Schema Mappings
Data Exchange
&
Metadata Management

Phokion G. Kolaitis
IBM Almaden Research Center

joint work with

Ronald Fagin Renée J. Miller Lucian Popa Wang-Chiew Tan
IBM Almaden U. Toronto IBM Almaden UC Santa Cruz
The Data Interoperability Problem

- Data may reside
 - at several different sites
 - in several different formats (relational, XML, ...).

- Two different, but related, facets of data interoperability:
 - **Data Integration** (aka **Data Federation**):
 - **Data Exchange** (aka **Data Translation**):
Data Integration

Query heterogeneous data in different sources via a virtual global schema
Data Exchange

Transform data structured under a source schema into data structured under a different target schema.
Data Exchange

Data Exchange is an old, but recurrent, database problem

- Phil Bernstein – 2003
 “Data exchange is the oldest database problem”

- **EXPRESS**: IBM San Jose Research Lab – 1977
 EXtraction, Processing, and REStructuring System
 for transforming data between hierarchical databases.

- Data Exchange underlies:
 - Data Warehousing, ETL (Extract-Transform-Load) tasks;
 - XML Publishing, XML Storage, …
Theoretical Aspects of Data Interoperability

Develop a conceptual framework for formulating and studying fundamental problems in data interoperability:

- Semantics of data integration & data exchange
- Algorithms for data exchange
- Complexity of query answering
Outline of the Talk

- Schema Mappings and Data Exchange
- Solutions in Data Exchange
 - Universal Solutions
 - The Core of the Universal Solutions
- Query Answering in Data Exchange
- Composing Schema Mappings
Schema Mappings

- Schema mappings:
 high-level, declarative assertions that specify the relationship between two schemas.

- Ideally, schema mappings should be
 - expressive enough to specify data interoperability tasks;
 - simple enough to be efficiently manipulated by tools.

- Schema mappings constitute the essential building blocks in formalizing data integration and data exchange.

- Schema mappings play a prominent role in Bernstein’s metadata management framework.
Schema Mappings & Data Exchange

- **Schema Mapping** \(M = (S, T, \Sigma) \)
 - **Source** schema \(S \), **Target** schema \(T \)
 - High-level, declarative assertions \(\Sigma \) that specify the relationship between \(S \) and \(T \).

- **Data Exchange** via the schema mapping \(M = (S, T, \Sigma) \)
 Transform a given **source** instance \(I \) to a **target** instance \(J \), so that \(<I, J> \) satisfy the specifications \(\Sigma \) of \(M \).
Solutions in Schema Mappings

Definition: Schema Mapping \(M = (S, T, \Sigma) \)

If \(I \) is a source instance, then a solution for \(I \) is a target instance \(J \) such that \(<I, J> \) satisfy \(\Sigma \).

Fact: In general, for a given source instance \(I \),

- No solution for \(I \) may exist
- or
- Multiple solutions for \(I \) may exist; in fact, infinitely many solutions for \(I \) may exist.
Definition: Schema Mapping \(M = (S, T, \Sigma) \)

- The **existence-of-solutions problem** \(\text{Sol}(M) \): (decision problem)
 Given a source instance \(I \), is there a solution \(J \) for \(I \)?

- The **data exchange problem associated with** \(M \): (function problem)
 Given a source instance \(I \), construct a solution \(J \) for \(I \), provided a solution exists.
Question: How are schema mappings specified?

Answer: Use logic. In particular, it is natural to try to use first-order logic as a specification language for schema mappings.

Fact: There is a fixed first-order sentence specifying a schema mapping M^* such that $\text{Sol}(M^*)$ is undecidable.

Hence, we need to restrict ourselves to well-behaved fragments of first-order logic.
Embedded Implicational Dependencies

- **Dependency Theory**: extensive study of constraints in relational databases in the 1970s and 1980s.

- **Embedded Implicational Dependencies**: Fagin, Beeri-Vardi, …
 Class of constraints with a balance between high expressive power and good algorithmic properties:
 - **Tuple-generating dependencies** (tgds)
 Inclusion and multi-valued dependencies are a special case.
 - **Equality-generating dependencies** (egds)
 Functional dependencies are a special case.
Joint work with R. Fagin, R.J. Miller, and L. Popa

Studied data exchange between relational schemas for schema mappings specified by
- Source-to-target tgds
- Target tgds
- Target egds
The relationship between source and target is given by formulas of first-order logic, called

Source-to-Target Tuple Generating Dependencies (s-t tgds)

\[\varphi(x) \rightarrow \exists y \psi(x, y) \], where

- \(\varphi(x) \) is a conjunction of atoms over the source;
- \(\psi(x, y) \) is a conjunction of atoms over the target.

Example:

\[(\text{Student}(s) \land \text{Enrolls}(s,c)) \rightarrow \exists t \exists g (\text{Teaches}(t,c) \land \text{Grade}(s,c,g))\]
Schema Mapping Specification Language

- s-t tgds assert that:
 some SPJ source query is contained in some other SPJ target query

\[(\text{Student } (s) \land \text{Enrolls}(s,c)) \rightarrow \exists t \exists g (\text{Teaches}(t,c) \land \text{Grade}(s,c,g))\]

- s-t tgds generalize the main specifications used in data integration:
 - They generalize LAV (local-as-view) specifications:
 \[P(x) \rightarrow \exists y \psi(x, y), \text{ where } P \text{ is a source schema.}\]
 - They generalize GAV (global-as-view) specifications:
 \[\varphi(x) \rightarrow R(x), \text{ where } R \text{ is a target schema}\]
 - At present, most commercial II systems support GAV only.
In addition to source-to-target dependencies, we also consider target dependencies:

- **Target Tgds**: \(\varphi_T(x) \rightarrow \exists y \, \psi_T(x, y) \)

 Dept \((did, dname, mgr_id, mgr_name)\) \rightarrow Mgr \((mgr_id, did)\)

 (a target inclusion dependency constraint)

- **Target Equality Generating Dependencies (egds):**

 \(\varphi_T(x) \rightarrow (x_1 = x_2) \)

 \((\text{Mgr} \,(e, d_1) \land \text{Mgr} \,(e, d_2)) \rightarrow (d_1 = d_2)\)

 (a target key constraint)
Schema Mapping $M = (S, T, \Sigma_{st}, \Sigma_{t})$, where

- Σ_{st} is a set of source-to-target tgds
- Σ_{t} is a set of target tgds and target egds
Underspecification in Data Exchange

- **Fact:** Given a source instance, multiple solutions may exist.

- **Example:**
 Source relation $E(A,B)$, target relation $H(A,B)$
 \[\Sigma: \quad E(x,y) \rightarrow \exists z \ (H(x,z) \land H(z,y)) \]
 Source instance $I = \{E(a,b)\}$
 Solutions: **Infinitely** many solutions exist
 - $J_1 = \{H(a,b), H(b,b)\}$ \[\text{constants:} \quad a, b, ... \]
 - $J_2 = \{H(a,a), H(a,b)\}$ \[\text{variables (labelled nulls):} \quad X, Y, ... \]
 - $J_3 = \{H(a,X), H(X,b)\}$
 - $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$
 - $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$
Main issues in data exchange

For a given source instance, there may be multiple target instances satisfying the specifications of the schema mapping. Thus,

- When more than one solution exist, which solutions are “better” than others?
- How do we compute a “best” solution?
- In other words, what is the “right” semantics of data exchange?
We introduced the notion of universal solutions as the “best” solutions in data exchange.

- By definition, a solution is universal if it has homomorphisms to all other solutions (thus, it is a “most general” solution).
- Constants: entries in source instances
- Variables (labeled nulls): other entries in target instances
- Homomorphism $h: J_1 \rightarrow J_2$ between target instances:
 - $h(c) = c$, for constant c
 - If $P(a_1,\ldots,a_m)$ is in J_1, then $P(h(a_1),\ldots,h(a_m))$ is in J_2
Universal Solutions in Data Exchange

Schema S

Schema T

Σ

I

J

Universal Solution

h₁

h₂

h₃

J₁

J₂

J₃

Homomorphisms

Solutions
Example - continued

Source relation $S(A,B)$, target relation $T(A,B)$

$\Sigma : E(x,y) \rightarrow \exists z \ (H(x,z) \land H(z,y))$

Source instance $I = \{H(a,b)\}$

Solutions: Infinitely many solutions exist

- $J_1 = \{H(a,b), H(b,b)\}$ is not universal
- $J_2 = \{H(a,a), H(a,b)\}$ is not universal
- $J_3 = \{H(a,X), H(X,b)\}$ is universal
- $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$ is universal
- $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$ is not universal
Universal solutions are analogous to most general unifiers in logic programming.

Uniqueness up to homomorphic equivalence:
If \(J \) and \(J' \) are universal for \(I \), then they are homomorphically equivalent.

Representation of the entire space of solutions:
Assume that \(J \) is universal for \(I \), and \(J' \) is universal for \(I' \). Then the following are equivalent:
1. \(I \) and \(I' \) have the same space of solutions.
2. \(J \) and \(J' \) are homomorphically equivalent.
Algorithmic Properties of Universal Solutions

Theorem (FKMP): Schema mapping $M = (S, T, \Sigma_{st}, \Sigma_t)$ such that:
- Σ_{st} is a set of source-to-target tgds;
- Σ_t is the union of a weakly acyclic set of target tgds with a set of target egds.

Then:
- Universal solutions exist if and only if solutions exist.
- $Sol(M)$, the existence-of-solutions problem for M, is in P.
- A *canonical* universal solution (if solutions exist) can be produced in polynomial time using the chase procedure.
Weakly Acyclic Sets of Tgds

Weakly acyclic sets of tgds contain as special cases:

- **Sets of full tgds**
 \[\varphi_T(x) \rightarrow \psi_T(x), \]
 where \(\varphi_T(x) \) and \(\psi_T(x) \) are conjunctions of target atoms.

 Example: \(H(x,z) \land H(z,y) \rightarrow H(x,y) \land C(z) \)

 Full tgds express containment between relational joins.

- **Sets of acyclic inclusion dependencies**
 Large class of dependencies occurring in practice.
The Smallest Universal Solution

- **Fact:** Universal solutions need not be unique.
- **Question:** Is there a “best” universal solution?
- **Answer:** In joint work with R. Fagin and L. Popa, we took a “small is beautiful” approach:

 There is a smallest universal solution (if solutions exist); hence, the most compact one to materialize.

- **Definition:** The core of an instance J is the smallest subinstance J' that is homomorphically equivalent to J.

- **Fact:**
 - Every finite relational structure has a core.
 - The core is unique up to isomorphism.
The Core of a Structure

Definition: J' is the core of J if
- $J' \subseteq J$
- there is a hom. $h: J \to J'$
- there is **no** hom. $g: J \to J''$, where $J'' \subset J'$.
The Core of a Structure

Definition: J' is the core of J if
- $J' \subseteq J$
- there is a hom. $h: J \rightarrow J'$
- there is no hom. $g: J \rightarrow J''$, where $J'' \subset J'$.

Example: If a graph G contains a \triangle, then G is 3-colorable if and only if $\text{core}(G) = \triangle$.

Fact: Computing cores of graphs is an NP-hard problem.
Example - continued

Source relation E(A,B), target relation H(A,B)

\[\Sigma : \ (E(x,y) \rightarrow \exists z \ (H(x,z) \land H(z,y)) \]

Source instance \(I = \{E(a,b)\} \).

Solutions: Infinitely many universal solutions exist.

- \(J_3 = \{H(a,X), H(X,b)\} \) is the core.
- \(J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\} \) is universal, but not the core.
- \(J_5 = \{H(a,X), H(X,b), H(Y,Y)\} \) is not universal.
Core: The smallest universal solution

Theorem (FKP): \(M = (S, T, \Sigma_{st}, \Sigma_t) \) a schema mapping:

- All universal solutions have the same core.
- The core of the universal solutions is the smallest universal solution.
- If every target constraint is an egd, then the core is polynomial-time computable.

Theorem (Gottlob – PODS 2005): \(M = (S, T, \Sigma_{st}, \Sigma_t) \)

If every target constraint is an egd or a full tgd, then the core is polynomial-time computable.
Outline of the Talk

✓ Schema Mappings and Data Exchange

✓ Solutions in Data Exchange
 ✓ Universal Solutions
 ✓ The Core of the Universal Solutions

- Query Answering in Data Exchange

- Composing Schema Mappings
Question: What is the semantics of target query answering?

Definition: The certain answers of a query \(q \) over \(T \) on \(I \)

\[
certain(q,I) = \bigcap \{ q(J) : J \text{ is a solution for } I \}.
\]

Note: It is the standard semantics in data integration.
Certain Answers Semantics

\[
\text{certain}(q, I) = \bigcap \{ q(J) : J \text{ is a solution for } I \}.
\]
Computing the Certain Answers

Theorem (FKMP): Schema mapping $M = (S, T, \Sigma_{st}, \Sigma_t)$ such that:

- Σ_{st} is a set of source-to-target tgds, and
- Σ_t is the union of a weakly acyclic set of tgds with a set of egds.

Let q be a union of conjunctive queries over T.

- If I is a source instance and J is a universal solution for I, then

 $\text{certain}(q, I) = \text{the set of all "null-free" tuples in } q(J)$.

 Hence, $\text{certain}(q, I)$ is computable in time polynomial in $|I|$:
 1. Compute a canonical universal J solution in polynomial time;
 2. Evaluate $q(J)$ and remove tuples with nulls.

Note: This is a data complexity result (M and q are fixed).
Certain Answers via Universal Solutions

$q(J_1)$

$q(J_2)$

$q(J_3)$

$q(J)$

$\text{certain}(q,I) = \text{set of null-free tuples of } q(J)$.

universal solution J for I
Computing the Certain Answers

Theorem (FKMP): Schema mapping $M = (S, T, \Sigma_{st}, \Sigma_t)$ such that:
- Σ_{st} is a set of source-to-target tgds, and
- Σ_t is the union of a weakly acyclic set of tgds with a set of egds.

Let q be a union of conjunctive queries with inequalities (\neq).
- If q has at most one inequality per conjunct, then $\text{certain}(q, I)$ is computable in time polynomial in $|I|$ using a disjunctive chase.
- If q is has at most two inequalities per conjunct, then $\text{certain}(q, I)$ can be coNP-complete, even if $\Sigma_t = \emptyset$.
Universal Certain Answers

- Alternative semantics of query answering based on universal solutions.
- Certain Answers:
 “Possible Worlds” = Solutions
- Universal Certain Answers:
 “Possible Worlds” = Universal Solutions

Definition: Universal certain answers of a query q over T on I

\[
\text{u-certain}(q,I) = \cap \{ q(J) : J \text{ is a universal solution for } I \}.
\]

Facts:
- \(\text{certain}(q,I) \subseteq \text{u-certain}(q,I)\)
- \(\text{certain}(q,I) = \text{u-certain}(q,I)\), q a union of conjunctive queries
Computing the Universal Certain Answers

Theorem (FKP): Schema mapping $M = (S, T, \Sigma_{st}, \Sigma_t)$ such that:
- Σ_{st} is a set of source-to-target tgds
- Σ_t is a set of target egds and target tgds.

Let q be an existential query over T.
- If I is a source instance and J is a universal solution for I, then

$$u\text{-certain}(q, I) = \text{the set of all “null-free” tuples in } q(\text{core}(J)).$$

- Hence, $u\text{-certain}(q, I)$ is computable in time polynomial in $|I|$ whenever the core of the universal solutions is polynomial-time computable.

Note: Unions of conjunctive queries with inequalities are a special case of existential queries.
Universal Certain Answers via the Core

$q(J_1)$

$q(J_2)$

$q(J_3)$

$q: existential$

$u\text{-}certain(q,I) = set\ of\ null-free\ tuples\ of\ q(\text{core}(J))$.

universal solution J for I
From Theory to Practice

- Clio/Criollo Project at IBM Almaden managed by Howard Ho.
 - Semi-automatic schema-mapping generation tool;
 - Data exchange system based on schema mappings.

- Universal solutions used as the semantics of data exchange.

- Universal solutions are generated via SQL queries extended with Skolem functions (implementation of chase procedure), provided there are no target constraints.

- Clio/Criollo technology is being exported to WebSphere II.
Some Features of Clio

- Supports nested structures
 - Nested Relational Model
 - Nested Constraints
- Automatic & semi-automatic discovery of attribute correspondence.
- Interactive derivation of schema mappings.
- Performs data exchange
Schema Mappings in Clio

Source Schema S

"conforms to"

data

Mapping Generation

Schema Mapping

Target Schema T

"conforms to"

Data exchange process (or SQL/XQuery/XSLT)
Outline of the Talk

✓ Schema Mappings and Data Exchange

✓ Solutions in Data Exchange
 ✓ Universal Solutions
 ✓ The Core of the Universal Solutions

✓ Query Answering in Data Exchange

- Composing Schema Mappings
 joint work with R. Fagin, L. Popa, and W.-C. Tan
Managing Schema Mappings

- Schema mappings can be quite complex.

- Methods and tools are needed to manage schema mappings automatically.

- **Metadata Management Framework** – Bernstein 2003 based on generic schema-mapping operators:
 - Composition operator
 - Inverse operator
 - Merge operator
 -
Composing Schema Mappings

Given $M_{12} = (S_1, S_2, \Sigma_{12})$ and $M_{23} = (S_2, S_3, \Sigma_{23})$, derive a schema mapping $M_{13} = (S_1, S_3, \Sigma_{13})$ that is “equivalent” to the sequence M_{12} and M_{23}.

What does it mean for M_{13} to be “equivalent” to the composition of M_{12} and M_{23}?
Earlier Work

- **Metadata Model Management** (Bernstein in CIDR 2003)
 - Composition is one of the fundamental operators
 - However, no precise semantics is given

- **Composing Mappings among Data Sources** (Madhavan & Halevy in VLDB 2003)
 - First to propose a semantics for composition
 - However, their definition is in terms of maintaining the same certain answers relative to a class of queries.
 - Their notion of composition *depends* on the class of queries; it may *not* be unique up to logical equivalence.
Semantics of Composition

- Every schema mapping $M = (S, T, \Sigma)$ defines a binary relationship $\text{Inst}(M)$ between instances:
 \[
 \text{Inst}(M) = \{ <I,J> \mid <I,J> \models \Sigma \}.
 \]

- **Definition: (FKPT)**
 A schema mapping M_{13} is a composition of M_{12} and M_{23} if
 \[
 \text{Inst}(M_{13}) = \text{Inst}(M_{12}) \circ \text{Inst}(M_{23}),
 \]
 that is,
 \[
 <I_1,I_3> \models \Sigma_{13}
 \]
 if and only if
 there exists I_2 such that $<I_1,I_2> \models \Sigma_{12}$ and $<I_2,I_3> \models \Sigma_{23}$.

- **Note:** Also considered by S. Melnik in his Ph.D. thesis
The Composition of Schema Mappings

Fact: If both $M = (S_1, S_3, \Sigma)$ and $M' = (S_1, S_3, \Sigma')$ are compositions of M_{12} and M_{23}, then Σ are Σ' are logically equivalent. For this reason:

- We say that M (or M') is *the composition* of M_{12} and M_{23}.
- We write $M_{12} \circ M_{23}$ to denote it.

Definition: The composition query of M_{12} and M_{23} is the set $\text{Inst}(M_{12}) \circ \text{Inst}(M_{23})$.
Issues in Composition of Schema Mappings

- The semantics of composition was the first main issue.

Some other key issues:

- Is the language of s-t tgds *closed under composition*?
 If M_{12} and M_{23} are specified by finite sets of s-t tgds, is $M_{12} \circ M_{23}$ also specified by a finite set of s-t tgds?

- If not, what is the “right” language for composing schema mappings?
Composition: Expressibility & Complexity

<table>
<thead>
<tr>
<th>M_{12}</th>
<th>M_{23}</th>
<th>$M_{12} \circ M_{23}$</th>
<th>Composition Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ_{12}</td>
<td>Σ_{23}</td>
<td>Σ_{13}</td>
<td>in PTIME</td>
</tr>
<tr>
<td>finite set of full s-t tgds</td>
<td>finite set of s-t tgds</td>
<td>finite set of s-t tgds</td>
<td>may not be definable: by any set of s-t tgds; in FO-logic; in Datalog</td>
</tr>
<tr>
<td>$\varphi(x) \rightarrow \psi(x)$</td>
<td>$\varphi(x) \rightarrow \exists y \psi(x, y)$</td>
<td>$\varphi(x) \rightarrow \exists y \psi(x, y)$</td>
<td>in NP; can be NP-complete</td>
</tr>
<tr>
<td>finite set of s-t tgds</td>
<td>finite set of (full) s-t tgds</td>
<td>may not be definable: by any set of s-t tgds; in FO-logic; in Datalog</td>
<td>in NP; can be NP-complete</td>
</tr>
<tr>
<td>$\varphi(x) \rightarrow \exists y \psi(x, y)$</td>
<td>$\varphi(x) \rightarrow \exists y \psi(x, y)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- The expressions $\varphi(x)$ and $\psi(x, y)$ represent logical formulas in first-order logic.
- Σ_1 and Σ_2 are sets of formulae that are used to construct the composition query.
- \circ denotes the composition of relations.
- PTIME stands for polynomial-time computable.
Employee Example

- Σ_{12}:
 - $\text{Emp}(e) \rightarrow \exists m \text{ Rep}(e,m)$

- Σ_{23}:
 - $\text{Rep}(e,m) \rightarrow \text{Mgr}(e,m)$
 - $\text{Rep}(e,e) \rightarrow \text{SelfMgr}(e)$

- **Theorem**: This composition is not definable by any finite set of s-t tgds.

- **Fact**: This composition is definable in a well-behaved fragment of second-order logic, called SO tgds, that extends s-t tgds with Skolem functions.
Employee Example - revisited

Σ_{12}:
- $\forall e \ (\text{Emp}(e) \rightarrow \exists m \ \text{Rep}(e,m))$

Σ_{23}:
- $\forall e \forall m \ (\text{Rep}(e,m) \rightarrow \text{Mgr}(e,m))$
- $\forall e \ (\text{Rep}(e,e) \rightarrow \text{SelfMgr}(e))$

Fact: The composition is definable by the SO-tgd

Σ_{13}:
- $\exists f \ (\forall e \ (\text{Emp}(e) \rightarrow \text{Mgr}(e,f(e))) \land$
 - $\forall e \ (\text{Emp}(e) \land (e=f(e)) \rightarrow \text{SelfMgr}(e)))$
Second-Order Tgds

Definition: Let S be a source schema and T a target schema. A second-order tuple-generating dependency (SO tgd) is a formula of the form:

$$\exists f_1 \ldots \exists f_m ((\forall x_1(\phi_1 \rightarrow \psi_1)) \land \ldots \land (\forall x_n(\phi_n \rightarrow \psi_n))),$$

where

- Each f_i is a function symbol.
- Each ϕ_i is a conjunction of atoms from S and equalities of terms.
- Each ψ_i is a conjunction of atoms from T.

Example:

$$\exists f ((\forall e(\text{Emp}(e) \rightarrow \text{Mgr}(e,f(e))) \land \forall e(\text{Emp}(e) \land (e=f(e)) \rightarrow \text{SelfMgr}(e)))$$
Composing SO-Tgds and Data Exchange

Theorem (FKPT):

- The composition of two SO-tgds is definable by a SO-tgd.
- There is an algorithm for composing SO-tgds.
- The chase procedure can be extended to schema mappings specified by SO-tgds, so that it produces universal solutions in polynomial time.
- For schema mappings specified by SO-tgds, the certain answers of target conjunctive queries are polynomial-time computable.
Synopsis of Schema Mapping Composition

- s-t tgds are **not** closed under composition.

- SO-tgds form a **well-behaved** fragment of second-order logic.
 - SO-tgds are closed under composition; they are a "**good**" language for composing schema mappings.
 - SO-tgds are "**chasable**": Polynomial-time data exchange with universal solutions.

- SO-tgds and the composition algorithm have been incorporated in Criollo’s **Mapping Specification Language (MSL)**.
Related Work and Extensions in this PODS

- G. Gottlob:
 Computing Cores for Data Exchange: Algorithms & Practical Solutions

- A. Nash, Ph. Bernstein, S. Melnik:
 Composition of Mappings Given by Embedded Dependencies

- A. Fuxman, Ph. Kolaitis, R.J. Miller, W.-C. Tan:
 Peer Data Exchange

- M. Arenas & L. Libkin:
 XML Data Exchange: Consistency and Query Answering
"Quelli che s'innamoran di pratica sanza scienza, son come 'l nocchiere ch'entra in navilio sanza timone o bussola, che mai ha certezza dove si vada"

Leonardo da Vinci, 1452-1519

"He who loves practice without theory is like the sailor who boards ship without a rudder and compass and never knows where he may cast."
Reduction from 3-Colorability

\[\Sigma_{12} \]
- \(\forall x \forall y (E(x,y) \rightarrow \exists u \exists v (C(x,u) \land C(y,v))) \)
- \(\forall x \forall y (E(x,y) \rightarrow F(x,y)) \)

\[\Sigma_{23} \]
- \(\forall x \forall y \forall u \forall v (C(x,u) \land C(y,v) \land F(x,y) \rightarrow D(u,v)) \)

Let \(I_3 = \{ \texttt{(r,g)}, \texttt{(g,r)}, \texttt{(b,r)}, \texttt{(r,b)}, \texttt{(g,b)}, \texttt{(b,g)} \} \)

Given \(G=(V, E) \),
- let \(I_1 \) be the instance over \(S_1 \) consisting of the edge relation \(E \) of \(G \)

\(G \) is 3-colorable iff \(<I_1, I_3> \in \text{Inst}(M_{12}) \circ \text{Inst}(M_{23}) \)

[Dawar98] showed that 3-colorability is not expressible in \(L_{\omega} \)
Algorithm Compose(M_{12}, M_{23})

- **Input**: Two schema mappings M_{12} and M_{23}
- **Output**: A schema mapping $M_{13} = M_{12} \circ M_{23}$

Step 1: Split up tgds in Σ_{12} and Σ_{23}
- $C_{12} = \text{Emp}(e) \rightarrow (\text{Mgr1}(e, f(e)))$
- $C_{23} =$
 - $\text{Mgr1}(e, m) \rightarrow \text{Mgr}(e, m)$
 - $\text{Mgr1}(e, e) \rightarrow \text{SelfMgr}(e)$

Step 2: Compose C_{12} with C_{23}
- $\chi_1: \text{Emp}(e_0) \land (e=e_0) \land (m=f(e_0)) \rightarrow \text{Mgr1}(e, m)$
- $\chi_2: \text{Emp}(e_0) \land (e=e_0) \land (e=f(e_0)) \rightarrow \text{SelfMgr}(e)$

Step 3: Construct M_{13}
- Return $M_{13} = (S_1, S_3, \Sigma_{13})$ where
 - $\Sigma_{13} = \exists f(\exists e_0 \forall e \exists m \chi_1 \land \exists e_0 \exists e \chi_2)$