/// \ingroup newmat ///@{ /// \file tmt1.cpp /// Part of matrix library test program. #define WANT_STREAM #include "include.h" #include "newmat.h" #include "tmt.h" #ifdef use_namespace using namespace NEWMAT; #endif /**************************** test program ******************************/ void trymat1() { // cout << "\nFirst test of Matrix package\n\n"; Tracer et("First test of Matrix package"); Tracer::PrintTrace(); { Tracer et1("Stage 1"); int i,j; LowerTriangularMatrix L(10); for (i=1;i<=10;i++) for (j=1;j<=i;j++) L(i,j)=2.0+i*i+j; SymmetricMatrix S(10); for (i=1;i<=10;i++) for (j=1;j<=i;j++) S(i,j)=i*j+1.0; SymmetricMatrix S1 = S / 2.0; S = S1 * 2.0; UpperTriangularMatrix U=L.t()*2.0; Print(LowerTriangularMatrix(L-U.t()*0.5)); DiagonalMatrix D(10); for (i=1;i<=10;i++) D(i,i)=(i-4)*(i-5)*(i-6); Matrix M=(S+U-D+L)*(L+U-D+S); DiagonalMatrix DD=D*D; LowerTriangularMatrix LD=L*D; // expressions split for Turbo C Matrix M1 = S*L + U*L - D*L + L*L + 10.0; { M1 = M1 + S*U + U*U - D*U + L*U - S*D; } { M1 = M1 - U*D + DD - LD + S*S; } { M1 = M1 + U*S - D*S + L*S - 10.0; } M=M1-M; Print(M); } { Tracer et1("Stage 2"); int i,j; LowerTriangularMatrix L(9); for (i=1;i<=9;i++) for (j=1;j<=i;j++) L(i,j)=1.0+j; UpperTriangularMatrix U1(9); for (j=1;j<=9;j++) for (i=1;i<=j;i++) U1(i,j)=1.0+i; LowerTriangularMatrix LX(9); for (i=1;i<=9;i++) for (j=1;j<=i;j++) LX(i,j)=1.0+i*i; UpperTriangularMatrix UX(9); for (j=1;j<=9;j++) for (i=1;i<=j;i++) UX(i,j)=1.0+j*j; { L=L+LX/0.5; L=L-LX*3.0; L=LX*2.0+L; U1=U1+UX*2.0; U1=U1-UX*3.0; U1=UX*2.0+U1; } SymmetricMatrix S(9); for (i=1;i<=9;i++) for (j=1;j<=i;j++) S(i,j)=i*i+j; { SymmetricMatrix S1 = S; S=S1+5.0; S=S-3.0; } DiagonalMatrix D(9); for (i=1;i<=9;i++) D(i,i)=S(i,i); UpperTriangularMatrix U=L.t()*2.0; { U1=U1*2.0 - U; Print(U1); L=L*2.0-D; U=U-D; } Matrix M=U+L; S=S*2.0; M=S-M; Print(M); } { Tracer et1("Stage 3"); int i,j; Matrix M(10,3), N(10,3); for (i = 1; i<=10; i++) for (j = 1; j<=3; j++) { M(i,j) = 2*i-j; N(i,j) = i*j + 20; } Matrix MN = M + N, M1; M1 = M; M1 += N; M1 -= MN; Print(M1); M1 = M; M1 += M1; M1 = M1 - M * 2; Print(M1); M1 = M; M1 += N * 2; M1 -= (MN + N); Print(M1); M1 = M; M1 -= M1; Print(M1); M1 = M; M1 -= MN + M1; M1 += N + M; Print(M1); M1 = M; M1 -= 5; M1 -= M; M1 *= 0.2; M1 = M1 + 1; Print(M1); Matrix NT = N.t(); M1 = M; M1 *= NT; M1 -= M * N.t(); Print(M1); M = M * M.t(); DiagonalMatrix D(10); D = 2; M1 = M; M1 += D; M1 -= M; M1 = M1 - D; Print(M1); M1 = M; M1 -= D; M1 -= M; M1 = M1 + D; Print(M1); M1 = M; M1 *= D; M1 /= 2; M1 -= M; Print(M1); SymmetricMatrix SM; SM << M; // UpperTriangularMatrix SM; SM << M; SM += 10; M1 = SM - M; M1 /=10; M1 = M1 - 1; Print(M1); } { Tracer et1("Stage 4"); int i,j; Matrix M(10,3), N(10,5); for (i = 1; i<=10; i++) for (j = 1; j<=3; j++) M(i,j) = 2*i-j; for (i = 1; i<=10; i++) for (j = 1; j<=5; j++) N(i,j) = i*j + 20; Matrix M1; M1 = M; M1 |= N; M1 &= N | M; M1 -= (M | N) & (N | M); Print(M1); M1 = M; M1 |= M1; M1 &= M1; M1 -= (M | M) & (M | M); Print(M1); } { Tracer et1("Stage 5"); int i,j; BandMatrix BM1(10,2,3), BM2(10,4,1); Matrix M1(10,10), M2(10,10); for (i=1;i<=10;i++) for (j=1;j<=10;j++) { M1(i,j) = 0.5*i+j*j-50; M2(i,j) = (i*101 + j*103) % 13; } BM1.Inject(M1); BM2.Inject(M2); BandMatrix BM = BM1; BM += BM2; Matrix M1X = BM1; Matrix M2X = BM2; Matrix MX = BM; MX -= M1X + M2X; Print(MX); MX = BM1; MX += BM2; MX -= M1X; MX -= M2X; Print(MX); SymmetricBandMatrix SM1; SM1 << BM1 * BM1.t(); SymmetricBandMatrix SM2; SM2 << BM2 * BM2.t(); SM1 *= 5.5; M1X *= M1X.t(); M1X *= 5.5; M2X *= M2X.t(); SM1 -= SM2; M1 = SM1 - M1X + M2X; Print(M1); M1 = BM1; BM1 *= SM1; M1 = M1 * SM1 - BM1; Print(M1); M1 = BM1; BM1 -= SM1; M1 = M1 - SM1 - BM1; Print(M1); M1 = BM1; BM1 += SM1; M1 = M1 + SM1 - BM1; Print(M1); } { Tracer et1("Stage 6"); int i,j; Matrix M(10,10), N(10,10); for (i = 1; i<=10; i++) for (j = 1; j<=10; j++) { M(i,j) = 2*i-j; N(i,j) = i*j + 20; } GenericMatrix GM = M; GM += N; Matrix M1 = GM - N - M; Print(M1); DiagonalMatrix D(10); D = 3; GM = D; GM += N; GM += M; GM += D; M1 = D*2 - GM + M + N; Print(M1); GM = D; GM *= 4; GM += 16; GM /= 8; GM -= 2; GM -= D / 2; M1 = GM; Print(M1); GM = D; GM *= M; GM *= N; GM /= 3; M1 = M*N - GM; Print(M1); GM = D; GM |= M; GM &= N | D; M1 = GM - ((D | M) & (N | D)); Print(M1); GM = M; M1 = M; GM += 5; GM *= 3; M *= 3; M += 15; M1 = GM - M; Print(M1); D.ReSize(10); for (i = 1; i<=10; i++) D(i) = i; M1 = D + 10; GM = D; GM += 10; M1 -= GM; Print(M1); GM = M; GM -= D; M1 = GM; GM = D; GM -= M; M1 += GM; Print(M1); GM = M; GM *= D; M1 = GM; GM = D; GM *= M.t(); M1 -= GM.t(); Print(M1); GM = M; GM += 2 * GM; GM -= 3 * M; M1 = GM; Print(M1); GM = M; GM |= GM; GM -= (M | M); M1 = GM; Print(M1); GM = M; GM &= GM; GM -= (M & M); M1 = GM; Print(M1); M1 = M; M1 = (M1.t() & M.t()) - (M | M).t(); Print(M1); M1 = M; M1 = (M1.t() | M.t()) - (M & M).t(); Print(M1); } { Tracer et1("Stage 7"); // test for bug in MS VC5 int n = 3; int k; int j; Matrix A(n,n), B(n,n); //first version - MS VC++ 5 mis-compiles if optimisation is on for (k=1; k<=n; k++) { for (j = 1; j <= n; j++) A(k,j) = ((k-1) * (2*j-1)); } //second version for (k=1; k<=n; k++) { const int k1 = k-1; // otherwise Visual C++ 5 fails for (j = 1; j <= n; j++) B(k,j) = (k1 * (2*j-1)); } if (A != B) { cout << "\nVisual C++ version 5 compiler error?"; cout << "\nTurn off optimisation"; } A -= B; Print(A); } { Tracer et1("Stage 8"); // Cross product ColumnVector i(3); i << 1 << 0 << 0; ColumnVector j(3); j << 0 << 1 << 0; ColumnVector k(3); k << 0 << 0 << 1; ColumnVector X; X = CrossProduct(i,j) - k; Print(X); X = CrossProduct(j,k) - i; Print(X); X = CrossProduct(k,i) - j; Print(X); X = CrossProduct(j,i) + k; Print(X); X = CrossProduct(k,j) + i; Print(X); X = CrossProduct(i,k) + j; Print(X); X = CrossProduct(i,i); Print(X); X = CrossProduct(j,j); Print(X); X = CrossProduct(k,k); Print(X); ColumnVector A(3); A << 2.25 << 1.75 << -7.5; ColumnVector B(3); B << -0.5 << 4.75 << 3.25; ColumnVector C(3); C << 9.25 << 3.5 << 1.25; Real d0 = (A | B | C).Determinant(); // Vector triple product Real d1 = DotProduct(CrossProduct(A, B), C); Real d2 = DotProduct(CrossProduct(B, C), A); Real d3 = DotProduct(CrossProduct(C, A), B); X << (d1 - d0) << (d2 - d0) << (d3 - d0); Clean(X, 0.000000001); Print(X); X = CrossProduct(A, CrossProduct(B, C)) + CrossProduct(B, CrossProduct(C, A)) + CrossProduct(C, CrossProduct(A, B)); Print(X); RowVector XT = CrossProduct(A.AsRow(), B.AsRow()); XT -= CrossProduct(A, B).AsRow(); Print(XT); } { Tracer et1("Stage 9"); // More cross product int i, j; Matrix M(10,3), N(10,3); for (i = 1; i<=10; i++) for (j = 1; j<=3; j++) { M(i,j) = 2*i-j; N(i,j) = i*j + 20; } Matrix CP1 = CrossProductRows(M, N); Matrix CP2(10,3); for (i = 1; i<=10; i++) CP2.Row(i) = CrossProduct(M.Row(i), N.Row(i)); CP2 -= CP1; Print(CP2); CP2 = CrossProductColumns(M.t(), N.t()); CP2 -= CP1.t(); Print(CP2); } { Tracer et1("Stage 10"); // Make sure RNG works MultWithCarry mwc; ColumnVector cv(10); for (int i = 1; i <= 10; ++i) cv(i) = mwc.Next(); cv *= 100.0; cv(1) -= 6.27874; cv(2) -= 42.1718; cv(3) -= 80.2854; cv(4) -= 12.961; cv(5) -= 17.7499; cv(6) -= 13.2657; cv(7) -= 50.4923; cv(8) -= 26.095; cv(9) -= 57.9147; cv(10) -= 30.1778; Clean(cv, 0.0001); Print(cv); } // cout << "\nEnd of first test\n"; } ///@}