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This article describes the use of if-then-else DAGs for multi-level logic
minimization. -

A new canonical form for if-then-else DAGs, analogous to Bryant’s canon-
ical form for binary decision diagrams (BDDs), is introduced. The definitions
of prime and irredundant ezpressions are extended to if-then-else DAGs. Ez-
pressions in Bryant’s canonical form or in the new canonical form can be
shown to be prime and irredundant.

Objective functions for minimization are discussed, and estimators for pre-
dicting the area and delay of the circuit produced after technology mapping
are proposed. A brief discussion of methods for applying don’t-care informa-
tion and for factoring expressions is included.

1 What is multi-level logic minimization?

Multi-level logic minimization is the transformation of a specifi-
cation of a Boolean function into an equivalent representation that
can be implemented as a circuit with better characteristics (smaller,
faster, or more testable) than a circuit built from the original specifi-
cation. The function usually has multiple outputs, and may be only
partially specified. :

Most previous work in multi-level logic synthesis is based on ex-
tensions of two-level (sum-of-products) minimization for PLAs [7, 6,
2, 14, 3]. A notable example is the misII multi-level minimization
~system [9], based on the espresso two-level minimizer [8].

Some subproblems of multi-level minimization may be easier in
representations other than sum-of-products. For example, tautology
checking, finding common subexpressions, and extracting XOR opera-
tions look more attractive in the if-then-else DAG form (see Section 2)
than in sum-of-products form. We are investigating if-then-else DAGs



for multi-level logic minimization, and have some encouraging prelim-
inary results.

Section 2 describes the if-then-else operator, which forms the basis
for the representation used, and gives a quick introduction to binary
decision diagrams and if-then-else DAGs. Section 3 introduces a
new canonical form. Section 4 discusses ways to estimate the area
and delay of a circuit in a technology-independent logic minimizer.
Section 5 discusses conversion from networks of gates to if-then-else
DAGs. Section 6 talks about ways to use don’t-care information for
simplifying if-then-else DAGs. Section 7 describes some crude factoring
techniques that do surprisingly well.

2 Binary decision diagrams and if-then-else
DAGs

The research described here is based on a single universal oper-
_ ator—the if-then-else operator.

Definition 1: The if-then-else operator is a ternary Boolean func-
tion, with (if a then b else c) defined as ab + d'c or, equivalently,
(a+c)(a' +b).

All binary Boolean functions are easily defined with the if-then-else
operator. For example,

¢ ab = (if a then b else FALSE)
¢ a+ b= (if a then TRUE else b)
* a® b= (if athen ¥ else b).

If-then-else trees and DAGs have a long history [17, 1, 10]. We divide
if-then-else representations into two classes: binary decision diagrams,
in which the if-part is always a simple variable, and if-then-else DAGs,
which may have arbitrary expressions in the if-part.

Definition 2: A binary decision diagram is a binary directed acyclic
graph with two leaves TRUE and FALSE, in which each non-leaf node
is labeled with an atom and has two out-edges pointing to the then-
part and the else-part. The meaning of a binary decision diagram is
defined recursively as (if label(node) then meaning(then-part) else
meaning(else-part)).

Binary decision diagrams (BDDs) have been used often for logic
verification work [12, 20, 21, 18]. They are attractive for such work
as they are easy to manipulate and have a convenient canonical
form (Bryant’s canonical form) [10]. They have also been used
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Figure 2.1: BDD and if-then-else DAG for abc + a'd + b'd, factored as
(if ab then c else d).

for logic synthesis work, mainly for designing differential voltage-
cascode switches, which implement BDDs directly [19, 13]. For logic
minimization in other technologies, the mismatch between the BDD
structure and the circuit structure has restricted their use.

If-then-else DAGs generalize binary decision diagrams by not re-
stricting the if-parts to single variables:

Definition 3: An if-then-else DAG is a ternary directed acyclic graph
in which each leaf is labeled with TRUE, FALSE or a literal, and each
internal node has three out-edges pointing to the if-, then-, and else-
parts. The meaning of a leaf node is the label on the node, and the
meaning of an internal node is defined recursively as (if meaning(if-
part) then meaning(then-part) else meaning(else-part)).

Negating an expression represented as an if-then-else DAG requires
negating all the leaves. To simplify the negation operation, and
to reduce the storage needed for representing expressions, we allow
negation of an if-then-else DAG to be represented by flipping one flag
bit, which we keep in the low-order bit of the pointer to the DAG.

There is a natural mapping from if-then-else DAGs to BDDs, which
can be defined recursively. The if-, then- and else-parts are each
mapped to the corresponding BDDs, and the common subBDDs of the
then- and else-parts are merged. All pointers to TRUE in the image
of the if-part are changed to pointers to the image of the then-part,
and all pointers to FALSE are changed to pointers to the image of
the else-part. The leaves of the if-then-else DAG are mapped to the
obvious corresponding BDDs. Note that the mapping is many-to-one,
with different if-then-else DAGs corresponding to different two-cuts in
the BDD [15].

Figure 2.1 shows a BDD and an if-then-else DAG for the expression
abc+a'd+b'd. Note that the if-then-else DAG represents the expression
as (if ab then c else d), allowing the ab term to be shared with other
expressions.



If-then-else DAGs offer several advantages over sum-of-products and

Boolean decision diagram representations.

If-then-else DAGs can be used to represent BDDs and sum-of-
products expressions, but neither BDDs nor sum-of-products forms
can represent if-then-else DAGs.

Every 1- or 2-input gate can be represented as an if-then-else triple,
so every acyclic network of gates can be represented by replacing
each gate by the appropriate if-then-else triple. This means that
circuits built out of arbitrary gates can be converted to if-then-else
DAGs without losing any sharing of common subexpressions.

If-then-else DAGs have two convenient canonical forms: Bryant’s
canonical form (as in BDD’s) and a new canonical form presented in

Section 3. Canonical forms are particularly valuable for tautology
checking,.

The new canonical form for if-then-else DAGs allows more sharing of
subexpressions than Bryant’s canonical form for BDDs. Any shared
subexpressions in Bryant’s form have corresponding sharing in the
new canonical form, but the new form allows more sharing in the
if-part.

For example, ab(d+e¢) is (if (if a then b else FALSE) then (if d then
TRUE else e) else FALSE), ¢(d + ¢€) is (if ¢ then (if d then TRUE
else ¢) else FALSE), and abd is (if (if a then b else FALSE) then
d else FALSE). These three functions share the subexpressions
ab =(if a then b else FALSE) and (d + ¢) =(if d then TRUE else
e), while the BDD representations would share only (d + e).

If-then-else DAGs are a more factored form than BDDs, providing
for better printing and logic minimization. With the aid of the
transformations described in Section 7, good factorings can often
be found from the canonical forms or from arbitrary non-canonical
expressions.

Boolean operations can be computed as if-then-else triples, so that
the symbol table used for storing canonical forms can be used for
caching the results of operations as well.

3 A canonical form for if-then-else DAGs

A representation is canonical if any two expressions that are logi-

cally equivalent are identical. For example, if ab + ab’ is represented
differently from a, then the representation is non-canonical.

Using canonical forms makes checking for equivalence easy—un-

fortunately, conversion from a non-canonical form to canonical form



may take a lot of time or memory. Because equivalence checking in

canonical form is fast, but equivalence checking in a non-canonical

form (such as clause form) is equivalent to the NP-complete problem

SATISFIABILITY, we are essentially guaranteed that the conversion

to any canonical form is exponential in the worst case. For most

commonly used Boolean functions, however, a well-chosen canonical
form can be small and easy to manipulate, and exponential blow-up
is rare. ‘

A recent paper by Randy Bryant shows that one common function,
integer multiplication, requires exponentially many nodes to represent
in his canonical form, no matter what ordering is used for the vari-
ables [11]. The same arguments can be applied to the new canonical
form described here. Small if-then-else DAGs for integer multiplica-
tion are easy to construct from small circuits, but they all involve
duplicating variables, and so are not canonical.

To make if-then-else DAGs canonical, we must place some restric-
tions on the expressions allowed in the if-, then-, and else-parts of the
structure. Of the seven restrictions, the first three are slightly mod-
ified versions of the corresponding restrictions in Bryant’s canonical
form.

1. A total ordering is imposed on the atoms of the expression, and
all the atoms in the if-part must be earlier in the order than all
atoms in the then- and else-parts. A weaker restriction, that the
variables of the if-part be disjoint from those of the then- and else-
parts, would be enough to eliminate paths with duplicate variables
in the corresponding BDD, but not enough to make the if-then-else
DAG canonical. Non-canonical expressions using this weaker version
of the restriction are useful for factoring.

2. The then- and else-parts of an expression must be distinct Boolean
functions—exactly as in Bryant’s canonical form.

3. A systematic choice must be made between the equivalent expres-
sions (if a then b else c) and (if o’ then c else b) and between (if
a then b else c) and (if a then V' else ¢')’. We require that if- and
then-parts of an expression be pure pointers, with negation allowed
only for the else-part or the entire expression. This corresponds to
Bryant’s choice of atoms as node labels (never negations of atoms).

4. Triples of the form (if a then TRUE else FALSE) and (if a then
FALSE else TRUE) are prohibited. The first triple should be repre-
sented simply as a, and the second one by a'.

5. Triples of the form (if TRUE then b else c) and (if FALSE then b else
¢) are prohibited, and should be replaced with b and ¢ respectively.



6. In the triple (if a then b else ¢), b and ¢ must not share both
then- and else-parts. If b = (if b, thenb, elsec;) and ¢ =
(if ¢, then b; else c.), then the correct representation is (if (if a
then b, else ¢,) then b, else ¢.). If b = (if b, then b, else b.)
and ¢ = (if ¢, then b, else b;), then use (if (if a then b, else c)
then b, else b,).

7. In the triple (if @ then b else c), b must not contain ¢ as a then- or
else-part. If b = (if b, then b, else ¢) or b = (if b; then celse b,),
then the expression should be represented as (if (if @ then b, else
FALSE) then b, else c) or (if (if « then b; else TRUE) then c
else b.). If c is one of the constants TRUE or FALSE, this restriction
amounts to choosing left-associativity for commutative AND or OR
operations. The symmetric test for ¢ = (if ¢; then ¢; else b) or
¢ = (if ¢c; then belse c,) is also needed.

We can show that imposing the restrictions listed above defines a
canonical form by exhibiting an isomorphism with Bryant’s canonical
form [15]. We can use essentially the same algorithm for converting
to either Bryant’s canonical form or the new form [15].

3.1 Two-cut canonical forms are prime and
irredundant

Other researchers in multi-level minimization, working primarily
with sum-of-products representations, have found the concepts of pri-
mality and irredundancy to be important, particularly for producing
testable circuits [8, page 28], [7, page 202]. Both concepts have natural
analogs in if-then-else DAG representations.

In sum-of-products form, an expression is said to be prime if no
term can be modified by changing a literal to TRUE without changing
the meaning of the expression. Similarly, an expression in sum-of-
products form is irredundant if no term can be changed to FALSE
without changing the meaning of the expression.

Definition 4: An if-then-else DAG is prime if no pointer to a literal,
subDAG, or the constant FALSE could be replaced with a pointer to
TRUE without changing the meaning of the ezpression. An if-then-else
DAG 1$ irredundant if no pointer to a literal, subDAG, or the constant
TRUE could be replaced with a pointer to FALSE without changing the
meaning of the expression.

The new definitions of “prime” and “irredundant” correspond to
existing ones for sum-of-products and factored forms. For example, we
can use an if-then-else tree (so that no sharing is done between terms)



to represent a sum-of-products expression by replacing each binary
AND or OR operator by the corresponding if-then-else triple. If the
if-then-else tree is prime or irredundant, then the sum-of-products
expression must be, because the substitutions to be tested in the
sum-of-products form are a subset of those tested in the if-then-else
tree. The extra tests for primality and irredundancy in the if-then-
else tree are easily satisfied for trees corresponding to sum-of-products
representations [15].

Both Bryant’s canonical form and the new canonical form presented
in Section 3 can be shown to be prime and irredundant with the
definition presented here [15].

4 Expression complexity, counting literals

When doing logic minimization, the first question is “what exactly
is being minimized?” The goal of minimization is to reduce the area,
power, or delay of the final circuit after technology mapping, but these
costs are dependent on the technology used, and optimizations tied
to a particular cell library quickly become obsolete.

For technology-independent minimization to work, we need mea-
sures that are not dependent on any particular cell library (or that
are parameterized and easily tuned for different technologies), and
that roughly approximate the cost or speed obtained by a technology
mapper. Technology-independent delay estimates are hard to come
up with, and so most research has concentrated on size minimization,
leaving the delay minimization to the technology mapper.

The usual way to estimate the area for a network of gates is to
estimate the cost for each gate and sum the estimates. The most
popular gate area estimators are the number of literals in sum-of-
products form and the number of literals in the factored form [7,
page 235]. The literal count corresponds closely to the number of
transistor pairs needed to implement the function as a static cMOS
gate, and is an excellent area estimator if the mapper does not change
the decomposition of the circuit. The estimate is not as good when
the mapper splits or merges gates.

We have made some attempts to calibrate area estimators for misII’s
technology mapper on a collection of different designs, including the
MCNC benchmarks. The mapper we attempted to calibrate was
the command map -mi; phase -g. We looked at several different
measures, including the ones reported by misII (number of nodes, sum
of literals in sum-of-products form, sum of literals in factored form).
The sum of literals in factored form is a good predictor, with the



ratio of actual area over predicted area having a standard deviation
of 17.4% of the mean.

Many technology mappers do polarity assignment, adding or remov-

ing inverters to minimize delay or area. For such mappers, adding
inverters in the input description usually does not increase the cost
of the final solution, and so should have zero cost for the technology-
independent minimizer. The standard cost functions do not have this
property, and a cost estimator that hides such inverters should be a
‘better estimator of final area. Subtracting the number of nodes in
a network from the sum of literals makes inverters free, and has the
added advantage of making the measure less sensitive to the size of
the gates used in the decomposition. This measure is an excellent
predictor, having a standard deviation of only 12.6% of the mean.

The standard measures described above are useful when a network
has been decomposed into gates, but are not directly applicable to a
network described as an if-then-else DAG with multiple roots. New
measures are needed.

We have experimented with several estimators, including the fol-
lowing;:
triples the number of if-then-else triples in the DAG,
size the number of triples plus the number of distinct variables,

opcount the number of n-input AND, n-input OR, and 2-input XOR
gates produced by our decomposition algorithm,

height the longest path from a root to a leaf,

pcount the number of literals needed if each if-then-else triple were
expanded to AND, OR, or XOR gates, and any shared nodes were
duplicated.

count a recursively defined function that attempts to match the
values of the estimator (literals(factored)—nodes). count is
0 for the constants TRUE and FALSE.
1 for literals.
1 for a subDAG that has been previously counted.

count(z)+count(y)+count(z) for (if z then y else z), if the triple

represents a 2-input AND or OR, that is, if y or z is a constant.
count(z) + count(y) + count(z) + 1 for other triples (if z then y
else 2).

Of these new functions, count is the best predictor of area for our
benchmarks, with a standard deviation of 13.1%.



Delay estimation may be harder than area estimation. Our best
predictor so far is the height of the if-then-else DAG, with a standard
deviation of 31.4%. We may be able to estimate delay better by
adding a penalty to nodes that are used repeatedly, and by using
smaller costs for triples that have a constant then- or else-parts. An
active area of our research is to find good estimators of both area and
delay for popular mapper-library pairs.

5 Coverting from BLIF (sum-of-products)
format

Most of the standard benchmarks are available in a standard format,
the Berkeley Logic Intermediate Format (BLIF) [4], and so we need
to convert BLIF files into if-then-else DAGs. In BLIF, combinational
logic is described as a directed, acyclic network of gates, and each
gate is described in sum-of-products form.

Building an if-then-else DAG from a network of gates is easy if
each gate is described as an if-then-else DAG—the only tricky part
is converting the sum-of-products descriptions of the gates into if-
then-else DAGs. We have several choices:

¢ Build a canonical DAG for the function expressed by the gate. For

gates of the form ab+cd+ef+gh+---, the wrong variable ordering
can cause an exponential blowup in size.

e Preserve the original and-or structure of the sum-of-products ex-
pression. This is guaranteed not to be too big, but offers few ad-
vantages over simply using sum-of-product representations.

¢ Build a partially factored expression for the gate.

We use a recursive function to get an if-then-else DAG E for a set of
terms T'. The terms are sorted, grouping together those that don’t
use the first input variable (T;), those that use v} (Tp), and those
that use v; (T1). We then strip the first variable off the terms in
each group, and apply the routine recursively to get expressions E;,
Ey, and E;. We build the expression E as (if E; then TRUE else
(if v then E,; else E,)). This idea can be improved by sorting the
variables with the most frequently used ones first.

This algorithm is essentially the same as the popular method of
factoring out one-literal cubes, and produces expressions that are
often significantly smaller than either the canonical form or the
straight sum-of-products form.

After building an expression for a gate, we can try factoring the gate
with the Printform or LocalFactor transformations, or we can try



reordering the variables in various ways to attempt to reduce the size.
When the gates in the input BLIF are large and complex, extra effort
spent in minimizing them is valuable. When the gates are simple
AND, OR, NAND, or NOR gates, no simplification is possible in a
single gate.

After building if-then-else DAGs for all the gates, we can compose
them to get a multiply-rooted if-then-else DAG for the entire logic
module. The preliminary results in this paper were obtained by
applying the transformations to each gate as it was built, and again
after each composition.

6 Using don’t-care information

A substantial part of multi-level logic minimization is to determine
when the value of some expression is irrelevant, and to use this don’t-
care information to simplify the expression [3, 14].

The most important don’t-care information in previous work is the
so-called global don’t-care information, which associates each node of
a network with the function of the network up to that node. This
information is explicit in if-then-else DAGs, and can be automatically
used whenever operations are performed on the node. The fanout
don’t-care information for a node is used to decide when the function of
the node is irrelevant, allowing us to change the function implemented
by the node.

Determining the fanout don’t-care information for an if-then-else
DAG is fairly easy. For example, if we are trying to simplify e =
(if a then b else c), knowing that we don’t care What the value is when
d is true, then

e we can simplify b with the don’t-care expression d + o,
¢ we can simplify ¢ with the don’t-care expression d + a,

¢ and we can simplify a with the don’t-care expression d+ (b@c)'. If
we have already simplified b or ¢, then we have to use the simplified
version to build the new don’t-care expression.

The simplification presently implemented is a simple algorithm. If e
implies d, then e can be simplified to a special variable DON’T-CARE.
The triple (if @ then DON’T-CARE else c) simplifies to ¢, and the
triple (if @ then b else DON'T-CARE) simplifies to b. The triple
(if DON’T-CARE then b else ¢) can be simplified to either b or c,
choosing whichever is cheaper. This simple algorithm guarantees that
the resulting expression is prime and irredundant, according to the
definitions in Section 3.1.

q



Note that a shared subexpression may be simplified differently in its
different uses, resulting in reduced sharing and, possibly, an increase
in the overall size of the network. We can be a little more careful
constructing the don’t-care expression for shared subexpressions by
ANDing together the don’t-care expressions derived from each usage.
This extension has not yet been implemented.

7 Factoring

Factoring is the transformation of an expression to make it smaller.
In work by other researchers, this has meant the conversion from
sum-of-products form to a free form containing only AND and OR
operators, minimizing the number of literals in the process. For if-
then-else DAGs, the goal is to minimize whatever measure we have
decided best predicts the property (area or delay) that we are trying
to minimize. For example, the Printform transformations described
below attempt to reduce the pcount metric. A better, but slower, set
of transformations (LocalFactor) attempts to minimize the count
metric.

The process of reducing the complexity of an expression is usu-
ally called factoring, because the main techniques used by other re-
searchers involve finding shared parts of terms in a sum-of-products
representation, and factoring them out. For example, abc + ad + ¢d
might be factored as a(bc + d) + cd. Our most effective factoring tech-
niques involve transformations that change the order of the variables,
either locally for one part of the DAG, or for the entire DAG.

7.1 Printform transformations

The Printform transformations were originally intended to be
applied to if-then-else DAGs in my new canonical form, to make
them easier to read when printed. They do crude factoring while
- maintaining the weakened version of Restriction 1. This weakened
form is still enough to guarantee that an expression is prime and
irredundant. The complete set of transformations is presented in [15].

By rearranging the if-then-else DAGs (converting them to a non-
canonical form), the Printform transformations increase the number
of times the constants TRUE and FALSE appear, without increasing the
number of nodes in the DAG, thus decreasing the size of the DAG in
the pcount measure. The Printform transformations may increase the
size and count measures of an if-then-else DAG, because rearranging
the then-part may reduce the amount of sharing with the else-part.
For example, the canonical form for (c+d)(dg+e+ f) is (if c then (if



dthen e+ f+g else e+ f) else d(e+ f+g)), which has size 13, count
10, and pcount 13. After applying the Printform transformations, we
get (if c then dg + e + f else d(e + f + g)), which has size 16, count
10, and pcount 10.

The pcount measure is always reduced, but unfortunately, the
pcount measure does not correlate particularly well with area. The
Printform transformations are still valuable as a factoring tool, as
they enable the more powerful LocalFactor transformations to find
factorings ((c + d)(dg + e + f) for the above example, with size 10,
count 6, and pcount 6).

The Printform transformations re-order the variables in the if-then-
else DAG, and can re-order the variables differently in the then-
and else-parts, and are thus potentially more powerful than simply
re-ordering variables (a technique suggested by Randal Bryant [10,
page 26]). Unfortunately, the restriction that no variable from the
if-part appears in the then- and else-parts means that integer mul-
tiplication still requires an exponential representation.

7.2 LocalFactor transformations

The LocalFactor transformations have some similarity to the
Printform transformations, but allow some duplication of variables
between the if-part and the then- and else-parts. This duplication
means that the result is not necessarily prime and irredundant.

A full description of the rather ad hoc LocalFactor transformations
would lengthen this paper significantly, but a quick, sketchy overview
is possible. The basic idea is to simplify (if a then b else ¢) when
b implies ¢, ¢ implies b, b implies ¢/, or ¥ implies ¢. For example,
if ¢ implies b, (if a then b else ¢) can be factored as ab + c¢. The
transformations also try to decompose band c as ¢ = zy and b = z+y,
recognizing (if a then b else c¢) as the carry function az + ay + zy,
which can be factored in several ways, including a(z + y) + zy,
(a+zy)(z +y), and a(z ® y) + zy.

The LocalFactor procedure also checks to see whether reducing
- to canonical form or applying the Printform transformations will
reduce the complexity of the expression. As an option, the Local-
Factor procedure will apply don’t-care information as described in
Section 6. The don’t-care option was not used for the preliminary
results reported here, as the implementation is still too slow.

Table 7.1 gives the area and delay obtained by several different
factoring techniques. For each technique, the results were mapped to
the msu.genlib library with the misII mapper commands map -mi;



name no factor mislI Printform | LocalFactor
area delay | area delay | area delay | area delay
5xpl 2552  10.0 | 2080 9.8 | 2456 9.6 | 1680 9.6
9sym 4104 12.2| 3848 14.0|4736 14.8|1184 13.6
9sym-hdl | 2248 214 | 2152 20.8 {2984 23.0|1168 13.0
9symml |3824 11.6 | 3464 15.8|3864 12.0|1184 13.6
C17 144 3.8 168 48| 144 3.8| 136 2.4
aralisl 3992 10.6 2168 16.2 (3240 16.4 | 2000 9.4
151m 2392 9.62176 10.0|2536 10.8 | 1448 9.6
rd53-hdl | 760 10.8| 856 12.4| 960 10.8| 696 8.0
sao2-hdl | 5280 46.6 | 3008 30.4 | 5760 41.2 | 2984 13.6

Table 7.1: Area and delay from misII’s technology mapper for four
different factoring techniques. Only examples in which LocalFactor
is better than the standard misII script are shown. A more complete
table can be found in [16].

phase -g. The first column is the result of mapping the original
problem specification, without any attempt at factoring. The second
column is obtained by running the default script provided with misII
release 2.0. The third column is the result of applying the Printform
transformations to the input. The Printform transformations often
are worse than doing nothing at all, partly because they are designed
to optimize the pcount metric, which is a poor predictor of area, and
partly because they are applied separately to each output, sometimes
eliminating sharing that already exists. The fourth column is the
result of applying the LocalFactor transformations.

Figure 7.1 is a scatter diagram of the ratio of the areas versus
the ratio of the delays for the misIl and LocalFactor factoring
techniques. The upper right quadrant contains the examples for
which the misII script is clearly superior, and the lower left quadrant
contains the examples for which local factoring is clearly superior.
Neither method is universally superior to the other, suggesting that a
combination of approaches may be a fruitful area for exploration. We
are particularly interested in exploring a combined technique that uses
rectangle covering to select common subexpressions from the operands
of associative operations found by local factoring.

7.3 Reordering transformations

The Printform and LocalFactor transformations re-order the vari-
ables in the if-then-else DAG. Both can re-order the then- and else-
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Figure 7.1: Relative effectiveness of the standard misII script and the
LocalFactor technique.

parts differently, making them potentially more powerful than simply
changing the total order used for the canonical form. Sometimes, how-
ever, imposing a well-chosen total order allows more sharing between
then- and else-parts, so we have experimented with ways to choose
a good total order.

We have had some promising results using the variable ordering
obtained by doing a depth-first search of the output of LocalFactor.
Generating a canonical form with the new order and reapplying
LocalFactor often decreases the complexity of the DAG. The process
of re-ordering, local factoring, and finding a new order can be repeated
until no further improvements are made. Using several random
starting orders, we have found some very good factorings for small
adders. Unfortunately, the implementation is still too slow and
memory-intensive to run on large examples.

An exponential algorithm for finding the best ordering for BDDs
is given in [13]. More recently, register allocation algorithms have
been proposed as a way to order variables heuristically [5]. We are
investigating the possibility of adapting these techniques to if-then-
else DAGs.

8 Conclusions and current work

If-then-else DAGs are attractive for VLSI CAD work, because they
provide sharing of subexpressions, a compact canonical form for
tautology checking, easy manipulation for all the standard Boolean
operators, straightforward representation of networks of gates, and
factoring by simple transformations of the DAG.
Several size measures, including the ones presented in this paper, are
being evaluated to determine which ones provide the best predictors



of circuit size and delay after technology mapping. Ideally, we would
like to generate an appropriate measuring function directly from a
description of the technology.

Some factoring transformations have been developed to reduce the
complexity of if-then-else DAGs, and other, more powerful techniques
are under investigation.

Other researchers have found that using don’t-care sets provides
significant improvement in multi-level minimizers. A transformation
that simplifies expressions modulo don’t-care sets has been imple-
mented and is being debugged and evaluated. The transformation
guarantees that an if-then-else DAG is prime and irredundant with re-
spect to the don’t-care expression—that is, that any change in mean-
ing occurs only for cases that we know are unimportant.
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