features of CT include creating artifacts and
automation. Little is known about the development of CT in K-
12, although recent articles begin to describe what it looks

like [3][6].

One factor that limits the uptake of CT into K-12 is the lack of
assessments. The ACM and CSTA report titled “Running on
Empty: Failure to Teach K-12 Computer Science in the Digital
Age” [15] states “Assessments for computer science education
are virtually non-existent.” To our knowledge, the only
existing measures of pre-college CT were created by
Repenning et al [11] yet there have been numerous recent
reports of measures of computer science conceptual
understanding thought to be useful in the acquisition of CT
including [5][12][13].

The purpose of this study was to develop and test a CT
performance assessment for middle school students, and to
understand why there is variation across students, in order to
develop and strengthen efforts to engage K-12 students in CT.
The study was conducted in computer game programming
classes held after school and during electives. Classes were
randomly assigned to either solo or pair programming
conditions, based on research that shows programming with a
partner is beneficial in terms of retention and performance to
both male and female university students learning to program
[17]. We predicted that some of these benefits would be
observed from pair programming over solo programming for
middle school students too.

Prior work provides the basis for both the type of assessment
we designed and for the choice of attributes we used in our
search for which factors explain variance in students’ CT. Most
relevant to our choice for assessment style is the work by
Webb [14] who reports success with a post-test assessment
used in after-school classes of 24 middle school students
creating 3D games with AgentCubes, a programming
environment designed for youth. Webb used five faulty
scenarios to assess his students’ skill in CT. He observes that
the administration of equivalent pre- and post-test
assessments “for software-dependent instruction i s
problematic as student fluency requires some degree of
familiarity with the software.” Problems arise because students
could take hours to become familiar enough with the
programming environment so that working on the assessment
would make sense. Webb’s faulty scenarios are based on
programming patterns the students learn in class but are
interspersed with faults. Most important for our choice for
attribute analysis is the work by Linn [9] who is an early
investigator in the area of assessment of problem solving
skills among novice programmers. Linn described the Chain of
Cognitive Accomplishments [9], which includes three links:
Comprehension: understand programs and be able to make
small changes to single program instructions; Design: build

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’12, February29–March 3, 2012 Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1098-7/12/02…$10.00.

programs from collections of patterns and use procedural
skills to combine these patterns to solve problems; and
Problem Solving: learn transferable problem-solving skills
and use them in new and different formal systems. In this
paper, we use Linn’s three-link chain metaphor to describe the
different cognitive demands in our assessment, and to
interpret variation in our results.

2. METHOD
2.1 Participants
The data described in this paper were collected over two years
as part of a study of how game creation and pair programming
can promote CT. A total of 325 students with parental consent
participated in classes at seven public schools along the
central California coast. Participation in all parts of the study
was voluntary and we are reporting on 311 students who
submitted a Fairy assessment. In year 1, 78 students
participated in after-school classes, and in year 2, 37
participated in after-school and 196 in elective technology
classes. More than half of the students (57%) were in the pair
condition; however, due to absences, only 21% of the total
were partnered all the time, and 23% most of the time.

Of the 311 students, 36% were female; they ranged in age from
10-14 years (mean=12), 52% were white, 37% were Latino/a,
and 75% spoke English or primarily English at home. Twenty
five percent had mothers with educational levels of high
school or lower, and 39% of mothers had completed a
university degree.

2.2 Procedure
Students used one of the two programming environments in
the Alice [2] series developed at Carnegie Mellon. In year 1,
students used Storytelling Alice (SA), and in year 2 they used
Alice 2.2 because SA is only available on PCs, which were
limited at our partner schools. In the rest of this paper, we will
refer to both SA and Alice 2.2 as Alice unless it is necessary to
distinguish between the two. Alice allows users to control
characters in 3D environments using drag-and-drop
programming, a language that is closely related to Java, and
many other modern imperative programming languages. Most
code is written in the methods of objects that have properties
that store state and functions that return values. Each property,
method, and function is attached to an object, with World
being the global object. The event system in Alice is primarily
used to handle user interactions, such as mouse clicks,
although it can also handle in-World events, such as when the
value of a variable changes.

Students engaged with CT in a three-stage progression called
Use-Modify-Create[6] over approximately 20 hours during a
semester. In the first half of the semester, students worked
through a series of self-paced instructional exercises built to
provide scaffolding, which we call “challenges.” During the
last half of the course, the students freely designed and
developed their own games. Most students completed 8 to 10
of 11 required challenges, though some completed up to six
additional optional challenges. In our courses where pair
programming was used, two students shared one computer,
with one driving (controlling the mouse and keyboard) and
the other navigating (checking for bugs, consulting resources,
and providing input). We asked students to reverse roles
approximately every 20 minutes. At the end of the semester,
students were given up to 30 minutes to individually complete
the Fairy Assessment described below. The data collectors and

the instructions did not refer to it as a test or assessment, but
we told students we designed it to help us know what students
learned in the classes. While working on the assessment,
students could ask for clarification of instructions only.

2.3 Measures
Students completed an on-line survey at the beginning and
end of the semester. The items include demographic questions
about age, gender, race/ethnicity, language spoken at home,
mother’s and father’s use of computers at work, grades on last
report card, and favorite subject at school. Additional
questions measure confidence with computers (e.g., I feel
confident about my ability to use computers), attitude toward
computers (e.g., I would like to learn more about computers),
frequency and type of computer use, and simple Alice content
knowledge (8 multiple-choice items with screen shots of
images and sample code). Classroom teachers collected
attendance data that we used to compute total number of hours
attended, as well as total number of hours that students in the
paired condition worked with a partner. The parent completing
the consent form reported parent education levels.

3. THE FAIRY ASSESSMENT
We created the Fairy Assessment as an Alice program to
analyze two of the three parts of CT identified by the Carnegie
Mellon Center for Computational Thinking (CMCCT):
thinking algorithmically, and making effective use of
abstraction and modeling. We did not include an assessment
task to measure considering and understanding scale, the third
part of CT as identified by the CMCCT, since we did not
include scale topics in our set of required challenges and few
students experimented with aspects of scale in their games. In
Year 1, we gave some of the directions on paper; we gave other
directions via game character dialog. In Year 2, in an effort to
standardize the instructions, all directions were communicated
both via game character dialog and repeated as itemized text
instructions displayed at the bottom of the program screen
throughout the exercise. The top level of the program is a
sequence of method calls each containing a series of Alice
primitive control statements and built-in method calls. See
Figure 1.

Figure 1: Initial screen layout.

We believe that in order for students to perform well on the
assessment, they have to understand the narrative framework
of the story underlying the program and to understand the
existing program instructions that create that framework. The
assessment features two fairies: HaloSilver (female) and
LeafFlame (male). When the student plays the program, they

see HaloSilver talking, and LeafFlame talking about walking
into a forbidden forest where he shrinks to one-half his
original size because of a magic spell. He asks for help because
he’s stuck in the forest and can’t fly (also the result of a magic
spell). Figure 2 is a screen shot showing LeafFlame walking
into the forbidden forest. We designed three separate and
independent assessment tasks with varying levels of difficulty
so that failure in any one task did not dictate failure in any
other. We designed the tasks to measure aspects of algorithmic
thinking and abstraction and modeling. The following is an
overview of each task.

Figure 2: LeafFlame walking into forbidden forest.

Task 1 instructions say to program HaloSilver so that she
turns to watch LeafFlame as he walks into the forbidden forest;
the turning should take the same amount of time that it takes
LeafFlame to talk. Students that do this correctly understand
the basic narrative framework of the story and can correctly
place instructions within a given finite sequence of
instructions (algorithm). They also recognize the need to
modify a method parameter: the length of time of execution of
an instruction (abstraction and modeling). We assigned full
credit for this task (10 points) if students recognized the need
for concurrent execution of this new turn method call along
with an existing LeafFlame walk method call into the forest
and if the instruction length was modified appropriately. We
assigned students 4 points (partial credit) if HaloSilver turned
somewhere in the vicinity of LeafFlame’s walk. Both of these
solutions suggest the student has achieved the first link in
Linn’s chain of cognitive accomplishments because he/she
understands someone else’s program code enough to make
simple changes or additions.

In Task 2, HaloSilver asks the student to repair the program;
HaloSilver says, “Make pressing the up arrow work right and
return LeafFlame to his original size.” We expected Task 2 to
be the most difficult. To solve task 2, students need to think
algorithmically and understand that event handlers alter a
program’s default execution sequence. They need to recognize
the presence of an event handler for the up arrow and verify i t
is not working correctly. Correcting the method called in the
‘up arrow event handler’ (LeafFlame’s returnToSize method)
shows algorithmic thinking because it shows the student
understands how to read, interpret, and correct or replace the
conditional logic in this method. See Figure 3. We assigned
credit of from 2 to 8 points for partial solutions. For example,
in one solution attempt, a student added another event handler
for the up arrow that called one of LeafFlame’s built-in
methods: resize with parameter set to ‘2’. If this code was
present and the initial handler removed, this solution would
have earned the student 10 points because it would clearly
demonstrate a cognitive accomplishment including the second

link in Linn’s chain of cognitive accomplishments: build
programs from collections of patterns and use procedural
skills to combine these patterns to solve problems.
Unfortunately, the student left both up arrow event handlers in
the program; indicative of movement into the second link of
Linn’s chain.

Figure 3: Faulty logic of returnToSize method.

For Task 3, HaloSilver asks students to help LeafFlame fly out
of the forest toward her; she says, “Make clicking on
LeafFlame bring him to me and FLY out of the forest!” See
Figure 4.

Figure 4: HaloSilver providing instructions.

To solve task 3, again students need to think algorithmically
and understand that events alter the program’s default
execution sequence. This required students to recognize the
need for, and then add another event handler. The complexity
of Task 3 was high because the intended method call for this
event handler (‘flyAway’) uses two parameters: ‘to whom to
fly’ and ‘number of times to fly.’ Students need to think on
another level of abstraction and navigate the object tree to
locate LeafFlame and his built-in methods. The students must
also have an understanding of abstraction to use the method
‘flyAway towardWho numberOfTimes,’ and analyze it in a
detailed level to determine values for the parameters. Within-
program feedback told the student if he or she was successful
in helping LeafFlame: LeafFlame's size and position are
checked. Partial credit of 8 points was assigned to students
who created a ‘mouse-click-on-LeafFlame’ event handler
calling one of LeafFlame’s built-in methods: ‘move toward’
with parameter ‘toward-who’ set to HaloSilver. This solution
makes LeafFlame move, but not ‘fly,’ out of the forest toward
HaloSilver. Full credit of 10 points was assigned to a very
creative solution: the student created a new method local to
LeafFlame where LeafFlame’s wings’ flapped as he hopped up
and down which made him appear to fly toward HaloSilver. The
student called this method in a ‘mouse-click-on-LeafFlame’
event handler.

Successful solutions to Tasks 2 and 3 use knowledge of
programming patterns, or segments of non-contiguous code
that together form a complex computational construct. The use
of a programming pattern is an example of a design skill that
Linn [9] calls templates. She writes, “Templates are stereotypic

patterns of code that use more than a single language feature.
Templates perform complex functions such as sorting names
alphabetically or summing a set of numbers. Templates can be
used each time a given task is encountered. A large repertoire
of templates enables the programmer to solve many problems
without creating new code.” The patterns we expected from our
students include event handling, complex conditional use,
and use of methods with multiple parameters. Partial scores of
4 in either of these two tasks constitute movement into the
second link in Linn’s chain of cognitive accomplishments.

We argue that non-zero performance in Tasks 2 or 3 represents
some movement toward the second link in the chain of
cognitive accomplishments because it shows that the student
has a partial understanding of someone else’s code and can
modify portions of programming patterns to accomplish the
tasks. The second link involves the design of a program using
templates and skill in combining these templates. Completely
understanding Task 2 requires code understanding, fault
identification, code modification to remove the fault and
places the student at the beginning of the third link in the
chain.

4. DATA ANALYSIS
Two of the paper’s authors scored the students’ solutions to
the Fairy Assessment. We graded each task on a scale from zero
to ten, with partial credit possible, resulting in a maximum
score of 30. The scorers discussed discrepancies and came to
an agreement on all students’ scores. The scoring rubric i s
available upon request from the first author.

The tasks were summarized separately, and although the
average score on each task varied, the three task scores were
significantly correlated (range is from r=.30 to r=.45). In this
paper, we combined the task scores into a single total Fairy
score for some analyses. We used bivariate analyses using t-
tests and correlations to identify key factors from the pre- and
post-survey data that were related to total Fairy scores.

5. RESULTS AND DISCUSSION
Mean (and standard deviation - σ) scores for the Fairy
Assessment are given in Table 1.

Table 1. Fairy Assessment Scores, n=311

Task Mean (σ)
1 (comprehension) 6.03 (3.87)
2 (comprehension, design,
problem solving)

4.54 (4.73)

3 (comprehension, design) 5.93 (4.34)
Total score 16.50 (9.95)

Student performance was highest on Task 1, which measures
comprehension, and lowest on Task 2, which measures
comprehension, design, and complex problem solving skills
using debugging. There was great variation in scores: 30
students submitted an unchanged program and were assigned a
score of zero on all three tasks, while 40 students had perfect
scores on all three tasks. There was not a significant difference
between average scores for students from year 1 using SA
(mean=16.13, standard deviation (sd)=9.38, n=78) and year 2
using Alice 2.2 (mean=16.63, sd=10.15, n=233).

Pair programming was found to be significantly positively
related to assessment scores at the p<0.01 level: the more time
a student spent with a partner while learning and programming
a game, the higher their individual score on the assessment

(r=.17). Since some students missed some classes, we
maintained records of amount of time in a paired state while
learning and programming their games. Several pre- and post-
survey factors were significant at the p < 0.05 level. Several
parental factors were positively related to total score: parent
education (r=.31), and having a mother (yes mean=19.01, sd=
9.10; no mean=14.96, sd=10.18) and/or father (yes
mean=19.79, sd=8.60; no mean=14.08, sd=10.31) that works
with computers. In addition, students scored higher if they
also reported speaking more English at home (r=.30). Several
student factors at post-survey were positively correlated with
Fairy Assessment scores: interest in taking a computer science
class in high school (r=.14), grades in school (r=.25),
frequency of computer-use across locations (r=.13), confidence
with computers (r=.26), attitude toward computers (r=.18), and
Alice content knowledge measured at post-survey time (r=.54).
Total scores were not related to gender, student age, hours of
attendance in the class, or their frequency of creating things
using the computer outside this class.

The findings suggest that the Fairy assessment is a promising
strategy for assessing CT during middle school. First, it was
motivating: all but 30 of the students that worked on i t
submitted a modified program. Fourteen students were absent
on the day of the assessment; there were no refusals. Webb [14]
found similar results with the use of his assessment requiring
trouble-shooting skills to debug faulty scenarios. He found
middle school-aged students to be engaged for up to 45
minutes on his assessment.

Our results also suggest that the assessment was successful in
picking up a range of CT across students, and a variety of
types of CT across the three tasks. Mean scores for Task 2 were
lowest, because it required students to debug the conditional
logic in the method in the ‘up arrow’ event handler. Not all
students completed challenges that taught conditional logic;
this may have contributed to the lower scores on this task. Our
findings are similar to what Linn [9] found in her sample of
middle school students using BASIC: more progress was made
in comprehension than in design. As a comparison, her
assessment also did not address the third link in the chain of
cognitive accomplishments.

The data provide some explanation of why student
performance varied. For example, the scores for students in
elective classes were higher (mean=17.94, sd=9.64) than those
taking the class after school (mean=14.05, sd=10.02). The data
confirm that this was not due to differences in SA and Alice
2.2. However, it may be related to the improved instructions
for year 2 when all the in-school classes were held or to the
higher levels of parent education among students in year 2.
Another possible explanation is that students working in an
in-school environment may be more attentive, more concerned
about performance and grading, and therefore, learn more or try
harder on an assessment.

Students that worked using pair programming scored higher
than those that programmed alone. Additionally, we found the
more time with a partner was related to higher CT performance.
This is important because it tells us that pair programming was
an effective technique to use for engaging middle school
students in CT. Some educators express concern about whether
both students benefit or whether the weaker student lets the
stronger student work and reap the educational benefits. We
found that both students, regardless of initial ability, scored
higher than students that worked alone. This finding i s
consistent with what has been reported by researchers of pair
programming at the university level [17]. Our results differ

from those of Lewis [8] who gave daily quizzes to students
entering sixth grade enrolled in a 3-week summer camp. She
found statistically significantly greater variation in quiz
scores between the students that shared one computer over the
variation between students that worked on their own computer
with help from an assigned collaborator to discuss problems.
However, Lewis’ study was of a very small number of students
(40) and partners switched roles every 5 minutes instead of the
longer time period we used. More research needs to be done to
determine the circumstances under which pair programming
benefits learning in middle school, however it appears to be
useful for improved performance on the Fairy Assessment.

Not surprisingly, parent capacity was also related to students’
scores on the assessment. The two measures, parent education
and use of computers at work, indicate socioeconomic
resources as well as exposure to computing outside of school
were positively associated with assessment score. There were
some students who did well on the assessment, even though
their parents had low education and did not use computers at
work. More detailed case studies are needed to understand the
factors that helped some students with lower parent capacity to
score high on the assessment.

Several behavioral factors were related to scores. More frequent
computer use and higher grades on their last report card were
related to higher performance on the Fairy Assessment. This
suggests that students with greater access to computers, and
those that do better academically, also engage in higher levels
of CT. Similarly, students who are interested in taking a
computer science class in high school score higher. These
findings are not surprising, and unfortunately without a pre-
test of the Fairy Assessment we cannot tell if the more
advanced and interested students improved more over time, or
started out at a higher level of CT.

Similar to results found by Levine and Donitsa-Schmidt [7] in
a study of grade 7-12 students, we found confidence with
computers to be an important predictor of performance. This
may be due to a willingness to persist in the face of a
challenging task, or to just having more experience. In our
sample, confidence was also significantly correlated with
frequency of computer use, and further analyses are needed to
determine the relative importance of each of these factors.
Levine and Donitsa-Schmidt suggest that confidence also
predicts attitudes, which was another significant predictor of
students’ scores.

Some limitations of our study are that we are reporting
bivariate associations that do not let us make conclusions
about the relative importance of each factor. Many of these
variables (significant and not significant) are highly
correlated, and multi-level modeling is necessary to tease out
the interrelationships. Another limitation is that the data
collected from pairs is not independent, which violates certain
statistical assumptions. Similarly, mean scores varied greatly
across the seven school groups, and the interdependence of
these scores is not taken into account. These types of data
require more sophisticated dyadic data analysis, and multi-
level modeling. Our next step is to conduct these analyses.

Another limitation of this study is the lack of a test of
construct validity—whether the Fairy Assessment really
measures the aspects of CT that we claim. To this end, we
compared students’ Alice content knowledge measured at
post-survey and found it was positively related to performance
on the Fairy Assessment. These knowledge questions assessed
a student’s understanding of someone else’s program code,

which is the first link in Linn’s chain of cognitive
accomplishments, and a key aspect of each of the tasks of the
Fairy Assessment.

While the Fairy Assessment itself may not be generalizable to
learning environments not using Alice, others who are trying
to measure CT can easily adapt this assessment. Each task
should be designed to measure certain aspects of CT (e.g., in
our case we measured algorithmic thinking and abstraction
and modeling), and certain links in the chain of cognitive
accomplishments. Care must be taken to describe the
assessment tasks in language that is consistent with the style
used by the game characters. The tasks should be described to
students without suggesting the use of specific program
constructs (that would test programming syntax knowledge
but not higher levels of knowledge needed for CT) but instead
by describing requirements the solution must meet using the
context of narrative of the game’s virtual world. We believe we
have done some of this with our Fairy Assessment.

It is possible that, with the current drag-and-drop
programming interfaces that prevent syntactic errors, middle
school students could complete a course using one
environment (for example, Alice), and then work on an
assessment using another environment (for example, Scratch).
This would allow us to more accurately assess whether
students accomplished the third link in the chain of cognitive
accomplishments.

6. CONCLUSIONS AND FUTURE WORK
Elective technology and computer game courses for middle
school students are a promising strategy to introduce CT to a
broad population. This is an important step towards engaging
groups that are currently underrepresented in the computer
science community. However, without the ability to assess
whether and how such programs can engage students in CT,
they will likely never see widespread adoption.

In this paper, we continue the work pioneered by others in
addressing the issue of CT by middle school students. We still
have quite a few things to learn about the definition and
assessment of CT in middle school youth. We are currently
analyzing the ‘challenges,’ self-paced instructional materials,
to identify aspects of CT that are taught in each of the
challenges. We are also working on analysis of the log files to
identify steps in students’ solutions, which includes trying to
understand what they tried before reaching a final solution,
and their ‘intent’. The Fairy Assessment logs can show us
whether students place the correct instruction at the correct
program location in one attempt or if they make multiple
attempts. We want to look closer at the students’ Fairy
Assessments to determine if mistakes are indicative of CT
misunderstandings or reflect specific issues in the mechanics
of Alice programming. We are also experimenting with a
translation of the Fairy Assessment into a Scratch version,
which was recently implemented in two different Scratch
courses. The Scratch assessment has three tasks that are very
similar to those in the Fairy Assessment. We hope to report on
these experiments soon. Also, we are looking at the results of
other assessment methods used in this study. These include
looking for evidence of CT in the students' games (identifying
programming constructs and CT patterns similar to those
described in [5] [12][11] and in the logs captured during game
creation. Finally, we are coding videotapes of the pairs
working together to see if the quality of interaction while
students were learning Alice and making their games affects
how well individual students do on the assessment.

7. ACKNOWLEDGMENTS
Our thanks go to the teachers and administrators at our seven
schools, specifically Anne Guerrero, Shelly Laschkewitsch,
Don Jacobs, Sue Seibolt, Karen Snedeker, Susan Rivas, and
Katie Ziparo. Thanks also to teaching assistants, Will Park and
Joanne Sanchez; and to Eloy Ortiz and Pat Rex, whose vital
support was necessary to run this program. Thanks to all of the
students who participated. Finally, thanks to Barb Ericson,
Irene Lee, Clayton Lewis, Fred Martin, Alex Repenning, David
Webb, Teale Fristoe, and Caitlin Sadowski for help on early
drafts of this paper. This research is funded by a grant from
NSF 0909733 “The Development of Computational Thinking
among Middle School Students Creating Computer Games.”
Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

8. REFERENCES
[1] ACM K-12 Task Force Curriculum Committee. A Model

Curriculum for K-12 Computer Science: Final Report of
the ACM K-12 Task Force Curriculum Committee,
http://www.csta.acm.org/Curriculum/sub/ACMK12CSMo
del.html.

[2] Alice website, September 1, 2011. www.alice.org.
[3] Barr, V. and Stephenson, C., 2011. Bringing

computational thinking to K-12: what is Involved and
what is the role of the computer science education
community? ACM Inroads 2, 1, 48-54.

[4] Bransford, J.D. and Donovan, M.S., 2005. Scientific
inquiry and how people learn. In National Research
Council, How students learn: History, mathematics, and
science in the classroom. Washington DC: The National
Academies Press.

[5] Denner, J., Werner, L. and Ortiz, E., 2012. Computer games
created by middle school girls: Can they be used to
measure understanding of computer science concepts?
Computers & Education, 58(1), 240-249.

[6] Lee, L., Martin, F., Denner, J., Coulter, B., Allan, W.,
Erickson, J., Malyn-Smith, J., and Werner, L., 2011.
Computational thinking for youth in practice. ACM
Inroads 2, 1, 32-37.

[7] Levine, T. and Donitsa-Schmidt, S., 1998. Computer use,
confidence, attitudes, and knowledge: A causal analysis,

Computers in Human Behavior, Volume 14, Issue 1, 125-
146.

[8] Lewis, C., 2011. Is pair programming more effective than
other forms of collaboration for young students?
Computer Science Education Vol. 21, No. 2, 105-134.

[9] Linn, M. C., 1985. The Cognitive Consequences of
Programming Instruction in Classrooms. Educational
Researcher, Vol. 14, No. 5, pp. 14-16+25-29 at
http://www.jstor.org/stable/1174202.

[10] Papert. S., 1993. Mindstorms: Children, Computers, and
Powerful Ideas. 2nd ed. NY: Basic Books.

[11] Repenning, A., Webb, D., and Ioannidou, A., 2010.
Scalable Game Design and the Development of a Checklist
for Getting Computational Thinking into Public Schools.
SIGCSE ’10, 265-269.

[12] Rodger, S.H., Hayes, J., Lezin, G., Qin, H., Nelson, D.,
Tucker, R., Lopez, M., Cooper, S., Dann, W., and Slater, D.,
2009. Engaging middle school teachers and students with
Alice in a diverse set of subjects. SIGCSE Bull. 41, 1, 271-
275.

[13] Stolee, K.T. and Fristoe, T., 2011. Expressing computer
science concepts through Kodu game lab. In Proceedings
of the 42nd ACM technical symposium on Computer
science education (SIGCSE). ACM, New York, NY, USA,
99-104.

[14] Webb, D.C., 2010 Troubleshooting assessment: an
authentic problem solving activity for it education,
Procedia - Social and Behavioral Sciences, Volume 9,
World Conference on Learning, Teaching and
Administration Papers, pp. 903-907.

[15] Wilson, C., Sudol, L., Stephenson, C., and Stehlik, M.,
2010. Running on Empty: The Failure to Teach K-12
Computer Science in the Digital Age. ACM Available as:
http://www.acm.org/runningonempty/fullreport.pdf.

[16] Wing, J., 2006. Computational Thinking. CACM vol. 49,
no, 3. March 2006, pp. 33-36.

[17] Werner, L., Hanks, B., & McDowell, C., 2004. Pair
programming helps female computer science students.
ACM Journal of Educational Resources in Computing,
4(1).

[18] Zimmerman, C., 2005. The development of scientific
reasoning skills. Accessed on Sept. 1, 2011 from
www7.nationalacademies.org/bose/Corinne_Zimmerman_
Final_Paper.pdf.

