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1 Abstract

Given a set of alternative models for a specific pro-
tein sequence, the model quality assessment (MQA)
problem asks for an assignment of scores to each
model in the set. A good MQA program assigns
these scores such that they correlate well with real
quality of the models, ideally scoring best that
model which is closest to the true structure.

In this paper, we present a new approach for ad-
dressing the MQA problem. It is based on distance
constraints extracted from alignments to templates
of known structure, and is implemented in the Un-
dertaker [9] program for protein structure predic-
tion. One novel feature is that we extract non-
contact constraints as well as contact constraints.

We describe how the distance constraint extrac-
tion is done and we show how they can be used
to address the MQA problem. We have compared
our method on CASP7 targets and the results show
that our method is at least comparable with the best
MQA methods that were assessed at CASP7 [7].

We also propose a new evaluation measure,
Kendall’s τ , that is more interpretable than conven-
tional measures used for evaluating MQA methods
(Pearson’s r and Spearman’s ρ).

We show clear examples where Kendall’s τ agrees
much more with our intuition of a correct MQA and
we therefore propose that Kendall’s τ be used for
future CASP MQA assessments.

2 Introduction

Most search algorithms for protein structure pre-
diction are guided by cost functions that assess
how “protein-like” particular conformations of the
polypeptide chain are. In theory, a perfect cost func-
tion would guide a good search algorithm to the na-
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tive state of the protein, but such a cost function
has yet to be discovered.

One of the obstacles is that many low-cost struc-
tures usually exist in the conformational search
space and even good cost functions have trouble
identifying the most native-like structure among
them. For a given set of alternative models for some
specific protein target, the model quality assessment

(MQA) problem asks for an assignment of a score to
each model in the set, such that the scores correlate
well with the real quality of the model (that is, the
similarity with the native structure). This assign-
ment of scores is, of course, done without knowing
the native structure of the protein.

A good MQA is crucial when one has to choose
the best model among several different models—for
example, in a metaserver for protein structure pre-
diction. Metaservers use structure models generated
by other methods and either choose one of the mod-
els using an MQA or construct a consensus model
to make a predicted structure. The most successful
MQA methods in the past have been either consen-
sus methods (looking for features shared by many
models in the set) or similarity to a single predicted
model [7, 18].

The Lee group has been fairly successful at pre-
dicting the tertiary structure of CASP targets.
Their method for MQA therefore first predicts the
structure of the target and then measures the simi-
larity between their prediction and the models to be
assessed [7], a method which always predicts that
their model will be the best. Our method differs
from the Lee method in that we use a cost function
with features derived from either multiple templates
or multiple predictions. One of the strengths of our
method is therefore that we do not have to come up
with a consistent model from the inconsistent con-
straints. In fact, our method predicts one of our own
server models to be best on only 16 of 91 CASP7
targets.
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The Pcons method [18] uses a consensus ap-
proach, where consensus features are extracted from
other predictions and used to score the models. The
Pcons method therefore need the predictions from
other methods and can not be used to assess the
quality of a single model. Our method differs from
Pcons since it does not depend on other predictions
when the distance constraints are derived from tem-
plates.

Qiu et al. [15] recently proposed an MQA algo-
rithm based on support vector regression (SVR).
The method is trained on a large number of mod-
els (CASP5 and CASP6) to learn the weights in a
complex score function. This score function is a lin-
ear combination of both consensus-based features
and individual features, but relies mainly on the
consensus-based features. Our method is simpler,
does not rely on consensus, and does not depend
much on machine-learned parameters. In a com-
panion paper, Archie and Karplus use a different
machine learning approach to extend our method to
include consensus terms similar to those used by Qiu
et al., improving further on our method. [3]

The most accurate methods for protein structure
prediction are based on copying backbone confor-
mations from templates, proteins of known structure
with sequences similar to the target sequence. Pro-
teins with similar sequences are usually the result
of evolution from a common ancestral sequence and
most often have very similar structures [6]. In this
paper, we use techniques borrowed from template-
based modeling and use them to address the MQA
problem.

Different template search methods exist in liter-
ature. Among the simplest and fastest methods
are BLAST [1] and FASTA [14], which are powerful
when the sequence similarity between the target and
templates is high. For more difficult cases, methods
like SAM T04 [10] and PSI-BLAST [2] do a better
job of detecting remote homologs. In addition to
identifying the actual template(s) for a target, most
methods also compute one or more alignments of the
target sequence to the templates. These alignments
are used in many ways by different protein structure
prediction algorithms: the most common is to copy
the backbone from the aligned residues, also com-
mon is to use the alignment to get rigid fragments

for a fragment assembly algorithm [10, 21, 20, 4],
and yet another approach is to extract spatial con-
straints and construct a protein model that best sat-
isfies these constraints as in MODELLER [17].

Our method is also based on alignments from
templates. We use the SAM T06 hidden Markov
model protocol (a slightly improved version of the
SAM T04 protocol) to search for templates and
compute alignments. Then we identify pairs of
aligned residues that are in contact in some tem-
plate and compute a consensus distance between
these residues.

Our method then uses a combination of predicted
contact probability distributions and E-values from
the template search to choose a subset of high qual-
ity consensus distances. These selected distances are
then used for scoring the models in the MQA prob-
lem. The steps of extracting alignments, computing
consensus distances, and selecting high quality dis-
tances are described in more detail in the Methods
section.

We show that the consensus distances from align-
ments can be treated as weighted distance con-
straints, where the weights are heavily correlated
with their real quality. The cost functions obtained
from the distance constraints are evaluated on the
MQA problem from CASP7 where the participating
groups were asked to evaluate the quality of server
models of different targets.

At CASP7 the MQA methods were initially evalu-
ated using Pearson’s r between the predicted quality
and GDT TS and the ranking of the methods was
done from the z-scores of Pearson’s r [7]. Later,
McGuffin noticed that “the data are not always
found to be linear and normally distributed,” and
he therefore used Spearman’s ρ for his analysis [13].

Here we propose an alternative measure,
Kendall’s τ , which measures the degree of corre-
spondence between two rankings. See Section 3.2
for an explanation of why we believe it is more
interpretable than Pearson’s r and Spearman’s
ρ and for examples of quality assessments where
Kendall’s τ agrees more with the intuition of a
good MQA than Pearson’s r does.

The results show that our method is comparable
to the best ranked methods at CASP7 (Pcons and
Lee) without using consensus-based methods. When
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the distance constraints are combined with the other
Undertaker cost functions our MQA method can be
improved even further as described in Archie and
Karplus [3].

3 Materials and Methods

3.1 Benchmarks

At CASP7 there were a total of 95 targets as-
sessed. The benchmarks used here consist of the
86 targets from CASP7 that had a native struc-
ture released in PDB by July 2007. For each tar-
get, we include all complete models (no missing
atoms) from the tertiary structure prediction cat-
egory and all models (including those with miss-
ing atoms) from server predictions. For each model
we also compute a SCWRL’ed model, by running
SCWRL 3.0 [5] to re-optimize the position of the
sidechains. For the backbone-only models, we in-
clude only the SCWRL’ed models in the benchmark,
since our distance constraints are on Cβ atoms. This
benchmark set is called benchmark A and is primar-
ily used for testing different versions of our MQA
method.

Benchmark B consists of 91 targets (it was gener-
ated later than benchmark A and consequently PDB
had more targets released) but contains only com-
plete models from server predictions, not SCRWL’ed
models or models from human predictions. The
server models were assessed at CASP7, so our MQA
method on Benchmark B can therefore be compared
directly with other methods.

When we construct the benchmarks in this way,
benchmark A will eventually include benchmark B.
The reason for this is, that we want to evaluate our
MQA methods using as many models as possible
(benchmark A) to make our results more reliable.
Benchmark A generally also contains better mod-
els than benchmark B. However, only benchmark B
results for the other MQA methods have are avail-
able and we therefore use benchmark B for compar-
isons of the different methods, even though a larger
benchmark would have been more appropriate. A
problem with this approach could be that training a
method to give good results on benchmark A would
eventually also give good results on benchmark B.
Our MQA method, however, does not contain pa-
rameters that need to be trained on a specific set.

The few parameters that determine the shape of the
cost function have been given ad-hoc values and we
therefore do not believe that the inclusion of bench-
mark B in benchmark A is a problem for evaluating
our method.

3.2 Evaluation of MQA

There are several ways of evaluating a model-
quality-assessment method depending on the ap-
plication. For some applications, it suffices to de-
termine the true quality of the best-scoring model.
In other applications, it is important for the MQA
function to do a proper ranking of the models. Cor-
relation measures that evaluate the ranking of mod-
els are more robust than measures that examine only
the quality of the best-scoring model.

In CASP7, the participating methods were ranked
using Pearson’s r, which measures the linear corre-
spondence between the predicted quality from the
MQA and a measure of true quality. The particular
measure of true quality used in CASP7 was GDT
(global distance test) [19] which is roughly the frac-
tion of Cα atoms that are correctly placed. This
measure ignores errors in sidechain and peptide-
plane placement, but is well accepted as a measure
of the quality of a Cα trace.

We favor the use of a correlation measure, but we
think that it is more important to predict a good
ranking of the models than predicting a linear re-
lation between quality and GDT. We therefore pro-
pose Kendall’s τ for evaluating MQA methods and
suggest that it be used for ranking methods at future
CASPs. Kendall’s τ measures the degree of corre-
spondence between two rankings and is defined as

τ =
4P

N(N − 1)
− 1

where N is the number of points, and P is the num-
ber of concordant pairs. A pair of points is said to
be concordant if

sign(XA − XB) = sign(YA − YB) .

In the case of ties, if either XA = XB or YA = yB,
we add 0.5 to P rather than 1.

In other words, if two random points (A and B)
are chosen and XA > XB, then Kendall’s τ is the
probability that YA > YB. We think that Kendall’s
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Figure 1: Each point corresponds to a target in
benchmark B. The Pearson’s r and Kendall’s τ are
computed from the Pcons MQA. The green points
(x) are the 20 assessments with most ties, which in-
flates the values of Pearson’s r.

τ is much more interpretable than either Pearson’s r
or Spearman’s ρ, and it does a better job of ranking
MQA methods than Pearson’s r.

In Figure 1 a plot shows Kendall’s τ vs. Pear-
son’s r for benchmark B using the assessments from
Pcons. In many cases, MQA algorithms like Pcons
give equal scores to different models. This, of course,
makes sense if the method can not establish a proper
ranking of the different model. However, the plot
in Figure 1 clearly shows that Pearson’s r highly re-
wards the tied assessments. The plot also shows that
this is not the case when using Kendall’s τ . A similar
problem exists with Spearman’s ρ. Even though it
measures ranking explicitly, it slightly favors highly
tied assessments (Figure 2). Figure 3 shows two
of the highly tied assessments compared with our
assessments. The facts that Pearson’s r measures
linear correlation and highly favors tied ranks make
it inappropriate for evaluating MQAs. Spearman’s
ρ is a better measure than Pearson’s r because it
measures the correlation of the ranks, however it
still slightly favors tied ranking. Kendall’s τ is much
more interpretable than Pearson’s r and Spearman’s
ρ and does not have the problems mentioned above,
we therefore recommend Kendall’s τ for evaluation
of MQA methods.

Other measures, like the ability to select the best
model, could also be considered when comparing
MQA algorithms, though this approach, relying as

Figure 2: Each point corresponds to a target in
benchmark B. The Spearman’s ρ and Kendall’s τ are
computed from the Pcons MQA. The green points
(x) are the 20 assessments with most ties, which in-
flates the value of Spearman’s ρ.

it does on a single data points, is very sensitive
to noise. In all cases, the individual scatter plots
should be examined as the examples in Figure 3 to
avoid misleading correlation coefficients.

The naive implementation of Kendall’s τ , which
simply considers all pairs of points, runs in O(n2).
However, the more efficient algorithm by Knight [12]
runs in O(n log n), which is not much more expen-
sive than the O(n) algorithms for other correla-
tions. Statistical tools like R [16] include routines
for Kendall’s τ computations.

3.3 Model Quality Assessment method

Our MQA consists of the following steps which are
described in details in the following sections.

1. Templates and alignments are found using
SAM T06.

2. The distances between pairs of residues in con-
tact are extracted for each alignment.

3. For each pair of residues that are in contact in
at least one alignment, a consensus distance is
computed (the desired distance).

4. Weighted constraints are constructed from the
desired distances.

5. (Optional) An optimization algorithm selects
a subset of constraints using predicted contact
distributions.
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Figure 3: Different MQAs for complete server mod-
els of targets T0370 (upper) and T0334 (lower). The
set of red points (+) is the MQA from the top-
ranked group (634, Pcons) at CASP7 and the set of
green points (X) is our MQA. The correlation values
for the assessments in the Figure are: T0370 (+):
r=0.94, τ=0.25, ρ=0.60. T0370 (X): r=0.89,
τ=0.61, ρ=0.79. T0334 (+): r=0.59, τ=0.14,
ρ=0.45. T0334 (X): r=0.54, τ=0.72, ρ=0.90. Eval-
uations using Pearson’s r would slightly prefer the
Pcons MQA even though it clearly is not what we
expect of a good MQA. However, Kendall’s τ and
Spearman’s ρ are much higher for our assessments,
because they do much better rankings of the models.

6. Each model is scored according to the (selected)
distance constraints.

3.4 Templates and Alignments

We use the fully automated SAM T06 protocol to
find templates and compute alignments. SAM T06
is a profile HMM that excels in detecting remote ho-

mologs. The alignments used are local alignments
to a three-track HMM [9, 8] using the amino-acid
alphabet, the str2 backbone alphabet [10], and the
near-backbone-11 burial alphabet [10], with weights
0.8, 0.6, and 0.8 respectively. This is the alignment
setting that has worked best in our tests of vari-
ous alignment methods for maximizing the similar-
ity to a structural alignment—we did not optimize
these settings for the MQA application. For each
template, there were three such alignments, using
the SAM T2K, SAM T04, and SAM T06 multiple-
sequence alignments as the base for the local struc-
ture predictions and the HMMs.

3.5 Distance Extraction

The next step is to extract the conserved distances
of the residue pairs from the alignments. Distance is
measured between the Cβ-atoms of the residues (Cα-
atoms for glycines). For each alignment, the dis-
tances between all Cβ pairs that have a separation of
more than 8 residues and a Euclidean distance ≤ 8 Å
are stored. We use a chain separation of 8 residues
to avoid trivial chain neighbor contacts—we have
not yet experimented with different separation cut-
offs. We have experimented with various values of
the cutoff radius. Small cutoff radii increase the ac-
curacy of the constraints, but fewer constraints are
detected. On the other hand, larger cutoff radii gen-
erate more constraints, but their quality decreases
rapidly because the larger distances are less con-
served. Our ad-hoc experiments therefore suggest
that a cutoff radius between 7 and 9 Å gives a good
trade-off between sensitivity and accuracy.

This distance extraction therefore results in a tri-
angular protein length × protein length table, where
a table entry holds the set of all alignment distances
between the corresponding pair of residues. To-
gether with each distance, we also store a weight
corresponding to the quality of the template from
which the distance was extracted. The quality of a
template is calculated directly from the E-values of
the template. However, we normalize it such that
the weight w(E) of an E-value is in the range [0.1:1]

w(E) = 1 − 0.9

(

E − Emin
(Emax − Emin) + ε

)

.

w(E) = 1 therefore corresponds to the highest-
quality template (lowest E-value) and w(E) = 0.1
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corresponds to the lowest-quality template (highest
E-value). The parameter ε is an arbitrary very small
number for avoiding division by zero.

The Emax value was generally around 36 for the
CASP7 targets. Easy targets with many good hits
(E <¿ 1) therefore have many hits with weights
close to 1. This might be problematic, since this
weighting scheme can not distinguish between ex-
cellent hits and only fairly good hits, as they are
almost equally close to Emin. We have not yet ex-
perimented with other weighting schemes, but this
problem might be avoided by limiting the number
of templates examined, so that targets with several
good hits would have much lower Emax values.

3.6 Desired Distances

From the table of distances and weights, a consen-
sus distance for each pair of residues is computed
by calculating a weighted average of the observed
distances. After this step, the templates and align-
ments are therefore reduced to a table of so-called
desired distances between residues. Each desired
distance also has an associated weight (the sum of
the weights of the templates where the distances
were observed). If two residues have been in con-
tact in many alignments that scored well, the weight
is therefore high. Correspondingly, if two residues
have only been in contact in few alignments coming
from poorly scoring templates, the desired distance
will have a low weight. The weights of the desired
distances can therefore be interpreted as the con-
fidence of the distance prediction. If two residues
have not been observed to be in contact, the desired
distance is undefined and the associated weight is 0.

3.7 Weighted Distance Constraints

For each desired distance Dij between residues i
and j, we generate a weighted distance constraint.
A distance constraint has a minimum distance Aij ,
desired distance Dij , maximum distance Bij and a
weight Wij . For the constraints in our MQA, the
minimum and maximum distances are set somewhat
arbitrarily to Aij = 0.8Dij and Bij = 1.3Dij . A
distance constraint defines a cost function that is
a rational function with minimum C(Dij) = −Wij ,
C ′(Dij) = 0, and C(Aij) = C(Bij) = 0:
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Figure 4: The cost function with parameters Dij =
7, α = 200, β = 50, Wij = 1.

C(δij) = Wij

αS2
ij + (1 − α)Sij − 1

βS2
ij + (α − 1)Sij + 1

(1)

Sij =
(δij − Dij)

(Lij − Dij)
(2)

Lij =

{

Bij if δij ≥ Dij

Aij otherwise
(3)

The α and β parameters define the shape of the
function (Equations 4 and 5) and are most easily
interpreted in terms of the asymptote at ∞ and the
slope at the maximum distance:

C(∞) = α/β (4)

C ′(Bij) =
α + 1

(α + β)(Bij − Dij)
(5)

Figure 4 shows a plot of the function with typical
settings. The final cost function is the weighted av-
erage of the individual costs for all constraints used.

3.8 Selection of Constraints

For the basic MQA method, the model cost function
is the sum of all of the cost functions for the pairs of
residues, but the method can be improved by using
only a good subset of the constraints. We have eval-
uated several selection strategies and describe two of
them here. The selection by fraction strategy is very
simple, but improves the performance of the MQA
method only marginally. The selection using con-

tact predictions strategy is more complicated, but is
the best selection we have tried.
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Figure 5: Each point corresponds to a constraint.
The weight of the constraint is shown on the x-axis
and the magnitude of the difference between the ac-
tual distance in the experimental structure and the
desired distance of the constraint is shown on the
y-axis. From the scatter diagram, it is easy to see
that high-weight constraints tend to have low errors
in distance. This property is true for almost all tar-
gets considered.

3.8.1 Selection by Fraction

A plot of the error of the constraints vs. their weight
is shown in Figure 5 for Target T0370. It clearly
shows that high-weight constraints are generally
more correct than low-weight constraints. Although
we show this property only for one arbitrarily cho-
sen target, a similar relationship holds for most of
the targets, though it is strongest for targets for
which good templates are available. A simple selec-
tion strategy is therefore to sort the constraints by
weight and to select a fraction of the highest weight
constraints for the final model cost function.

Figure 6 shows the average Kendall’s τ for select-
ing different fractions of the high-weight constraints.
The plot shows that the average Kendall’s τ for
Benchmark A increases from 0.570 using all con-
straints (100%) to 0.575 when selecting only 40% of
the highest weight constraints, but that the qual-
ity of our MQA method decreases rapidly when se-
lecting less than 30%. This decline is because we
are beginning to discard many good constraints at
this point. Even though the increase in average
Kendall’s τ is small, the result is important because
it shows that a proper selection of constraints can
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Figure 6: The average Kendall’s τ is maximized
when selecting approximately 30%–40% of the high-
est weight constraints.

improve the performance of our method.

3.8.2 Selection using Contact Predictions

We can predict how many contacts each residue
should have using neural nets, then select con-
straints so that residues predicted to have more con-
tacts have more constraints also.

We trained neural nets to predict probability Pi,c

of residue i having c contacts with separation greater
than 8 residues. Residues are said to be in contact
if the distance between their Cβ-atoms (Cα-atoms
for glycines) is less than 8 Å; the same definition we
used for extracting constraints. The contact number
predictions are done using the same neural network
program (predict-2nd) that we use for all our local
structure prediction [11].

Our main selection strategy is to select a subset
of constraints that maximizes the contact number
probability for each residue, but we also want to
have many high-weight constraints. Two objectives
must therefore be maximized: the contact number
probability and the average weight of the chosen
constraints. We used a simple greedy algorithm to
do this optimization: Figure 7.

The asymptotic running time of the algorithm
is O(In2) where I is the number of improvements
and n is the number of constraints. In practice the
algorithm runs in reasonable time < 5s for prob-
lems with fewer than 10 000 constraints. For larger
problems, the quadratic-time optimization step is
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C ← list of constraints sorted from highest weight to lowest weight
improved←true
while improved do

improved←false
for i ← 1 to size(C) do

if insertion of Ci improves total probability then

insert Ci, improved←true
end if

end for

{Here, no insertions can improve the total probability}
for i ← size(C) to 1 do

if removal of Ci improves total probability then

remove Ci, improved←true
end if

end for

{Here, no removals can improve total probability}
for i ← 1 to size(C) do

for j ← i+1 to size(C) do

if changing insertion state for Ci and Cj improves total probability
and average weights of constraints then

change state of Ci and Cj , improved←true
end if

end for

end for

end while

Figure 7: The optimization algorithm for selecting
high-weight constraints based on neural-net predic-
tions of the contact number for each residue. Note
that each constraint Ci affects the probability for
the contact number of two residues. When there are
more than 10 000 constraints in set C, we skip the
final quadratic-time step, since it offers only small
improvements.

skipped, since it only contributes small improve-
ments compared to the initial linear-time optimiza-
tion. Using the optimized set of constraints the av-
erage Kendall’s τ improved from 0.570 using all con-
straints to 0.582. This selection strategy gives the
best improvement in terms of average Kendall’s τ
of any we have tried, and we do not have to tune a
parameter that might be benchmark-dependent like
the fraction parameter.

3.8.3 Prediction of non-contacts

The above selection strategies show how a reduc-
tion of the constraint set can improve the quality of
the method. We have also found that the addition
of so-called non-contact constraints also improves
the method substantially. The idea is simply that
if a pair of residues is not observed to be in contact
in any alignment, then a non-contact constraint is
added to the constraint set. This is a special con-
straint that only penalizes residues being in contact.
This behavior can also be modeled with our stan-
dard cost function (Equation 1) by setting Dij = 8,
Aij = 7.5, Bij = ∞ (in practice, we use 10 000 to
be effectively ∞). The non-contact cost function is
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Figure 8: The non-contact cost function with pa-
rameters Dij = 8, Aij = 7.5, Bij = ∞, α = 200,
β = 50.

illustrated in Figure 8.

Using the optimized set of constraints together
with the non-contact constraints improves the aver-
age Kendall’s τ from 0.582 using just the optimized
contact constraints to 0.589.

3.8.4 Constraints from Predicted Models

The top-ranked method (Pcons) at CASP7 builds
its scoring function from consensus features of the
models to be assessed. This approach works very
well for CASP MQA since many of the models are of
high quality and the consensus features are therefore
more likely to be good. Our method for constraint
extraction and optimization can easily be general-
ized to consider the predicted models as well. How-
ever, we stress that this approach can only be suc-
cessful when the model set is large enough to express
correct consensus features. In the case of assess-
ing the quality of few models (or one model in the
extreme case), the constraints should be extracted
from alignments.

When extracting distance constraints from the
alignments, we have a clear indication of the align-
ment quality from the template E-value. This is
usually not the case when extracting constraints
from predicted models. We therefore performed
one experiment where all of the models are equally
weighted and another experiment where the models
are weighted according to the model cost given by
alignment constraints. The results of these experi-
ments are summarized in Table 1. In both exper-
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Experiment All Optimized

Equal Model Weights 0.591 (0.830) 0.621 (0.863)
Weighted Models 0.598 (0.839) 0.622 (0.866)

Table 1: The all and optimized columns show the
average Kendall’s tau (Pearson’s r in parenthesis)
for the two consensus experiments that used con-
straints extracted from the set of models to be
evaluated. All corresponds to selecting all con-
straints. The optimized column corresponds to the
constraints selected by the optimization algorithm
described in Figure 7.

Constraint Set τ̄ r̄

All 0.570 0.825
Best fraction 0.575 0.833
Optimized 0.582 0.838
Opt+noncontacts 0.589 0.827
Opt+models 0.622 0.866

Table 2: Average Kendall’s τ and Pearson’s r for
different versions of the MQA method using Bench-
mark A. Note that while Kendall’s τ is improved
by using non-contact constraints, Pearson’s r is de-
creased. The inclusion of non-contacts decreases
the linearity of the correlation, but improves the
ranking of models. We have argued that we prefer
Kendall’s τ over Pearson’s r, and so we consider the
non-contacts to be beneficial to our MQA method.

iments there are significant gains when optimizing
the constraint sets. However, the qualities of two
optimized constraint sets are very similar, which in-
dicates that the optimization algorithm is able to
the choose good constraints also in the unweighted
experiment.

The performances of the different alignment ex-
traction algorithms and the weighted model extrac-
tion algorithm are summarized in Table 2.

4 Results

Here we evaluate our alignment constraints for
MQA. This is done by splitting the constraints into
three disjoint sets.

alignment constraints These are the constraints
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Figure 9: The bonus cost function with parameters
Dij = 7, α = 200, β = 50. This type of cost function
is 0 when Dij < Aij or Dij > Bij , otherwise it
behaves as described in Equation 1. The bonus cost
functions are useful for low quality constraints. As
the name indicates, a bonus constraint only rewards
models when the constraint is satisfied.

that are selected by the optimization algorithm
described in Figure 7.

rejected alignment constraints These are the
constraints that were not selected by the op-
timization algorithm in Figure 7.

non-contact constraints Constraints between
pairs of residues that were not observed to be
in contact in any alignment.

We also consider three additional sets, which are
constructed by using a bonus cost functions on the
above constraint sets (Figure 9), which provides neg-
ative costs, but no positive costs (truncating the
standard cost function for a constraint at 0). The
total cost function is a weighted sum of costs from
the 6 constraint sets. A five-fold cross-validation
was done to test the weighted cost function, us-
ing the cross-validation and optimization techniques
described in the companion paper by Archie and
Karplus [3]. We do not report the weights for the
various cost functions here, as they came out very
slightly different for each train/test split.

We compare our MQA with various MQA meth-
ods including the best ranked group at CASP7. This
is done using Benchmark B consisting of complete
(no missing atoms) server models from CASP7. The
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results are summarized in Table 3. The table is ex-
tracted from the companion paper by Archie and
Karplus [3], which describes the statistics and the
data used in Table 3. Optimal weights trained on
all CASP7 targets are shown in Table 4. Pooled
standard deviation is defined by

σpooled =

√

∑

t∈T
(nt − 1)σ2

t
∑

t∈T
(nt − 1)

(6)

where T is the set of targets, nt is the number of
structures for target t, and σt is the standard devi-
ation of the cost function among models of target
t. The pooled standard deviation of the weighted
cost function component is a useful way of gauging
how much the component contributes to the final
cost function. It is more informative than the raw
weight of the component, because it does not de-
pend on the rather arbitrary scaling of the individ-
ual components.

Figure 10 shows a comparison between our MQA
method and the two best MQA methods at CASP7.
When comparing our method with Pcons (upper
Figure), the plot clearly shows that our algorithm
is generally performing better on the easy targets
(template-based targets). When comparing our al-
gorithm with the Lee algorithm we, surprisingly, see
the opposite behavior: our method does better on
the harder targets.

4.1 Quality of Templates is Important

Since our MQA method is based on homology mod-
eling, the existence of good templates is crucial. It
is not possible to know the real quality of a template
without knowing the native structure of the target,
but the E-value of the template from the search is
a good indication of its quality. Figure 11 shows
the relationship of the lowest E-value for the tar-
get compared to the Kendall’s τ for that target. If
we find a template with E-value less than 0.9, then
the performance of the MQA is generally good, but
if the best template E-value is more than 0.9, we
can’t predict the performance of the MQA based on
the E-value only.

5 Discussion and Conclusion

We have presented a simple and powerful method
for extracting distance constraints from alignments.

Figure 10: Each point corresponds to a target in
benchmark B. Here we show average Kendall’s τ us-
ing our algorithm (constraints extracted from mod-
els) vs. Pcons and the Lee algorithm. Easy targets
(marked with red +) correspond to template-based
targets and hard targets (marked with green x) cor-
respond to template-free models using the CASP7
classification.

We have shown how these constraints can be used
as a score function for model quality assessment.
Our results in Table 3 indicate that MQA using the
alignment constraints is comparable in quality to the
best methods at CASP7. The distance constraints
from alignments are based on evolutionary informa-
tion only, but are often useful even when sensitive
fold-recognition methods do not reliably detect tem-
plates.

Even though we here focus on extracting distance
constraints from alignments, our algorithm also per-
forms very well when extracting the constraints from
the models to be assessed. The models from the
CASP7 MQA are generally of high quality and we
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Group τ̄ r̄

Meta-weighted 0.624 0.862

Meta-unweighted 0.624 0.861

Lee 0.585 0.805
Qiu 0.581 0.853
Align-all 0.574 0.832

Align-only 0.570 0.832

Pcons 0.560 0.847
TASSER 0.538 0.633

Table 3: The table shows the average Kendall’s τ
and average Pearson’s r using benchmark B. Corre-
lation is computed separately for each target, then
averaged. The Align-all row is the results of MQA
with distance constraints from alignments using the
6 constraint sets described here. The Align-only

row is the results of MQA with no noncontacts.
The Meta-weighted and meta-unweighted rows are
the results of extracting constraints from the mod-
els to be assessed (with weighted models and un-
weighted models respectively). TASSER, Lee, and
Pcons are top-ranked MQA methods presented at
CASP7 (groups 125, 556, and 634 respectively). Qiu
is a newer MQA method described in Qiu et al. [15].
The companion paper by Archie and Karplus [3],
evaluates our MQA algorithm on more measures.

Cost Function Weight Pooled SD

align constraint 9.95242 6.16873
noncontacts 59.6361 0.854129
noncontacts bonus 30.4114 0.300117

Table 4: Optimized weights for alignment-based
cost functions. Weights were optimized to maximize
a weighted measure of correlation (τ3, described else-
where [3]) with GDT TS on complete models.

therefore get a better performance when extracting
constraints from the models compared to the align-
ments. However, in general we can not always ex-
pect to have such a large fraction of good models
and extracting from alignments seems safer when
the method is applied to an unknown collection of
models.

When comparing our method with the two best
ranked methods at CASP7, we notice that our

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1e-60  1e-50  1e-40  1e-30  1e-20  1e-10  1  1e+10

A
ve

ra
ge

 K
en

da
ll’

s 
τ

E-value

Figure 11: Each point corresponds to a target. The
lowest E-value of any template for the target is
shown on the x-axis and the Kendall’s τ of the mod-
els is shown on the y-axis.
The two outliers are T0379 (4E-21,0.244) and T0375
(1.4E-37,0.312). Both targets had many templates
and good models from many servers, so that get-
ting a high correlation with quality requires detect-
ing fairly small differences between models. There
appear to be two sets of models for both targets (one
using a good template and one using a poorer tem-
plate), with high correlation between the MQA mea-
sure and GDT within each set, but without clean
separation of the sets.

method is generally better than Pcons on the
template-based targets.

On the other hand it is quite surprising that our
method performs better than the Lee method on
most of the hard targets. The reason for this is that
the Lee method only use one predicted base model
for comparison. This, of course, works well when the
predicted model is good. For the hard targets where
our method is doing particularly better than the Lee
method, (T0321 and T0350), the base models pre-
dicted by the Lee group were poor. Our algorithm
therefore seems to be robust on both easy and hard
targets.

We have also presented an alternative measure for
evaluating an MQA method, the Kendall’s τ , and
provided several arguments why this measure should
be used for future CASP MQA assessments.
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