/// \ingroup newmat ///@{ /// \file tmtj.cpp /// Part of matrix library test program. //#define WANT_STREAM #include "include.h" #include "newmatap.h" //#include "newmatio.h" #include "tmt.h" #ifdef use_namespace using namespace NEWMAT; #endif void trymatj() { Tracer et("Nineteenth test of Matrix package"); Tracer::PrintTrace(); // testing elementwise (SP) products { Tracer et1("Stage 1"); Matrix A(13,7), B(13,7), C(13,7); int i,j; for (i=1;i<=13;i++) for (j=1; j<=7; j++) { Real a = (i+j*j)/2, b = (i*j-i/4); A(i,j)=a; B(i,j)=b; C(i,j)=a*b; } // Where complete matrix routine can be used Matrix X = SP(A,B)-C; Print(X); X = SP(A,B+1.0)-A-C; Print(X); X = SP(A-1,B)+B-C; Print(X); X = SP(A-1,B+1)+B-A-C+1; Print(X); // Where row-wise routine will be used A = A.Rows(7,13); B = B.Rows(7,13); C = C.Rows(7,13); LowerTriangularMatrix LTA; LTA << A; UpperTriangularMatrix UTB; UTB << B; DiagonalMatrix DC; DC << C; X = SP(LTA,UTB) - DC; Print(X); X = SP(LTA*2,UTB) - DC*2; Print(X); X = SP(LTA, UTB /2) - DC/2; Print(X); X = SP(LTA/2, UTB*2) - DC; Print(X); DiagonalMatrix DX; DX << SP(A,B); DX << (DX-C); Print(DX); DX << SP(A*4,B); DX << (DX-C*4); Print(DX); DX << SP(A,B*2); DX << (DX-C*2); Print(DX); DX << SP(A/4,B/4); DX << (DX-C/16); Print(DX); LowerTriangularMatrix LX; LX = SP(LTA,B); LX << (LX-C); Print(LX); LX = SP(LTA*3,B); LX << (LX-C*3); Print(LX); LX = SP(LTA,B*5); LX << (LX-C*5); Print(LX); LX = SP(-LTA,-B); LX << (LX-C); Print(LX); } { // Symmetric Matrices Tracer et1("Stage 2"); SymmetricMatrix A(25), B(25), C(25); int i,j; for (i=1;i<=25;i++) for (j=i;j<=25;j++) { Real a = i*j +i - j + 3; Real b = i * i + j; A(i,j)=a; B(i,j)=b; C(i,j)=a*b; } UpperTriangularMatrix UT; UT << SP(A,B); UT << (UT - C); Print(UT); Matrix MA = A, X; X = SP(MA,B)-C; Print(X); X = SP(A,B)-C; Print(X); SymmetricBandMatrix BA(25,5), BB(25,5), BC(25,5); BA.Inject(A); BB.Inject(B); BC.Inject(C); X = SP(BA,BB)-BC; Print(X); X = SP(BA*7,BB)-BC*7; Print(X); X = SP(BA,BB/8)-BC/8; Print(X); X = SP(BA*16,BB/16)-BC; Print(X); X = SP(BA,BB); X=X-BC; Print(X); X = SP(BA*2, BB/2)-BC; Print(X); X = SP(BA, BB/2)-BC/2; Print(X); X = SP(BA*2, BB)-BC*2; Print(X); } { // Band matrices Tracer et1("Stage 3"); Matrix A(19,19), B(19,19), C(19,19); int i,j; for (i=1;i<=19;i++) for (j=1;j<=19;j++) { Real a = i*j +i - 1.5*j + 3; Real b = i * i + j; A(i,j)=a; B(i,j)=b; C(i,j)=a*b; } BandMatrix BA(19,10,7), BB(19,8,15), BC(19,8,7); BA.Inject(A); BB.Inject(B); BC.Inject(C); Matrix X; BandMatrix BX; ColumnVector BW(2); X = SP(BA,BB); X=X-BC; Print(X); X = SP(BA/8,BB); X=X-BC/8; Print(X); X = SP(BA,BB*17); X=X-BC*17; Print(X); X = SP(BA/4,BB*7); X=X-BC*7/4; Print(X); X = SP(BA,BB)-BC; Print(X); X = SP(BA/8,BB)-BC/8; Print(X); X = SP(BA,BB*17)-BC*17; Print(X); X = SP(BA/4,BB*7)-BC*7/4; Print(X); BX = SP(BA,BB); BW(1)=BX.upper_val-7; BW(2)=BX.lower_val-8; Print(BW); BA.ReSize(19,7,10); BB.ReSize(19,15,8); BC.ReSize(19,7,8); BA.Inject(A); BB.Inject(B); BC.Inject(C); X = SP(BA,BB); X=X-BC; Print(X); X = SP(BA/8,BB); X=X-BC/8; Print(X); X = SP(BA,BB*17); X=X-BC*17; Print(X); X = SP(BA/4,BB*7); X=X-BC*7/4; Print(X); X = SP(BA,BB)-BC; Print(X); X = SP(BA/8,BB)-BC/8; Print(X); X = SP(BA,BB*17)-BC*17; Print(X); X = SP(BA/4,BB*7)-BC*7/4; Print(X); BX = SP(BA,BB); BW(1)=BX.upper_val-8; BW(2)=BX.lower_val-7; Print(BW); } { // SymmetricBandMatrices Tracer et1("Stage 4"); Matrix A(7,7), B(7,7); int i,j; for (i=1;i<=7;i++) for (j=1;j<=7;j++) { Real a = i*j +i - 1.5*j + 3; Real b = i * i + j; A(i,j)=a; B(i,j)=b; } BandMatrix BA(7,2,4), BB(7,3,1), BC(7,2,1); BA.Inject(A); SymmetricBandMatrix SB(7,3); SymmetricMatrix S; S << (B+B.t()); SB.Inject(S); A = BA; S = SB; Matrix X; X = SP(BA,SB); X=X-SP(A,S); Print(X); X = SP(BA*2,SB); X=X-SP(A,S*2); Print(X); X = SP(BA,SB/4); X=X-SP(A/4,S); Print(X); X = SP(BA*4,SB/4); X=X-SP(A,S); Print(X); X = SP(BA,SB)-SP(A,S); Print(X); X = SP(BA*2,SB)-SP(A,S*2); Print(X); X = SP(BA,SB/4)-SP(A/4,S); Print(X); X = SP(BA*4,SB/4)-SP(A,S); Print(X); } } ///@}