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Abstract. Over the years, various research projects have attempted to de-
velop a chess program that learns to play well given little prior knowledge 
beyond the rules of the game. Early on it was recognized that the key would 
be to adequately represent the relationships between the pieces and to evalu-
ate the strengths or weaknesses of such relationships. As such, representa-
tions have developed, including a graph-based model. In this paper we extend 
the work on graph representation to a precise type of graph that we call a 
piece or square neighborhood. Specifically, a chessboard is represented as 64 
neighborhoods, one for each square. Each neighborhood has a center, and 16 
satellites corresponding to the pieces that are immediately close on the 4 di-
agonals, 2 ranks, 2 files, and 8 knight moves related to the square. 

Games are played and training values for boards are developed us-
ing temporal difference learning, as in other reinforcement learning systems. 
We then use a 2-layer regression network to learn. At the lower level the val-
ues (expected probability of winning) of the neighborhoods are learned and at 
the top they are combined based on their product and entropy. 

We report on relevant experiments including a learning experience 
on the Internet Chess Club (ICC) from which we can estimate a rating for the 
new program. The level of chess play achieved in a few days of training is 
comparable to a few months of work on previous systems such as Morph 
which is described as “one of the best from-scratch game learning systems, 
perhaps the best” [22].

Keywords: linear regression, value function approximation, temporal difference learning, 
reinforcement learning, computer chess, exponentiated gradient, gradient  descent, multi-layer 
neural nets.
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INTRODUCTION

For years, researchers have sought a model of computer chess play that was similar 
to that used by humans. In particular, we are assuming a model of humans applying  
patterns learned from experience as opposed to employment of deep brute-force 
search as in the top chess systems. In addition, attempts have been made to create a 
chess program that is both autonomous and adaptive, while still being competitive. A 
wide range of machine learning techniques have also been tested, but most have met 
with limited success, especially when applied to playing complete games. Brute-force 
search and human supplied static knowledge bases still dominate the domain of chess 
as well as other more complex domains. Therefore we have attempted to create such a 
system, which conforms more to cognitive models of chess. Our research will not be 
completed until we can compete effectively against the best programs. We believe the 
research presented here represents a significant step in that direction compared to 
other previous attempts. 

Our approach can be divided in three main parts that will be discussed in detail 
throughout this paper. First, since the representation is the foundation of the learning 
system, we have spent a lot of time developing a representation which can be proc-
essed efficiently and provide an even balance between detail and generalization. Sec-
ondly, we focus on assigning appropriate evaluations in the range [0,1] to board posi-
tions. Our system steps back through the temporal sequence of moves in a training 
episode to assign credit to each of the board states reached, using Temporal Differ-
ence learning [24]. This relies only on the given knowledge that a win is worth 1 and 
a loss is worth 0. This credit assignment can be very difficult, given little a priori 
knowledge. Finally, once the system has assigned evaluations to all the positions in a 
game, the next step is to update the internally represented weights of the global opti-
mization function, to predict more accurately in the future based on the loss incurred 
between the prediction Ót and the result Yt. This is achieved with the use of internal 
interconnected nodes with associated weights in a 2-layer regression network. Multi-
ple layers of representation are very important for representing complex domains, but 
they are often difficult to deal with in practice. In many of our experiments, a multi-
plicative update on the upper level and non-linear combinations of input vector prod-
ucts at the lower level perform best. However there are still many additional modifi-
cations that must be made to the standard feed forward neural network to achieve 
adequate performance within reasonable time constraints. For the first time, our sys-
tem has achieved a level of play, which is competitive against skilled amateur oppo-
nents after only about 1000 on-line games. One of the most difficult hurdles confront-
ing previous chess learning systems was getting an agent to avoid losing pieces with-
out explicitly representing material. In this paper we have largely solved the material 
loss problem with this combination of modeling and learning techniques. 

Section 1 gives some background on previous work. Section 2 describes the tem-
poral difference learning algorithm in some detail, especially concerning its applica-



Chess Neighborhoods, Function Combination , and Reinforcement Learning 3

tion to chess and game theory. Section 3 gives a general discussion of various linear 
and non-linear function approximation schemes. Section 4 ties this into the multi-
layer network approach. Then Section 5 brings all of these elements together in de-
scribing our system’s overall learning architecture. Section 6 presents the results of 
our experiments with off-line training on Grandmaster databases, on-line ICC, and 
bootstrap learning.

PREVIOUS EFFORTS

Since Samuel’s checker playing program [21] there has been a desire to use TD 
methods for more sophisticated game-playing models. Tesauro’s TD-Gammon repre-
sented a significant achievement in the fusion of neural networks and TD learning. 
Baxter and Tridgell created a program named KnightCap [2] for chess, which can 
improve the initial weights of a complex evaluation function that included other posi-
tional aspects besides simply material values. However, this approach was quite lim-
ited since it required good initial weights, human-supplied traditional chess features, 
and a knowledgeable opponent instead of  relying on bootstrap learning. Morph, Korf 
and Christensen [9], and Beal and Smith [5] were also quite successful in applying 
temporal difference learning to learn piece values with no initial knowledge of chess 
and without the aid of a skilled adversary.  Beal and Smith also report similar findings 
for Shogi [6] where piece values are less traditionally agreed upon. Another type of 
chess learning is rote learning in which exact positions that have been improperly 
evaluated are stored for future reference [23].

“At the time Deep Blue defeated the human World Champion Garry Kasparov, 
many laymen thought that computer-chess research had collapsed,” until the publica-
tion of an extended report by “Ian Frank and Reijer Grimbergen [showed] that the 
world of games is still thrilling and sparkling, and that the game of chess is consid-
ered as the math reference point for many scientific and organizational problems, 
such as how to perform research, how to improve a search technique, how to handle 
knowledge representation, how to deal with grandmaster notions (cognitive science), 
etc” [13]. The Morph system uses a more complex model than previous approaches, 
which makes its goals “the central goals of artificial intelligence: efficient autono-
mous domain-independent machine learning for high performance” [22]. It uses 
graph representations of chess positions and pattern-oriented databases, in conjunc-
tion with minimax search to evaluate board states [5]. This approach can be limited in 
large domains since the number of patterns can become too large. Morph III and 
Morph IV [15,17] used nearest neighbor and decision trees to divide positions into 
equivalence classes and query them on-line in logarithmic time.  However these ap-
proaches require a large amount of training data to achieve reasonable levels of play. 
“Morph is arguably the most advanced (not necessarily the strongest ) temporal dif-
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ference learning system in the chess domain…However, a major problem of Morph is 
that although it is able to delete useless patterns, it will still be swamped by too many 
patterns, a problem that is common to all pattern-learning systems” [10] (Fürnkranz,  
pg. 10). Compared to Morph I, we have shifted away from a bag of patterns towards a 
representation that stores fixed numbers of internal weights. This is more efficient in 
both space and time, and can lead to faster global optimization. Currently, to our 
knowledge, there is no completely adaptive autonomous program that is actually 
competitive on a tournament level.

2.TEMPORAL DIFFERENCE LEARNING

For adaptive computer chess, the problem is learning the values of board states or 
at least being able to accurately approximate them. In practice, there is seldom an 
exact actual value for a given model state but instead there may be an episodic task 
where an entire sequence of predictions receives only a final value. The actual values 
are typically approximated using some form of discounted rewards/penalties of future 
returns. This is the basic idea behind TD(O), which has been successfully applied to 
many applications in game theory and others in machine learning. Temporal differ-
ence learning was originally applied to checkers by Samuel [21] but it has been less 
successful in more complex domains. KnightCap’s variant of TD(O) called TDleaf(O) 
is used to evaluate positions at the leaves of a minimax search tree. The value of  O in 
TD(O), provides a  trade-off between bias and variance. Tesauro also successfully 
incorporated TD learning for backgammon, with a set of real valued features at the 
lowest level of representation. This differs from our model in the sense that there are 
no obvious numerical representations at the base level, so we learn a set of weights 
for each base feature. Our lowest level of representation is discussed further in Sec-
tion 5.2.

The general structure of the TD learning paradigm, as described by Sutton [24], is 
based on learning the policy value function VS(s) given a sequence of predictions s, 
and their associated reinforcement signals r. Our system uses TD(0), which simplifies 
the update rule to

where  . is the learning rate parameter and  � is the discount rate.

3. LINEAR AND NON-LINEAR OPTIMIZATION
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Given a sequence of trials, the learner tries to accurately predict yt, the value of the 
function f(x) given a vector x of attributes. The actual value yt is returned to the 
learner, which attempts to minimize the loss L( Ôt ,yt) between its prediction and the 
actual outcome. If the actual value is unknown it can be estimated using temporal 
difference learning methods described in the previous section, but obviously this 
makes convergence much more difficult.

The complexity of the learner, determined by its number of hidden nodes, should 
depend on the complexity of the target class. For example, we have considered the 
case where x is expanded into its power set with 2n elements where n is the length of 
x. Therefore the learner stores 2n internal weights—one for each of the non-linear 
combinations of x vector products—which are combined to predict with the equation

where n is the dimension of x and w0 is a constant weight which corresponds to the 
empty set in the power set expansion of  x. C( xi ) represents the ith combination of x 
vector products. 

The linear case is very similar except that the number of weights corresponds di-
rectly to the dimensionality of x and the prediction is of the form:

Here w0 is a constant factor used for scaling as in the non-linear case. This method 
performs much better for learning simple linear target classes of functions. Tesauro 
suggested the use of these linear combinations for learning rules at the bottom-level 
of a multi-layer network for TD-Gammon [26]. However chess may require the non-
linear method described above or at least more complexity than the linear model. This 
is explored further in Section 5.

There are two other intermediate cases we consider, which allow us to work in 
higher dimensional spaces without relying upon a linear solution. These involve the 
use of only the paired or 3-tuple terms. This reduces the number of weights to 
n(n+1)/2 or n(n2 + 5)/6 respectively, where n is the dimensionality of x. Therefore the 
prediction is
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or the pairs and similarly

for the 3-tuples prediction. The practical difference between these two methods for 
chess is illustrated in Section 6.1.

3.1. Weight Update Policies

After each training example, all of the weights must be updated to move towards 
the objective function and minimize the loss of the learner on future predictions. In 
the words of Widrow: “The problem is to develop systematic procedures or algo-
rithms capable of searching the performance surface and finding the optimal weight 
vector when only measured or estimated data are available” [29]. 

There are numerous methods for this regression problem, which make use of dif-
ferent loss functions. The 2 main algorithms considered here are gradient descent 
(GD), which is sometimes called the Widrow-Hoff algorithm [29], and exponentiated 
gradient (EG±) with positive and negative weight vectors. Kivinen and Warmuth 
showed the superiority of EG± for sparse target instances. In the non-linear case or 
even for the pairs, some of the additional expanded hidden terms will act like irrele-
vant attributes and therefore EG± has some advantages in that case. “For the EG± 
algorithm, the dependence on the number of irrelevant variables is only logarithmic, 
so doubling the number of irrelevant variables results in only a constant increase in 
the total loss” [14]. Complex games like chess can greatly benefit from ignoring 
many irrelevant attributes and focusing on only the relevant piece interactions, but  
situations may arise where GD is superior since “as one might expect, neither of the 
algorithms is uniformly better than the other” [12].

Both GD and EG± are presented briefly here since they are crucial to the proper 
convergence of any learning algorithm or predictor. Although the performance of the 
two methods is quite different, they both rely on a common framework that updates 
each of their weights from wold to wnew in order to minimize ������������ WWROGQHZ [Z\/ZZG �� K

where L is the square loss function L(y,x) = (y – x)2, K is a positive learning rate, 
and d(wnew,wold) is a particular distance measure between the two weight vectors. The 
only difference between them lies in the choice of this distance function, where the 
GD algorithm uses the squared Euclidean distance and the EG± algorithm uses the 
relative entropy, also called the Kullback-Leibler divergence [14].

������Ö � �� � ��¦¦¦   � Q
L

L
M

M
N NMLNMLW Z[[[Z\



Chess Neighborhoods, Function Combination , and Reinforcement Learning 7

3.2. Multiplicative Updates
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In addition to the update rules considered above, we consider a second class of up-

date rules that use a simple non-weighted product of the input vector components. 
This method offers some important advantages over other mappings from an arbitrary 
dimensional space to a real-valued prediction since each vector dimension has a 
greater effect on the overall prediction. It makes those inputs with the most extreme 
minimum values clearly stand out from other inputs, and therefore the learner is much 
more sensitive to small values and in the case of chess makes the learner more risk 
adverse. The prediction rule is of the form:

������Ö � ��  1
L LWW ;<

where the prediction Ót is based on the weighted product of input vector Xt in N di-
mensions. This product is proportional to the sum of the logs, which is oftentimes the 
preferred form since it is easier to calculate and its range is easier to bound, hence 
avoiding overflow or underflow. Therefore the prediction becomes
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This method has the additional advantage/restriction of zero weights to be learned, 
which can add to the simplicity and stability of the learner. We also divide by the 
entropy to favor states with less variance or uncertainty giving the final prediction of
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During the course of our study we began by multiplying the prediction by the 
minimum of all the Chess Neighborhood vector products in order to induce a more 
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conservative strategy. This naturally leads to the representation presented here, where 
the smallest values are valued the most.

3.2 Gaussian Normal Distribution

Since a winning position has an evaluation of 1 and a losing position has an 
evaluation of 0, TD will always return values in the range (0,1). This requires that the 
predictions of the on-line agent also be scaled into this range. Although this may 
seem trivial it has been a persistent problem in many of our complex learning models. 
Our solution lies in using the Gaussian probability density function or normal distri-
bution to compress the predictions into the proper range before computing the loss for 
the regression network. This refers to approximating the integral,

��������� ������ �³f� � [ P[GH[ SVI V

where d2 is the distance metric

������������ �� VV P[P[G � 
for input x, mean m, and standard deviation V [3]. This can be approximated effi-

ciently without any difficulty using a lookup table and interpolation. Beal and Smith 
[6] also suggest the use of this type of sigmoid squashing function to convert the 
prediction into a probability of winning. In particular they suggest that the function

������� ��� YHY6 �� 
can also be used effectively for game playing programs with a prediction v(x) that is a 
weighted combination of input x, but they only consider the linear case. Also, we 
have observed that by taking the variance into account, the system can adapt appro-
priately to tight ranges or wide oscillations that sometimes occur in the learning proc-
ess.

4. REGRESSION NETWORKS

Neural networks and regression have been the focus of many studies in machine 
learning and statistics [7]. The traditional neural network has internal connections 
between each node, which creates a total of 2n connections for n dimension input 
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vectors. These paths are defined as hidden nodes since they directly correspond to the 
amount of weights that must be stored and heuristically they represent the relation-
ships between all the different combinations of input spaces in a chess neighborhood. 
However, for large n this many connections can be impractical both for storage and 
for time-efficient calculation. Therefore we make use of the 2-tuples and 3-tuples of 
inputs as shown in (3.3) and (3.4).  This improved the performance enormously from 
using linear terms at the lowest level, a method that already proved sufficient for 
backgammon. Tesauro motivated his linear approach at the base-level since “the 
neural network first extracts the linear component of the evaluation function, while 
non-linear concepts emerge later in learning” [26]. Experiment 6.1 shows the relative 
performance change after including all the triples, which increases the number of 
internal nodes to 833 weights for our 17-length input. In general, the number of inter-
nal nodes for a k-tuple representation of an n-dimensional input vector is

�������¦ ¸̧¹·¨̈©§N
L LQ

but since time is a crucial consideration in chess, we must restrict the learner to a 
maximum number of connections. The Chess Neighborhoods described below are of 
length 17 and each board contains 64 squares, so the entire power set of Chess 
Neighborhood terms would be 217, which is quite expensive. There is undoubtedly a 
trade-off between search depth and more internal network weights or connections. 
Our experiments show promising preliminary findings about the importance of non-
linear terms for chess evaluation.

4.1 Multi-layer Networks

Single layer regression networks are the easiest to train, but they are limited to a 
smaller class of problems. The multi-layer network has proven highly effective for 
small problems but it too can be very costly in higher dimensional spaces. A simple 
nested function learner example is given here where the learner tries to predict a func-
tion F(X), where F(X) is a non-linear weighted sum of g(x) terms, after receiving the 
vector x as input. The functions F(X) and g(x) are of dimension N and M respec-
tively, which makes the number of internal weights on each level equal 2N and 2M

where the internal nodes for g(x) must be calculated for each of N’s components.  For 
the case considered, N was set to 4 and M was set to 3. The functions F(X) and g(x) 
are set to )�;��  ���;�;� � ���;�;�;�;� � ���;�;�;� � ���V�W� ���Ld1 ;L  J�[�L� ZKHUHJ�[�L�  ���[L�� � ���[L��[L�� � ���[L �� � ���[L�� � ���[L��[L��[L� ��
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Using the on-line learning model described for the single-layer case presented in 
(3.1), the learner is able to effectively minimize its loss on the training data with 
weights that converge quite rapidly when applied to a 2-layer network with hidden 
nodes.  Both of the update rules GD and EG± are compared using the same randomly 
drawn examples with the exact same target function. Figure 5.1 shows how both 
networks were able to accurately predict with a loss of 180 and 38 for GD and EG± 
respectively on 10,000 training examples.

Fig. 5.1 – Cumulative loss of EG± and GD for multi-layer function evaluation

Clearly the EG± algorithm outperforms the GD algorithm in this particular case. The 
value of K must be carefully tuned for both levels to ensure good performance. This 
problem is eliminated for our chess agent, with the use of a variable learning rate as 
shown in Section 5.3. 

5. OUR REPRESENTATION

“In more complex games such as chess and Go, one would guess that an ability to learn a linear 
function of the raw board variables would be less useful than in backgammon. In those 
games, the value of a particular piece at a particular board location is more dependent on its 
relation to other pieces on the board. A linear evaluation function based on the raw board 
variables might not give very good play at all – it could be substantially worse than begin-
ner-level play. In the absence of a suitable recording of the raw board information, this 
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might provide an important  limitation in such cases to the success of a TD learning system 
similar to the one studied here.”[26]

-Tesauro (TD-Gammon, pg. 10 )

5.1. Chess Neighborhoods

The core of any learning system is the representation, since it provides the basis for 
anything it could possibly learn. Therefore for chess, we must choose a representation 
that accurately represents the geometry of the board. The naïve method of simply 
storing each of the 64 squares would suffer from lack of generalization and would 
therefore require too much training to be feasible in practice. In fact the geometry is 
counterintuitive for most humans due to the different movements of the pieces. Sny-
der and Levinson provided an abstraction in terms of “safe shortest path distances” 
[16] between the pieces but didn’t indicate the best way to evaluate such paths. 

We have discovered that the 64 chess neighborhoods that exist in each position can 
accurately show the complex piece relationships without being too specific to be 
worthwhile for on-line learning. A chess neighborhood is defined as a vector of 
length 17, where each dimension represents one of the: 2 ranks, 2 files, 4 diagonals, 
and 8 knight squares around one central square. Blank squares are also included in 
this representation so there will always be exactly 64 in any position. An example of 
such a neighborhood is shown in Fig 5.2. 

Fig. 5.2 – a) This is a general example of a chess neighborhood with the 2 Files, 2 Ranks, 4 
Diagonals, and 8 Knight distances away from one particular center square, which in this case 
happens to be a Knight. b) Shows a real game position our agent encountered. c) shows one of 
the 64 chess neighborhoods in the position in b). The darkened lower diagonal signifies its 
adjacency to the queen.

In a chess neighborhood the values for D1-4, R1-2, F1-2, K1-8 , and the value of the cen-
ter square from Figure 5.2a come from the lowest-level piece weights, which also 
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take into account the chess neighborhood position, like upper left diagonal or left file. 
We represent the difference between adjacent and non-adjacent pieces in each 
neighborhood. This is illustrated for an actual game position in Figure 5.2b, in which 
our agent forked the opponent while simultaneously threatening mate.

5.2. Lowest Level Representation

On the lowest level, the weights are stored for each possible position where a piece 
could reside in a chess neighborhood, with respect to what piece is in the center of the 
position. For example, the value of having a black queen adjacent to the upper diago-
nal of a chess neighborhood is highly dependent on the piece in the center of that 
particular neighborhood. A white king in the center is in check, whereas an oppo-
nent’s piece is supported by the black queen. Therefore our learner stores weights for 
each of these situations, which are updated proportionally to loss on each training 
example. In particular, the learned values of a piece being in the center square can be 
thought of as an approximation of the program’s material piece values. The values 
obtained after approximately 2500 games of training, starting with randomly initial-
ized values, are listed in Table 5.1 and they make a great deal of intuitive sense as 
material evaluation terms. This provides an adequate base onto which we can begin to 
develop a strong learning system, where there are no human-supplied bottom-level 
numerical features.

King Queen Rook Bishop Knight Pawn
Our Agent 0.51354 0.7158 0.63394 0.60757 0.61083 0.54027

Opponent 0.51354 0.29919 0.38528 0.41552 0.41471 0.47008

Table 5.1 – The learned weight values after a mixture of on-line and off-line training with  the 
2-tuple agent using GD. These values are from white’s perspective.

5.3.Bringing it All Together

The overall design of our system incorporates all of the features discussed in this 
paper. The weights on the lowest level are used as inputs to the 64 chess neighbor-
hoods in each position. Each of the 17-vector chess neighborhoods uses a global set 
of weights for non-linear evaluation terms to make 64 predictions  Ôt. These are then 
combined on the top-level multiplicatively to create an overall prediction for the 
board state. Figure 5.3 shows a graph of this learning hierarchy without including the 
table of base-level feature values presented in the previous section. The Chess 
Neighborhood weights are updated with the GD algorithm but we also consider the 
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EGr algorithm. For gradient descent, we use a learning rate K where K = ( Yt – 0.5 ) / 
200 for actual value Yt. Dividing by 200 decreases the magnitude that the weights 
move after each update, which therefore increases the stability of our entire model 
since the weights change less erratically over time. This puts a higher value on past 
experience.

Fig. 5.3 - This shows an overall model of our learner. The Chess Neighborhoods (bottom) of 
are expanded to create intermediate predictions Ôt. The sum of the logs of these predictions is 
then divided by the entropy to give the overall evaluation Yt (top).

5.4. Symmetry

One of the problems with building a learner based on, for example,  a stan-
dard 64 square input representation is that the large number of symmetries on that 
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board would not be exploited, leading to tremendous learning deficiencies. For exam-
ple, a rook attacking a bishop should have similar significance regardless of where it 
occurs on the board. The Morph graph representation exploited some of these 
symmetries but was not able to exploit redundancies across graphs as we can with 
non-linear regression on the lower-layer [15]. After each training episode, the lowest 
level weights are averaged based on rank, file, diagonal, and knight movement 
symmetry. Pawns are a special case where only file symmetry applies.

6. EXPERIMENTAL RESULTS

6.1 Varying Number of Internal nodes

In the first experiment we studied the relative performance improvement with 
greater numbers of internal weights or nodes. Two versions of our system are trained 
against one another, where both versions have a different number of internal nodes. 
Games are conducted in an on-line fashion, where each agent begins with randomly 
initialized weights and doesn’t learn after winning. Both agents use a 2-ply search. 
The results of Figure 6.1 show the improvement achieved by going from storing and 
updating all pairs of inputs to storing and updating all triples of the input vector. Te-
sauro showed for his TD net that performance increases monotonically with the num-
ber of hidden nodes [27]. We expect the performance to steadily increase in this fash-
ion until the complexity of the internal representation is greater than or equal to the 
complexity of the problem. For example, a linear version of the regression model 
outperforms the non-linear version, when learning simple learner target classes, 
which is expected since the knowledge of the correct target starts the linear learner off 
with a much smaller universe of possible classifications. However, using a representa-
tion greater than the 2-tuples or 3-tuples will take a great deal of time, especially 
when combined with minimax search. Ideally search can be eliminated entirely and 
replaced with positional knowledge in the form of internal weights and improved 
generalization among similar positions but minimal search may still be necessary to 
achieve competitive play and keep the program from throwing away material. 
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Fig. 6.1 – GD learning agents with 2-tuples (pairs) and 3-tuples of input vector products

6.2 Replacing Minimax Search with Knowledge

A very important question is whether the representation and learning scheme we 
have illustrated in this paper can be used to effectively replace minimax tree search. 
Therefore we have tested the 3-tuple agent against a random agent with a greater 
search depth. Despite its random evaluation at the leaf nodes, the random agent is 
quite strong due to the importance of mobility in chess and the uniform distribution of 
the random numbers, causing those positions with the greatest number of leaf nodes 
to tend to have the most extreme evaluations [4]. Games are conducted on-line as in 
the previous experiment where the winner doesn’t learn from the previous game. The 
actual learning agent is set to 2-ply of search, and the random agent is set to 5-ply. As 
the graph in Figure 6.2 expresses, the 3-tuple agent effectively learns to beat the 5-ply 
random agent at an increasing rate with 3-ply less search. This conclusion illustrates 
the importance of a good model with relevant features to accelerate learning and 
decrease the importance of search.
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Fig 6.2 – The wins of a 3-tuple 2-ply GD agent over time playing a random agent with a 5-ply 
search. Initially the learner’s weights are randomly chosen

6.3. Exponentiated Gradient vs. Gradient Descent

We previously showed that EGr can outperform GD in some instances, especially 
for sparse input vectors and non-linear target functions but neither method has been 
shown to be superior in every case. For this reason, it is important to compare the 
performance of both methods in this application. This might give us a greater under-
standing of the underlying target function, which represents the interactions between 
pieces in our model. As in the previous experiment both agents GD and EGr start 
with an empty database and play successive games against each other where only the 
loser learns from the previous trial. In this case our experiments up to now have 
proven inconclusive, since gradient descent is the clear winner initially but EGr is 
ahead at the conclusion of the experiment and appears to have a steeper learning 
curve. Gradient descent is better when “the weight vectors with low empirical loss 
have many nonzero components, but the instances contain many zero components,” 
[12] which may be the case in our chess model since many of the 64 squares are 
blank squares, especially in the endgame positions which have the most extreme 
evaluations and the non-blank pairs of input vectors may stand-out. However, the 
nature of the multi-layer learning system with non-linear terms seems to favor the 
EGr algorithm, especially as the number of internal nodes increases. We intend to 
continue this experiment to compare their performance on a larger time scale and 
with different numbers of internal nodes.
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Fig 6.3 – The sum of wins for each of GD and EGr with a 2-ply search and initially random 
weights

6.4. Internet Chess Club and Grandmaster Datasets

Our new agent has competed for a few days on the Internet Chess Cub (ICC) and 
trained from several hundred Grandmaster games from online datasets. The former is 
by far the most useful training technique since the agent can actively explore the 
consequence of its own conclusions. As mentioned previously, the 2 initial random 
moves add enough variability to the games to make them interesting and productive 
for the learning process. Its rating continues to climb while playing on the internet 
chess server (ICC). So far the 2-tuple agent with a 4-ply search has achieved a rating 
of 1042 on ICC, which is a significant improvement over other learning programs 
such as Morph IV [17], which required months of training to reach the same level. Its 
learning and/or playing performance appears to be superior to that reported for other 
learning chess systems, such as NeuroChess [28], SAL [11], and Octavius [20]. We 
have also found bootstrap learning to be extremely effective for training, which con-
tradicts the findings Baxter and Tridgell had for their agent KnightCap, which had 
difficulty acquiring knowledge autonomously [2]. Computers have certainly gotten 
faster in recent years, but our agent’s improved learning ability is due to better repre-
sentations rather than processing speed.
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CONCLUSION

One of the enjoyable things about encountering a new opponent is to find out what 
“chess theory" they are consciously or unconsciously using. One difference between 
human and machine chess players is that the human's “theory" about chess evolves 
from game to game and sometimes move-to-move. However, for traditional chess 
computers, their “theory" is static, being built into their evaluation function and 
search heuristics - if any flexibility is retained it is style knobs that are alterable by the 
user. The program discussed in this paper represents a departure from the norm: the 
computer develops its own theory of chess evaluation and tests and evolves the theory 
through over-the-board experience. Another aspect of a theory is that its individual 
primitive components are either few (as in E=MC2) or uniform. In this case we give 
the computer the framework of a theory based on uniform “chess neighborhoods" but 
leave it up to the system with its experience to fill in the details.

In order to participate properly in chess combat, the program must learn to evalu-
ate various aspects of its position and then combine the values of these aspects into a 
single number that it attempts to maximize with the assistance of look-ahead search. 
To date, these two types of valuations: 1) Values of parts or features of a position 2) 
Whole positions based on the values of individual features - have been too combina-
torally complex for machine learning programs to employ without making serious 
blunders such as needless tossing away of material. Unlike backgammon, where a 
probabilistic approach is highly appropriate, in chess, one bad move can be fatal. We 
believe that in this paper we have made significant steps in the resolution of the 
learned evaluation problem. 

The contributions in this paper, by themselves, may not be original or novel, but 
when put together they represent a significantly new approach to chess evaluation. 
Contributions of this paper include: 

1. The definition and use of chess neighborhoods to encapsulate local knowledge 
about a chess position. 

2. The use of a regression network to learn non-linear combinations of the individual 
values of pieces that make up a piece neighborhood to arrive at a single value for 
the entire neighborhood. The use of the regression network dramatically reduces 
the cost of learning the value of patterns over pattern systems such as Morph, that 
are unable to exploit the redundancy across the patterns. 

3. The use of ``exponential gradient descent" as opposed to traditional gradient  de-
scent in the learning of non-linear functions in which many sub-terms may be ir-
relevant. 

4. The use of a symmetry updating phase to improve the speed of learning in a net-
work by making nodes that ``should be equal" be equal by taking an average of 
their values. 



Chess Neighborhoods, Function Combination , and Reinforcement Learning 19

5. The use of a maximum product rule and minimum entropy rule to combine the 64 
neighborhood evaluations in a position in a conservative risk-adverse way appro-
priate to good chess evaluation. 

6. By starting the game by playing two random moves, increasing the exploration of 
the chess learned space. 

In ongoing work, among other things, we are working on assessing the trade-offs 
between number of hidden (non-linear) nodes in the regression network, search depth 
and performance.
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