Answering Aggregate Queries in Data Exchange

Foto Afrati1 Phokion G. Kolaitis2

1National Technical University of Athens

2UC Santa Cruz and IBM Almaden Research Center
Data Exchange

Transform data structured under a schema (source schema) into data structured under another schema (target schema).

Two of the main issues:

- Algorithms for materializing a “good” target instance.
- Semantics and algorithms for answering target queries:

Query Answering

- Earlier work has focused on the certain answers of target FO queries, with emphasis on conjunctive queries.
- In this work we consider aggregate queries over the target:
 1. We give semantics for aggregate query answering.
 2. We give PTIME algorithms for aggregate query answering (data complexity).
Our Framework

Data exchange setting considered:
- source schema;
- target schema;
- source-to-target constraints specified by s-t tgds.

Aggregate queries considered

Scalar aggregation queries

```sql
SELECT f FROM R,
```

where

- `f` is one of the aggregate operators $\min(A)$, $\max(A)$, $\text{count}(A)$, $\text{sum}(A)$, $\text{avg}(A)$, and $\text{count}(\ast)$, and

- `A` is an attribute of a target relation `R`.
Basic Notions (FKMP 2003)

- $\mathcal{M} = (S, T, \Sigma)$ is a schema mapping, where Σ is a set of s-t tgds.

- A source-to-target tuple-generating dependency (or an s-t tgd) is a FO-formula $\forall x (\varphi(x) \rightarrow \exists y \psi(x, y))$, where $\varphi(x)$ is a conjunction of atoms over S, $\psi(x, y)$ is a conjunction of atoms over T, and every variable in x occurs in an atom in $\varphi(x)$.

- Each s-t tgd is a global-and-local-as-view (GLAV) constraint.

- If I a is source instance, then a solution for I under \mathcal{M} is a target instance J such that $(I, J) \models \Sigma$.
Example

Let \mathcal{M} be specified by the s-t tgd

$$\forall x \forall y (E(x, y) \rightarrow \exists z (F(x, z) \land F(z, y))).$$

If $I = \{E(1, 2)\}$, then the following target instances are solutions for I:

- $J_1 = \{E(1, 1), E(1, 2)\}$.
- $J_2 = \{E(1, 2), E(2, 2)\}$.
- $J_3 = \{E(1, w), E(w, 2)\}$, where w is a labeled null.
- $J_4 = \{E(1, w_1), E(w_1, 2), E(1, w_2), E(w_2, 2)\}$, where w_1, w_2 are labeled nulls.

There are infinitely many solutions for I.
Definition (FKMP 2003)

A universal solution for I under \mathcal{M}: is a solution J for I under \mathcal{M} such that for every solution J' for I under \mathcal{M}, there is a homomorphism $h : J \rightarrow J'$.

Note:

- Intuitively, universal solutions are the most general solutions in data exchange; they carry no more and no less information than what is specified by the constraints of the schema mapping.
- Universal solutions are reminiscent of the most general unifiers in logic programming.
- Every two universal solutions are homomorphically equivalent.
Universal Solutions

Example

Let \mathcal{M} be specified by the s-t tgd

$$\forall x \forall y (E(x, y) \rightarrow \exists z (F(x, z) \land F(z, y))).$$

If $I = \{E(1, 2)\}$, then:

- $J_1 = \{E(1, 1), E(1, 2)\}$ is not a universal solution for I.
- $J_2 = \{E(1, 2), E(2, 2)\}$ is not a universal solution for I.
- $J_3 = \{E(1, w), E(w, 2)\}$ is a universal solution for I (labeled nulls can be mapped to constants)
- $J_4 = \{E(1, w_1), E(w_1, 2), E(1, w_2), E(w_2, 2)\}$ is a universal solution for I (labelled nulls can be mapped to constants or to labelled nulls).
- $J_5 = \{E(1, w), E(w, 2), E(w, w)\}$ is not a universal solution for I, even though it contains one.

There are infinitely many universal solutions for I.
Theorem [FKMP 2003]

A canonical universal solution $\operatorname{CanSol}(I)$ for I under \mathcal{M} can be obtained in time polynomial in the size of I using the naive chase procedure.

Naive chase

for every s-t tgd $\varphi(x) \rightarrow \exists y \psi(x, y)$ in Σ and for every tuple a from I such that $I \models \varphi(a)$, we introduce a fresh tuple of distinct nulls u and create new facts in the canonical universal solution so that $\psi(a, u)$ holds.
Example

Let \mathcal{M} be specified by the s-t tgd

$$\forall x \forall y (E(x, y) \rightarrow \exists z (F(x, z) \land F(z, y))).$$

If $I = \{E(1, 2)\}$, then the canonical universal solution produced by the naive chase procedure is $J_3 = \{E(1, w), E(w, 2)\}$.

Example

Let \mathcal{M}' be specified by the s-t tgd

$$\forall x \forall y (E(x, y) \rightarrow \exists z_1 \exists z_2 (F(x, z_1) \land F(z_1, y) \land P(z_2))).$$

If $I = \{E(1, 2), E(1, 3)\}$, then the canonical universal solution is

$$J = \{F(1, w_1), F(w_1, 2), P(w_2), F(1, w_3), F(w_3, 3), P(w_4)\}.$$
Cores

Definition

A database instance J' is a core of a database instance J if

- $J' \subseteq J$.
- There is a homomorphism $h : J \rightarrow J'$.
- There is no $J^\ast \subset J'$ such that there is a homomorphism $h^\ast : J \rightarrow J^\ast$.

Example

- If a graph G is 3-colorable and contains a triangle K_3, then K_3 is a core of G.
- K_n is a core of K_n, where K_n is the n-clique, $n \geq 2$.
- If $J = \{F(1, w_1), F(w_1, 2), P(w_2), F(1, w_3), F(w_3, 3), P(w_4)\}$, then J_1 and J_2 are cores of J, where
 - $J_1 = \{F(1, w_1), F(w_1, 2), P(w_2), F(1, w_3), F(w_3, 3)\}$.
 - $J_2 = \{F(1, w_1), F(w_1, 2), F(1, w_3), F(w_3, 3), P(w_4)\}$.
Properties of Cores

Facts

- Every (finite) instance has a core.
- All cores of an instance are unique up to isomorphism, hence we can talk about the core of an instance.
- If J and J' are homomorphically equivalent, then their cores are isomorphic.
- Computing the core of an instance is an NP-hard problem.
- (FKP 2003) The following problem is DP-complete: Given two undirected graphs G and H, is H the core of G?

Note: $\text{NP} \cup \text{coNP} \subseteq \text{DP}$.
The Core of the Universal Solution

Fact:

- Since all universal solutions for an instance I are homomorphically equivalent, they have isomorphic cores.
- Hence, we refer to the core of the universal solutions for I.
- The core of the universal solution for I is the smallest universal solution for I.

Theorem [FKP 2003]

If \mathcal{M} is a schema mapping specified by s-t tgds, then there is a polynomial-time algorithm such that, given a source instance I, it computes the core of the universal solution for I.
Possible Worlds and Certain Answers

Definition

For every instance \(I \) over some schema \(R \), let \(\mathcal{W}(I) \) be a set of instances over some (possibly different) schema \(R^* \) (set of possible worlds). Let \(Q \) be a query over \(R^* \).

- A \(k \)-tuple \(t \) is a certain answer of \(Q \) w.r.t. \(I \) and \(\mathcal{W}(I) \) if for every \(J \in \mathcal{W}(I) \), we have that \(t \in Q(J) \).

\[
\text{certain}(Q, I, \mathcal{W}(I)) = \bigcap_{J \in \mathcal{W}(I)} Q(J).
\]

Note:

- The certain answer semantics is the standard semantics of query answering in the context of incomplete information.

- On the face of the definition, computing the certain answers entails taking an intersection over a potentially infinite set. In general, this is highly non-constructive.
Question:

Fix a schema mapping $\mathcal{M} = (\mathbf{S}, \mathbf{T}, \Sigma)$ and a FO-query Q over the target T. Given a source instance I, compute the certain answers of Q w.r.t. I. What should the set $\mathcal{W}(I)$ of the set of possible worlds for I be?
Question:
Fix a schema mapping $\mathcal{M} = (S, T, \Sigma)$ and a FO-query Q over the target T. Given a source instance I, compute the certain answers of Q w.r.t. I. What should the set $\mathcal{W}(I)$ of the set of possible worlds for I be?

Three different approaches

1. The set $\text{Sol}(I)$ of all solutions for I. [FKMP 2003]
2. The set $\text{USol}(I)$ of all universal solutions for I. [FKP 2003]
3. The set $\text{Rep}(\text{CanSol}(I))$ derived from the collection of CWA-solutions for I. [Libkin 2006]
Theorem

Fix a schema mapping $\mathcal{M} = (S, T, \Sigma)$ specified by s-t tgds.

- If Q is a union of conjunctive queries over T and I is an S-instance, then
 \[\text{certain}(Q, I, \text{Sol}(I)) = \text{certain}(Q, I, \text{USol}(I)) = \text{certain}(Q, I, \text{Rep}(\text{CanSol}(I))). \]

- If Q is a union of conjunctive queries over T, then
 \[\text{certain}(Q, I, \text{Sol}(I)) = Q(\text{CanSol}(I)) \downarrow. \] Hence, \text{certain}(Q, I, \text{Sol}(I)) is computable in polynomial time. [FKMP 2003]

- If Q is a union of conjunctive queries with inequalities \neq over T, then
 \[\text{certain}(Q, I, \text{USol}(I)) = Q(\text{core}(\text{CanSol}(I))) \downarrow. \] Hence,
 \text{certain}(Q, I, \text{USol}(I)) is computable in polynomial time. [FKP 2003]
Certain Answers of Aggregate Queries

Definition (Q a FO-query, f an aggregate operator)

- A value r is a possible answer of Q with respect to I and $\mathcal{W}(I)$ if there is an instance J in $\mathcal{W}(I)$ such that $f(Q)(J) = r$.

- $\text{poss}(f(Q), I, \mathcal{W}(I))$ denotes the set of all possible answers of the aggregate query $f(Q)$.

- The aggregate certain answers of the aggregate query $f(Q)$ with respect to I and $\mathcal{W}(I)$ is the interval

$$[\text{glb}(\text{poss}(f(Q), I, \mathcal{W}(I))), \text{lub}(\text{poss}(f(Q), I, \mathcal{W}(I)))]$$

They are denoted by $\text{agg-certain}(f(Q), I, \mathcal{W}(I))$,

Bolzano, October 17, 2008
Definition (informal)

- An **inconsistent database** is an instance that violates one or more integrity constraints in a given set of constraints.
- A **repair** of an inconsistent database I is an instance I' that satisfies the given constraints and differs from I in a **minimal** way.
- $R(I)$ is the set of all repairs of I.
Definition (informal)

- An inconsistent database is an instance that violates one or more integrity constraints in a given set of constraints.
- A repair of an inconsistent database I is an instance I' that satisfies the given constraints and differs from I in a minimal way.
- $\mathcal{R}(I)$ is the set of all repairs of I.

Theorem [Arenas et al. - 2003]

Computing $\text{agg-certain}(\text{avg}(R.A), I, \mathcal{R}(I))$ can be coNP-hard even if the set of integrity constraints consists of just two functional dependencies.
Approach:
We will adopt the aggregate certain answers as the semantics of aggregate target queries in data exchange.

Question:
What is the right choice of possible worlds in this case?
Semantics of Aggregate Queries in Data Exchange

Approach:

We will adopt the **aggregate certain answers** as the semantics of aggregate target queries in data exchange.

Question:

What is the *right* choice of possible worlds in this case?

Sets of possible worlds for FO-queries in data exchange:

- The set $\text{Sol}(I)$ of all solutions (FKMP03).
- The set $\text{USol}(I)$ of all *universal* solutions (FKP03).
- The set $\text{Rep}(\text{CanSol}(I))$ obtained from CWA solutions (Libkin 2006).

Fact:

Each of these sets of possible worlds gives rise to rather *trivial* aggregate certain answers.
Sol(I) and USol(I) as Sets of Possible Worlds

Fact (Using Sol(I) as $\mathcal{W}(I)$)

If I is a source instance and f is one of min, max, sum, avg, then

$$\text{agg-certain}(f(R), I, \text{Sol}(I)) = (-\infty, \infty).$$

Fact (Using USol(I) as $\mathcal{W}(I)$)

Let $a = \text{min}(R.A)(\text{CanSol}(I))$ and $b = \text{max}(R.A)(\text{CanSol}(I))$

1. $\text{agg-certain}(\text{min}(R.A), I, \text{USol}(I)) = a.$
2. $\text{agg-certain}(\text{max}(R.A), I, \text{USol}(I)) = b.$
3. If $a = b$, then $\text{agg-certain}(\text{avg}(R.A), I, \text{USol}(I)) = a.$
4. If $a < b$, then $\text{agg-certain}(\text{avg}(R.A), I, \text{USol}(I)) = (a, b).$
Definition

Let $\mathcal{M} = (\mathbf{ST}, \Sigma)$ be a schema mapping specified by s-t tgds. Libkin (2006) defined the concept of a CWA-solution for a source instance I by giving a set of “axioms” that such a solution should satisfy.

Theorem [Libkin06]

The following two statements are equivalent.

1. J is a CWA-solution for I.
2. J is a homomorphic image of $\text{CanSol}(I)$; moreover, there is a homomorphism from J to $\text{CanSol}(I)$.
Rep(\text{CanSol}(I)) as Sets of Possible Worlds

Definition

- \text{Rep}(J) coincides with the set of null-free homomorphic images of \text{J}.
- Libkin took the set \bigcup_{J \in \text{CWA}(I)} \text{Rep}(J) as the set of possible worlds for the semantics of FO-queries in data exchange.

Proposition

\bigcup_{J \in \text{CWA}(I)} \text{Rep}(J) = \text{Rep}(\text{CanSol}(I)).

In words, the set of possible worlds \mathcal{W}(I) considered by Libkin is simply the set of all null-free homomorphic images of \text{CanSol}(I).
Rep(\text{CanSol}(I)) as Sets of Possible Worlds

Definition
- \text{Rep}(J) coincides with the set of null-free homomorphic images of \text{J}.
- Libkin took the set \(\bigcup_{J \in \text{CW}(I)} \text{Rep}(J) \) as the set of possible worlds for the semantics of FO-queries in data exchange.

Proposition
\(\bigcup_{J \in \text{CW}(I)} \text{Rep}(J) = \text{Rep}(\text{CanSol}(I)). \)
In words, the set of possible worlds \(\mathcal{W}(I) \) considered by Libkin is simply the set of all null-free homomorphic images of \text{CanSol}(I).

Fact (Using \text{Rep}(\text{CanSol}(I)) as \mathcal{W}(I))
If \text{CanSol}(I) contains at least one fact \(R(t) \) in which \(t[A] \) is a null, then
\(\text{agg-certain}(f(R), I, \text{Rep}(\text{CanSol}(I))) = (-\infty, \infty). \)
Endomorphic Images of $\text{CanSol}(I)$

Notation

If I is a source instance, then $\text{Endom}(I)$ stands for the set of all endomorphic images of $\text{CanSol}(I)$.
Notation

If I is a source instance, then $\text{Endom}(I)$ stands for the set of all endomorphic images of $\text{CanSol}(I)$.

Example

Let \mathcal{M}' be specified by the s-t tgd

$$\forall x \forall y (E(x, y) \rightarrow \exists z_1 \exists z_2 (F(x, z_1) \land F(z_1, y) \land P(z_2))).$$

If $I = \{E(1, 2), E(1, 3)\}$, then $\text{Endom}(I)$ consists of

$$J = \{F(1, w_1), F(w_1, 2), P(w_2), F(1, w_3), F(w_3, 3), P(w_4)\}$$

$$J_1 = \{F(1, w_1), F(w_1, 2), P(w_2), F(1, w_3), F(w_3, 3)\}$$

$$J_2 = \{F(1, w_1), F(w_1, 2), F(1, w_3), F(w_3, 3), P(w_4)\}.$$

Proposal

Use $\text{Endom}(I)$ as sets of possible worlds $\mathcal{W}(I)$ for the semantics of aggregate queries in data exchange.

Properties

- $\text{Endom}(I)$ contains both $\text{CanSol}(I)$ and $\text{core}(\text{CanSol}(I))$ as members. Moreover, $\text{Endom}(I) \subseteq \text{USol}(I)$.
- Every member of $\text{Endom}(I)$ is a sub-instance of $\text{CanSol}(I)$; the converse, however, need not hold.
- Every member of $\text{Endom}(I)$ is a CWA-solution for I; the converse, however, need not hold.
Endom(I) as Sets $\mathcal{W}(I)$ of Possible Worlds

Some reasons for this choice:

- The members of Endom(I) adhere to a **strict** closed world assumption.
- If Endom(I) are used as sets of possible worlds for the semantics of conjunctive queries Q, then
 \[\text{certain}(Q, I, \text{Endom}(I)) = \text{certain}(Q, I, \text{Sol}(I)). \]
- agg-certain($f(Q), I, \text{Endom}(I)$) is **non-trivial** semantics for aggregate queries $f(Q)$.
Proposition

CanSol(I) and core(CanSol(I)) suffice for max, min, count, and a special case of sum.

- For every instance $T \in \text{Endom}(I)$, we have that $\max(R.A)(T) = \max(R.A)(\text{CanSol}(I)) = a$. Similarly for min.
- $\text{agg-certain(count}(R.A), I, \text{Endom}(I)) = [\text{count}(R.A)(\text{core}(\text{CanSol}(I))), \text{count}(R.A)(\text{CanSol}(I))].$
- If all numeric constants in I are non-negative integers, then $\text{agg-certain(sum}(R.A), I, \text{Endom}(I)) = [\text{sum}(R.A)(\text{core}(\text{CanSol}(I))), \text{sum}(Q)(\text{CanSol}(I))].$

Note

For sum in the general case, we use a simpler version of the technique that we will use for the average.
Example

- Schema mapping \mathcal{M} consisting of
 \[
 \forall x, y (P(x, y) \rightarrow T(x, y)) \\
 \forall x, y (Q(x, y) \rightarrow \exists z T(x, z)).
 \]

- Source instance
 \[I_n = \{P(a_1, b_1), \ldots, P(a_n, b_n), Q(a_1, c_1), \ldots, Q(a_n, c_n)\}.
 \]

- CanSol(I_n) is
 \[J_n = \{T(a_1, b_1), \ldots, T(a_n, b_n), T(a_1, u_1), \ldots, T(a_n, u_n)\}.
 \]

- Every subset K of $\{1, \ldots, n\}$ determines an endomorphism h_K of J_n, and vice versa.

- Thus, Endom(I) consists of exponentially many endomorphic images, one for each subset of $\{1, \ldots, n\}$.
Example (Continued)

- $K \subseteq \{1, \ldots, n\}$.
- $\text{count}((T.A)^J_K) = n + |K|$ and $\text{sum}((T.A)^J_K) = (\sum_{i=1}^n a_i) + (\sum_{i \in K} a_i)$.
- Consequently,

 $\text{agg-certain}(\text{count}(T.A), I_n, \text{Endom}(I_n)) = [n, 2n]$ and
 $\text{agg-certain}(\text{sum}(T.A), I_n, \text{Endom}(I_n)) = [\sum_{i=1}^n a_i, 2 \sum_{i=1}^n a_i]$.
- Moreover, the endpoints of these intervals are obtained by evaluating $\text{count}(T.A)$ and $\text{sum}(T.A)$ on $\text{core}(\text{CanSol}(I_n))$ and on $\text{CanSol}(I_n)$.
Answering queries with the *average*, however, is more complicated. Take the source instance

\[I = \{(1, b_1), (2, b_2), (3, b_3)\}. \]

Then

- \(\text{agg-certain}(\text{avg}(T.A), I, \text{Endom}(I)) = [7/4, 9/4] \).
- \(\text{avg}(T.A)(\text{core}(\text{CanSol}(I))) = 2 = \text{avg}(T.A)(\text{CanSol}(I)). \)
Theorem

Let $\mathcal{M} = (S, T, \Sigma)$ be a schema mapping in which Σ is a set of s-t tgds, let R be a target relation, and let A an attribute of R. Then there is a PTIME algorithm for the following problem: given a source instance I, compute $\text{agg-certain}(\text{avg}(R.A), I, \text{Endom}(I))$.

Proof Hint:

Will only describe some of the concepts and the ingredients for the algorithm.
Blocks and Block Homomorphisms

Definition (FKP 2003)

Let \(K \) be a target instance.

- The Gaifman graph of the nulls of \(K \) has the nulls of \(K \) as nodes; two nulls are connected via an edge if they occur in some fact of \(K \).
- A block of \(K \) is a connected component of the Gaifman graph of \(K \).
- A block homomorphism of \(B \) is a homomorphism from \(B \) to \(K \).

Fact

- There is a polynomial \(p(n) \) such that, for every source instance \(I \), the number of blocks of \(\text{CanSol}(I) \) is bounded by \(p(|I|) \).
- Let \(c \) be the maximum number of existential quantifiers \(\exists y \) appearing in a s-t tgd \(\forall x(\varphi(x) \rightarrow \exists y \varphi(x, y)) \) in \(\Sigma \). If \(I \) is a source instance, then every block \(B \) of \(\text{CanSol}(I) \) has size at most constant \(c \).
Basic Ingredients

- We design a PTIME algorithm for \(\text{avg} \) that, given \(I \), finds endomorphic images \(J \) and \(J' \) of \(\text{CanSol}(I) \) that realize the optimum (minimum and maximum) values for \(\text{avg} \).
- We can partition the set of integers in polynomially many critical intervals determined by the blocks.
- For each critical interval, we can decide which block homomorphism is optimum, supposing that the value of the optimum \(\text{avg} \) is in this interval.
- We can find the optimum endomorphic image by assembling the optimum block homomorphisms.
- Assembling block homomorphisms requires care.
Example

- Revisit \mathcal{M} consisting of

\[
\forall x, y (P(x, y) \rightarrow T(x, y)) \\
\forall x, y (Q(x, y) \rightarrow \exists z T(x, z)).
\]

- For every source instance I, each block of $\text{CanSol}(I)$ is of size one.
- Critical intervals are determined by the values of the attribute A.
- The problem of finding an endomorphic image with the minimum average is literally equivalent to the following combinatorial problem:
 Given a bag S of positive integers, find a sub-bag S' of S such that:
 (a) S and S' have the same set of distinct numbers; and
 (b) the average of the members of S' is minimized.
- Thus, computing $\text{agg-certain}(\text{avg}(T.A), I, \text{Endom}(I))$ is an algorithmically interesting problem, even for seemingly very simple schema mappings \mathcal{M}.
In contrast to the aggregate certain answers, computing the possible answers of scalar aggregation queries with the average operator turns out to be an NP-complete problem.

Theorem

There is a schema mapping $\mathcal{M} = (S, T, \Sigma)$ in which Σ is a finite set of s-t tgds and such that the following problem is NP-complete: given a source instance I and a number r, is there a target instance $J \in \text{Endom}(I)$ such that $\text{avg}(R.A)(J) = r$?

Hint of Proof:

Reduction from the **Partition Problem**.
Concluding Remarks

Summary of Contributions

- We have given semantics for aggregate queries in data exchange.
- We have given polynomial algorithms to compute the aggregate certain answers under these semantics and for schema mappings specified by s-t tgds.
- More recently, we have shown that computing the aggregate certain answers for schema mappings specified by SO tgds is NP-hard.

Next Steps

- Study aggregate queries for schema mappings specified by s-t tgds and target tgds.
- Semantics and the complexity of richer aggregate queries with GROUP BY constructs.