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Protein Structure Prediction

The goal is to predict the structure of a protein when
folded from the protein sequence.

• 1D Methods
• Secondary Structure Prediction
• Hydrophobicity

• 3D Methods
• Structure-Structure Alignment
• Undertaker

What about 2D?
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Residue-Residue Contacts

Given a protein sequence we say that two residues,
indexed as i and j, are in contact if the distance
between their respective Cβ atoms is less than 8 Å.

• Nothing to do with Van der Waals distance
• This definition is arbitrary!
• They help with the tertiary structure
• We define separation as |i − j|

How do we find these contacts?
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Correlated Mutations

When a residue in a protein structure mutates, there is
a possibility that an nearby residue will mutate.

• salt bridges
• other sidechain-sidechain interactions
• functional regions
• possible size fittings

How can we detect these correlated mutations?
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Using Mutual Information

Given residue indices, i and j, and the pair of
columns, columnsi,j, under i and j we define the
mutual information, MI, as

MI(i, j) =
∑

(k,l)∈ columnsi,j

p(k, l) log2
p(k, l)

p(k) p(l)

where p(k, l) is the joint probability of the
corresponding residues k and l from the two columns
and p(k), p(l) are the marginal probabilities.
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Using Mutual Information

• High values of MI indicate a correlation.
• When the columns are independent, MI is 0.
• When the columns are perfectly conserved, this

value is also 0.

Problems:
• Likely to over-estimate when sample is small
• Having many recently evolved sequences can

skew MI
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Small Sample Correction

We hold the marginal probabilities fixed, and randomly
re-arrange the joint probabilities, re-calculating the MI
each time. Then we plot these values as a histogram,
and fit a Gamma distribution to it. Using this
distribution and the orginal MI, we calcuate a
’corrected’ MI by subtracting the mean of the
distribution.
Also we can calculate an e-value from the distribution.
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Thinning

To correct for the skew from recently-evolved
sequences in the alignment, we thin the set of
sequences in the alignment by removing those that
have less than a specified percent of identity with at
least one other sequence in the set. Then we
re-calcuate the MI and e-values using the thinned set.

University of California, Santa Cruz – p.8/18



Scoring Methods

S(i, j) represents our score for a contact between i

and j and given some threshold, t:
∑

S(i,j)>t Contact(i, j)

|S(i, j) > t|

Weighted accuracy vs. contacts/residue – to
compensate for high separations that have lower
probability of contact

∑
S(i,j)>t

Contact(i,j)
Probcontact(|i−j|)

|S(i, j) > t|
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Results
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Neural Networks

Given a large set of examples and a carefully selected
set of inputs, they can converge to a useful predictor.

Unfortunately they are “black boxes” which tell us noth-

ing conceptually.
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280 Inputs

Uses a window over i-1,i,i+1,j-1,j,j+1
• Corrected MI, e-values, and the no. of pairs to

determine them when thinned to
62%,40%,35%,30%

• Amino acid distribution within the columns
• Seconary structure and burial predictions
• Entropy
• Sequence length, and separation of i,j
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Results

Accuracy vs. contacts/residue
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Results

Weighted accuracy vs. contacts/residue
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Conclusions

• Small sample correction helps.
• Thinning shows mixed results.
• The neural networks can improve classification

predictions significantly.
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Future Work

• Consider side-chain distance in place of backbone
distance.

• Analyze the neural net to determine the most
signifcant inputs.

• Include thinnings of 80%,70%,50%.
• Determine a function for adjusting e-values based

on thinnings.
• Add inputs concerning the distribution of the

sequences in the alignment.
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