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This paper presents a new paradigm for analyzing digital MOS
circuits, based on boolean expressions for paths in the switch graph. A
new circuit representation, the inverter graph, s described.

A new set of electrical design rules are introduced, based on path
expressions in the switch graph and cycles in the inverter graph. A
program has been written that generates the exclusion constraints im-
plied by the rules.

Introduction

This paper presents a new set of design rules for switch circuits.
Since the rules are based on graph algorithms and no information is
needed about switch sizes or parasitics, the rules can be applied before
layout. Problems are spotted early in the design, before corrections
become expensive. The six rules in this paper are simple enough to
be applied automatically.

Two graphs are used in checking the rules: the switch graph and
the inverter graph. The switch graph is input by the user and the
inverter graph is derived from it. Each graph is explained in more
detail below.

The rules apply to both nMOS and cMOS circuits, and use a
simple switch model of the circuits. Some useful circuits violate the
rules, but these circuits are often not handled correctly by current
CAD tools. By pointing out the places where the implicit assumptions
of the tools are violated, the rules can focus attention on those parts
of the circuit that need more detailed modeling. '
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'Each rule generates boolean equations (ezclusion constraints) that
should be satisfied by the signals in the circuit. A program has been
written to generate the constraints defined by the rules. Although the
program can be applied to entire chips, it is probably better applied
to individual sub-circuits before they have been assembled.

The next two sections of the paper discuss the switch graph and
the inverter graph. The section after that discusses the representation
of boolean expressions. The six rules are then introduced, and some
comments are made about the program that generates constraints

Switch Graph and Path Expressions

The first five rules are checked on a switch graph, in which each
signal is a vertex, and each switch is an edge connecting the source
and drain. Edges are labeled with the signal on the gate of the switch
(negated if the switch is pMOS). For switches in parallel, the mul-
tiple edges are merged into a single edge whose label is the OR of
the labels for each switch. Static load devices (pullups) are included
in the switch graph, but are specially marked as they need different
treatment. A path in the switch graph represents a possible DC con-
nection between two signals. Figure 1 shows a cMOS nand-gate and
its switch graph.
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Figure 1: ¢cMOS nand-gate and its switch graph.

The switch graph is a standard representation for MOS circuits,
used by switch simulators, electrical rule checkers, and other tools.
For compatibility with other tools, the exclusion constraint generator
uses esim[8] format for input of the switch graph.




The rules are based on boolean expressions that summarize paths
in the graph. Certain expressions are so useful that they are pre-
computed for all nodes. These expressions are the ones that summa-
rize all paths from any node n to Vg (V3), ground (Gy,), a pullup
(P,), a high input (Inl1,), or a low input (In0,).

The expressions can be quickly generated using LU-decomposition
on the adjacency matrix for the switch graph(7]. Each element of the
matrix is the label for the edge between the corresponding vertices
(M;; = label(i, §)). Since each vertex is trivially connected to itself,
we add the diagonal (M;; = 1)). Because each switch is bi-directional,
the graph is undirected and the matrix is symmetric.

Each element of M is an expression for paths of length 0 or 1
between the corresponding vertices. All paths from any vertex to any
other vertex could be found by taking the transitive closure of M, but
the resulting matrix may contain expressions too large for practical
applications. We can find all paths to a particular node more cheaply.
Let E; be the vector with all zeros except a 1 in the i** position. If we
solve Mz = E;, replacing each multiplication with an AND and each
addition or subtraction with an OR, the solution vector will consist
of all paths to vertex {. That is, z; will be all paths from j to 1.

When generating paths, we are not interested in paths that go
through ground or Vyq. One way to eliminate such spurious paths from
consideration would be to make the edges touching the power supplies
directed edges (for example, edges might be directed out of Vaa and
into ground). Unfortunately, directing edges makes the adjacency
matrix for the graph asymmetric, and sparse matrix algorithms are
much simpler for symmetric:matrices (Cholevsky factorization rather
than general LU-decomposition). This is the only instance I know
where the bi-directionality MOS switches makes a CAD algorithm
simpler. :

"The approach taken in the constraint generator is to partition the
edges of the switch graph into four sets: the edges incident on ground,
the pullups, the other edges incident on Vy4, and all other switches.
The last group of switches are all potentially bi-directional, so have a
symmetric adjacency matrix. LU-decomposition is done only on the
_ symmetric matrix. To compute paths from all nodes (except Vi) to

ground we solve MG = Gsuwitch for G, where each Gswitch; is the
label on the edge from & to ground. Paths from all nodes to Viq can
‘be computed similarly (MV = Vswitch and MP = Pullup). The
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paths from Vyq to ground can be computed by either the dot product
G - Vswitch or V - Gswitch. Note that the adjacency matrix needs to
be factored only once, but that several right-hand sides may need to
be solved for.

The constraint generator currently uses a slightly modified version
of SPARSPAK|[?2] to do the matrix factoring and the solving to get
path expressions. Eventually the algorithms will be re-written in C, so
that the adjacency matrix and temporary arrays can be dynamically
allocated. The SPARSPAK sparse matrix representation is compact
and allows rapid solving for path expressions. Unfortunately, finding
all neighbors of a given node (necessary for the charge-sharing rule)
is slow. Furthermore, the program uses the SPARSPAK interface to
build the representation, so the matrix itself is not accessible. Re-
writing the sparse matrix algorithms in C should alleviate the second
problem, and finding all neighbors will probably not be the bottleneck
in the final tool.

Two considerations are important when using sparse matrix tech-
niques: how sparse is the original matrix? and how sparse are the
factors? Our original matrices are very sparse, with approximately as
many edges as vertices. Although the degree of some nodes is high

(buses for example), most nodes have degree zero or one after the Vyq

and ground switches have been removed.

Fill-tn, the difference between the number of non-zeros in the fac-
tors of the matrix and the original matrix, is a widely studied measure
for sparse matrix methods. Vertex-ordering techniques are used with
sparse matrix methods to try to minimize fill-in. One popular tech-
nique, quotient minimum degree (QMD), is a simple greedy method
that chooses vertices one at a time, always picking the one that intro-
duces the least immediate fill-in. Since choosing a degree 0 or 1 node
in a quotient graph introduces no fill-in, QMD generates no fill-in for
forests. After removing V4 and ground switches, the switch graph is
often a forest. Besides trees, one expects to find series-parallel graphs
as components of switch graphs. When starting from a series-parallel
graph, QMD never has to choose a vertex with degree higher than
two, so the fill-in at most doubles the density of the matrix. (Sketch
of proof: a series-parallel graph always has a vertex of degree 2 or
less. The quotient graph after selecting a degree one or two vertex
from a series-parallel graph is again series-parallel.)

Despite all the nice properties of QMD, the constraint generator
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uses nested-dissection to order the vertices for factoring, even though
nested-dissection generates more fill-in. This is not because the QMD
algorithm is slower, since little time is spent on the vertex ordering,
but because nested dissection works better empirically. Fill-in, al-
though an appropriate cost measure for numerical work, is not the
most appropriate one for generating path expressions. Most of the
program’s running time is spent manipulating boolean expressions,
and the boolean operations take time roughly proportional to the
square of the length of the boolean expression. Thus vertex ordering
to minimize the size of the intermediate expressions is more important
than minimizing fill-in. Nested dissection does almost as well as QMD
at reducing fill-in, but its divide-and-conquer approach generally gives
smaller intermediate expressions.

Inverter Graph

Although paths in the switch graph provide sufficient information
for five of the six rules presented below, the sixth rule applies to a
different graph, the snverter graph. Vertices of the inverter graph
correspond to signals, and the directed edges to subcircuits that act
as static inverters. Each edge is labeled with the conditions needed
to make the subcircuit act as an inverter. Figure 2 shows inverter
graphs for some simple subcircuits.

Figure 2: Inverter graphs.

The inverter graph can be generated from the switch graph. For
every pair of vertices (src and dest), generate a directed edge with a
label that expresses when dest will be directly computed as the inverse
of erc. That is, dest should be connected to Vg4 and not to ground
when src is low, and to ground, but not V34 when src is high. Making
minor modifications for inverters powered by inputs and for pullups,
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we can compute the label from the swntch-graph paths needed to check
the other rules:

L(src,dest) = (Gaeut V In0g,y)

sre=1
A("Gde-l) =0 A(ﬂInodm) ore=0
A(Vdnl v Pdut \' Inldut)l
M~Vaew)|, _ A(-Jnl,,,,.)[" .

The expression L(sre, destj is not quite correct for labeling edges
in the inverter graph, since the paths to dest may involve switches
controlled by dest. The label used by the constraint generator is:

label(src, dest) = L(sre, dest)lﬂw=1 A L(sre, dest)l

dest=0"

The procedure described above for generating the inverter graph
looks at all vertex pairs. In the constraint generator, a more effi-
cient technique is used. For each destination, only those vertices that
appear in the expression for paths to. ground (Gg, V InOg,) are
considered for sources. This eliminates only edges whose labels are
obviously false. Furthermore, only vertices that appear on the gates
of transistors or as outputs to the circuit are used as destinations.
This restriction generates a subgraph of the inverter graph, but any
cycles in the full inverter graph will have corresponding cycles in this
subgraph.

L 1 — 5 -

Out '
‘ " ]
Out

Figure 3: Push-pull inverting amplifier and incorrectly generated in-
verter graph.
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The main applications of the inverter graph involve finding feed-
back paths in the circuit (cycles in the graph). Unfortunately, the in-
verter graph computed above does not include all circuits that can act
as inverters, and some feedback paths may pass through non-inverting
amplifiers. Figure 3 shows an nMOS push-pull inverting amplifier and
the corresponding computed inverter graph. The inverter graph com-
putation assumes that the.source varies independently of the other
inputs to the subcircuit controlling the destination. When some other
input depends on the source (as In- does in the figure), inverter edges

" may be missed. Improved methods for computing the inverter graph

are being sought.

The inverter graph may be useful for more than just finding trou-
blesome feedback paths. It has potential for parsing switch graphs into
higher-level circuit descriptions. In particular, it seems promising for
recognizing static and pseudo-static memory elements. A static mem-
ory element can be identified as an even cycle in the inverter graph,
whose edge labels are simultaneously true. A pseudo-static memory
element also corresponds to an even inverter cycle, but not all edges
need be true at once. The vertices in the cycle that do not have true
in-edges must be dynamic storage nodes, and all edges must be true
sufficiently often. Dynamic memory elements can be identified in the
switch graph (any gate isolated from all other nodes).

Boolean Expression Representation

Most of the time and memory used by the constraint generator
is for manipulating boolean ‘expressions. Several different data repre-
sentations have been tried for the boolean expressions, but none are
really satisfactory.

-
3

The first attempted representation was a simple and-or tree with
no simplification or normalization. The expressions quickly became
huge and incomprehensible.

The second attempted representation was a simple Disjunctive
Normal Form (OR of ANDs). DNF has the advantage that each path
generates one term, and many of the rules simply enumerate a few
paths, so the expressions are fairly readable. Without simplification,
DNF expressions are still rather large, since obviously false paths such
as the Viq-to-ground paths in static cMOS are included.
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The third attempted representation was an if-then-else tree with
ad hoc simplification[4]. The expressions were often of reasonable size,
but so deeply nested they were incomprehensible. Such a representa-
~ tion may be suitable for internal manipulation, but is not adequate
for expressing constraints to a user.

The fourth attempted representation was a modified form of DN F,
which I call sorted-DNF. The terms are sorted in increasing order of
length, and the literals in each term are sorted in numeric order. The
ordering of the literals is arbitrary, but fixed for all expressions. No
term is included if any subset of its literals is already a term of the ex-
pression. A list of @ priors excluded terms is checked before a term is
added to an expression. This allows the user to provide some informa-
tion about mutually exclusive signals, avoiding computing expressions
that include paths known to be uninteresting. Since redundant terms
are eliminated at every boolean operation, expressions remain fairly
small. To save memory, the sorted-DNF expressions are stored in a
format similar to sparse matrix representations. The expression is
stored as an array of pointers to the beginning of each term in an
array of literals. The arrays are dynamically allocated based on esti-
mates of the expression size. Figure 4 shows an example of the data
structure.

cab+cd+e

LTSN
Vv vl Y

-e [« d a

Figure 4: Sorted-DNF representation for cab + ¢ + cd

Although checking the terms is expensive, the reduction in ex-
pression size seems to more than compensate. Some preliminary tests
were run with the simplification done only before output, rather than
at every boolean operation, and the delayed simplification made the
program at least two or three times slower.

The sorted-DNF representation seems adequate for OR opera-
tions, and marginally acceptable for AND operations, but negations
are quite expensive. Another variant of if-then-else trees has been im-
plemented, using Randy Bryant’s canonical form(1]. Unfortunately,
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this format is very sensitive to the ordering of the literals, so is not
suitable for representing many expressions of unknown form. Gen-
erating human-readable expressions from if-then-else trees is also a
challenging problem, though more tractable with the canonical DAGs
than with arbitrary if-then-else trees.

In tests involving mainly AND and OR operations, Bryant’s for-
mat proved to be both slower and bulkier than sorted-DNF. Tests
involving extensive negation have not been done yet. The current ver-
sion of the constraint generator can be compiled to use either sorted-
DNF or Bryant’s canonical form, but eliminating a priors excluded
paths is not implemented for Bryant’s canonical form.

The Rules

The rules for generating constraints are still fairly primitive. They
are an attempt to capture various rules-of-thumb in a more formal sys-
tem. Violating a constraint generated by a rule does not necessarily
mean a circuit is unusable, but careful analysis or analog simulation is
needed to ensure digital operation. Some of the rules point out poten-

tial problems with a circuit, others point out weaknesses in existing
CAD tools.

The rules have been deliberately kept few and simple. This is
in direct contrast to expert system approaches, in which. complex
rules are allowed to proliferate. Undoubtedly a more “intelligent”
system could be built with many special-case rules, but the aim of
this research is to explore the potential of a particular paradigm (path
expressions) rather than to thoroughly analyze one or two circuits.

Eventually we hope to define some provable correctness properties for
MOS circuits.

The rules can be summarized as follows:

Rule 1: Avoid shorting power.

Rule 2: Avoid changing the inputs.

Rule 3: Avoid parallel pullups.

Rule 4: Avoid gates in the middle of pulldown chains.
Rule 5: Avoid charge-sharing.

Rule 6: Avoid odd inverter cycles.

Rule 1 is the primary well-formedness criterion for static cMOS
and pre-charged circuits. Rule 2 prevents sneak paths that can cause
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modules to behave incorrectly when connected. Rule 3 points out
where special inverter ratio computations are needed. Rule 4 detects
un-intentional bi-directional pass transistors. Rule 5 detects some
situations in which circuit behavior is not digital. Rule 6 detects
oscillation and some non-digital circuit behavior.

Rule 1: Avoid shorting power.

Every path in the switch graph from Vyq to ground must have
at least one open switch on it (that is, Gy,, = 0). Rule 1 generates
constraints mainly for cMOS circuits and pre-charged circuits. For
cMOS, the power-short constraints are the primary criteria for the
well-formedness of logic gates. For pre-charged-circuits (nMOS or
cMOS), the power-short constraints are usually satisfied by using a
clocking discipline[3,5].

For the cMOS nand gate in Figure 1 rule 1 requires fhe tautology
(~A+-B)-A-B=0.

Rule 2: Avoid changing the irputs.

Connections are prohibited from a low input of a circuit to Vyq or
a pullup, from a high input to ground, or from an input to an input
with a different value, that is:

Vinputsn: n-(G,+ In0,) =0
n-(Vo+ P, +Inl,) =0.

This rule tries to prevent “sneak paths” back through the inputs of a
circuit. If such sneak paths are allowed, the behavior of a system can
not be reliably computed from the behavior of individual subcircuits.
Not all circuits that violate rule 2 are wrong. For example, datapath
modules commonly use buses for both input and output. Note that
this rule is best checked on small components of a chip, since the chip
as a whole will rarely violate it.

Figure 5 shows a transmission-gate exclusive-or circuit that causes
problems in many switch simulators. Rule 2 generates two constraints,
A.A-. B = 0 to prevent shorting high input B to ground, and
A - A-. B = 0 to prevent shorting high input A to low input B.
Since A- is delayed with respect to A, problems should be expected
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Figure 5: Transmission-gate exclusive-or that violates rule 2.

when B is high and A rises (the first constraint), and possibly when
B is low and A rises (the second constraint).

Problems arise in switch simulation because the vertex for A-ison
the path from B to ground, making A- sometimes unknown. The un-
known value propagates forward through Out and backward through
B and A. If A and B are forced by the simulator, the backward
propagation is not detected until the circuit is used as part of a larger
circuit. Rule 2 may need to be modified to flag cases where a vertex
on a path is used as an atom in the path expression.

Rule 8: Avoid parallel pullups.

No signal vertex may be simultaneously connected to two differ-
ent pulled-up nodes and to ground. This rule is intended to make
the usual simple pullup over pulldown ratio calculations accurate.
Most inverter ratio checking programs examine each pullup indepen-
dently, and determine the maximum resistance of any pulldown path
to ground. If two pullups are connected in parallel, their saturation
currents add, and any pulldowns carrying the combined current must
be wider. Instead of checking rule 3, ratio checking programs could
be modified to take possible parallel pullups into consideration.

The constraints generated by rule 3 for an array of the two-port
dynamic RAM cells of Figure 6 can be satisfied by putting some re-
strictions on ram usage:
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Figure 6: Two port RAM.

e Simultaneous reads and writes on the same bus are prohibited.

e Writing into a cell from both buses simultaneously is prohibited.

e Reading the same cell from both buses simultaneously is pro-
hibited when the storage transistor is on.

Although the last seems an unnatural restriction, the storage pull-
down would have to be wider than usual if both buses read from it at
the same time.

Rule 4: Avoid gates in the middle of pulldown chains:

If the gate of a transistor is connected to a pulldown tree, the
connection should be through the pulled-up node, not through a lower
node in the tree. For cMOS, a gate connected to either an nMOS
pulldown tree or a pMOS pullup tree should be connected through
the node where the two trees meet.

The circuit shown in Figure 7 will be interpreted by some pro-
grams as having a uni-directional information flow through the pass
transistor. This is usually intended, but is correct only if PASS and
CLEAR are mutually exclusive.
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Figure 7: Gate in middle of pulldown chain.

Rule §: Avoid charge-sharing.

A signal that is used om the gate of some transistor must be either
isolated from all other nodes (storing charge) or connected to Vid,
ground, or a pulled-up node. When two nodes isolated from power
become connected to each other, the charge on the nodes is shared
between them. If the nodes initially have different values, the result
may be an illegal intermediate voltage. Static storage nodes (nodes
on even cycles in the inverter graph) also must be isolated to avoid
charge-sharing. |

I LI | store

l read .

Figure 8: Charge-sharing violation.

The circuit in Figure 8 illustrates the charge-sharing rule. The
input is stored at node STORE when LOAD is high during phase 1.
LOAD may go high before ¢4, sharing the charge between STORE and
X. If the LOAD and READ signals are simultaneously high, the illegal
value can be propagated to the output. The generated constraint is
~LOAD + (LOAD - $,) = 1.
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Rule 6: Avoid odd inverter cycles.

In the inverter graph, at least one edge in each odd cycle must be
inactive. This rule prohibits circuits that oscillate or present interme-
diate voltage outputs. Such circuits are particularly troublesome for
switch simulators, which can get stuck in infinite loops looking for the
non-existent digital equilibrium state. Ring oscillators and RAM bias
generators routinely violate rule 6, and need detailed analog simula-
tion to ensure correct design. Figure 9 shows a circuit with an odd
inverter cycle, which generates the constraint B- E = 0.

Figure 9: Odd mverter cycle, with full inverter graph and subgraph
examined by constraint generator.

Some proponents of two-phase clocking prohibit all cycles in the
inverter graph(5]. The extra restriction does not seem necessary, and
prohibits many useful circuits (including most static RAM cells). The

- dynamic feedback loops in Figure 10 (based on an example in [5]) are
easily detected by rule 6, which requires A- D-I--I— = 0 and
B-D--I = 0. Because of circuit delays, the constraint may be
violated when A rises.

Current Work

An exclusion constraint generator has been built. Its inputs are a
list of switches describing the circuit (esim format) and a set of known
constraints on the signals of the circuit. The output from the tool is
a list of additional constraints that must be satisfied for the circuit to
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Figure 10: Circuit with dynamic inverter cycles.

meet the exclusion rules. The constraints are labeled according to the
rule that generated them, so that the appropriate corrective action
can be taken.

The current tool checks the rules that exclude paths to distin-
guished nodes in the switch graph (rules 1-4). Rule 4 is checked
only for nMOS circuits, since pullups are easier to recognize than the
node between an nMOS and a pMOS tree. Minor modifications are
needed to check rule 5, since the neighbors of each gate node have
to be enumerated. The switch graph representation currently used is
probably adequate, but is inaccessible inside SPARSPAK. Rewriting
the appropriate SPARSPAK routines in C will make the sparse ma-
trix representation directly accessible. The labels for the edges of the
inverter graph are computed, but the graph is not stored, so cycle
finding cannot be done. Standard algorithms for enumerating cycles
in a directed graph will probably be used[6].

The constraint generator is fast for small examples, but is some-
what slow on full chips (see Table 1). Most of the time is spent
simplifying the boolean expressions. Some circuits make the tool run
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very slowly; for example, transmission-gate exclusive-or circuits cause
particularly slow constraint generation (fadd and tgate-mult in Ta-
ble 1). The tgate-mult circuit seems to suffer from having exponen-
tially many paths between nodes, since the program uses enormous
amounts of memory and crashes while still doing the matrix factoring.

circuit transistors | CPU seconds

fadd 22 32
hw1-3 121 5
cntrl0 200 | 5
tgate-mult 210 > 666
multiplr 278 15
hw4 292 13
chip | 445 26
digitar 3475 > 780

Table 1: CPU time (Vax 11/780) for constraint generator

Conclusions

We have presented a new paradigm for analyzing MOS switch
circuits, including a new set of design rules that are simple to check
and and easy for designers to learn. A tool has been built to check
the rules, and has been tested on several circuits by novice designers.
It appears to provide concise, understandable information about the
limitations of the designs.
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