Solution Structure of the DFF-C Domain of DFF45/ICAD. A Structural Basis for the Regulation of Apoptotic DNA Fragmentation

Kay Fukushima, Jun Kikuchi, Seizo Koshiba, Takanori Kigawa, Yutaka Kuroda* and Shigeyuki Yokoyama

Protein Research Group
Genomic Sciences Center
RIKEN Yokohama Institute
1-7-22, Suehiro-cho
Tsurumi, Yokohama
Kanagawa 230-0045, Japan

DFF45/ICAD has dual functions in the final stage of apoptosis, by acting as both a folding chaperone and a DNase inhibitor of DFF40/CAD. Here, we present the solution structure of the C-terminal domain of DFF45, which is essential for its chaperone-like activity. The structure of this domain (DFF-C) consists of four α helices, which are folded in a novel helix-packing arrangement. The 3D structure reveals a large cluster of negatively charged residues on the molecular surface of DFF-C. This observation suggests that charge complementation plays an important role in the interaction of DFF-C with the positively charged catalytic domain of DFF40, and thus for the chaperone activity of DFF45. The structure of DFF-C also provides a rationale for the loss of the chaperone activity in DFF35, a short isoform of DFF45. Indeed, in DFF35, the amino acid sequence is truncated in the middle of the second α helix constituting the structure of DFF-C, and thus both the hydrophobic core and the cluster of negative charges are disrupted.

*Corresponding author

Keywords: NMR; chaperone-like activity; stable domain; apoptosis; DREP-1

Introduction

Apoptosis is a programmed cell death process that controls cell number and proliferation during animal development.1 Among its distinctive features, the degradation of chromosomal DNA into nucleosomal fragments is considered to be a morphological hallmark of apoptosis.2,3 DNA fragmentation in apoptosis is caused by DFF40 (DNA fragmentation factor 40k)/CAD (caspase-activated deoxyribonuclease), which is activated through the caspase cascade pathway.

In non-apoptotic cells, DFF40 is complexed with its inhibitor, DFF45 (ICAD).4–6 The activation of the DFF40/DFF45 complex occurs through the caspase 3-mediated cleavage of DFF45 at residues 117 and 224, which results in three DFF45 fragments that are then released from DFF40.4,6 In addition to its DNase inhibitory activity, DFF45 acts as a DFF40-specific folding chaperone. This chaperone activity is demonstrated by the absence of DNA fragmentation or chromatin condensation in mice expressing DFF40 but lacking DFF45.7 Both the DNase inhibitory and the chaperone-like activities of DFF45 seem to be essential for the strict regulation of DNA fragmentation in apoptosis.8

Human DFF45 (hICAD) consists of 331 residues and appears to be a multi-functional/multi-domain protein, with an N-terminal domain (CD9 or NTD10) constituting a regulatory domain. Besides being present in DFF40 and DFF45,11 the CD domain is found in several other caspase-associated proteins, such as CIDEB and DREP-1,12,13 the Drosophila homologue of DFF45. In DFF45, the CD domain corresponds to the N-terminal fragment produced by caspase cleavage, and...
it mediates the intermolecular interactions responsible for the inhibition of DFF40 by DFF45, by interacting with the CD domain of DFF40.9 So far, the C-terminal region of DFF45 (residues 118–331) has been found only in the human and in the mouse DFF45 (usually referred as ICAD or mICAD). Yet, this region plays an essential role in the inhibition of DFF40 by binding to its C-terminal catalytic domain.14 Recent reports have shown that DFF35/ICAD-S, a short isoform of DFF45/ICAD that ends at residue 268 and lacks the 63 C-terminal residues of DFF45, can inhibit the DNase activity of DFF40/CAD, both in vitro15 and in vivo.16

In addition to blocking the DNase activity of DFF40, the C-terminal region of DFF45 is important for the DFF40-specific folding chaperone activity.4,8,17 Especially, residues 262–331 of DFF45 have a critical role in the chaperone activity, as demonstrated by the ability of DFF45 to refold DFF40, whereas no such folding chaperone activity is observed for DFF35.15,17

Here, we have investigated the structure of the C-terminal region of DFF45, which is essential for the DFF40-specific chaperone activity.4,17 Especially, residues 262–331 of DFF45 have a critical role in the chaperone activity, as demonstrated by the ability of DFF45 to refold DFF40, whereas no such folding chaperone activity is observed for DFF35.15,17

So far, the C-terminal region of DFF45 (residues 118–331) has been found only in the human and in the mouse DFF45 (usually referred as ICAD or mICAD). Yet, this region plays an essential role in the inhibition of DFF40 by binding to its C-terminal catalytic domain.14 Recent reports have shown that DFF35/ICAD-S, a short isoform of DFF45/ICAD that ends at residue 268 and lacks the 63 C-terminal residues of DFF45, can inhibit the DNase activity of DFF40/CAD, both in vitro15 and in vivo.16

In addition to blocking the DNase activity of DFF40, the C-terminal region of DFF45 is important for the DFF40-specific folding chaperone activity.4,17 Especially, residues 262–331 of DFF45 have a critical role in the chaperone activity, as demonstrated by the ability of DFF45 to refold DFF40, whereas no such folding chaperone activity is observed for DFF35.15,17

Here, we have investigated the structure of the C-terminal region of DFF45, which is essential for the DFF40-specific chaperone activity. Specifically, we show that an 83 residue domain located at the C-terminal end of DFF45 (residues 225–307), which includes the 37 C-terminal residues of DFF35, forms a stable structural domain. The solution structure of this domain (DFF-C, for DFF chaperone domain) indicates that DFF-C cannot
fold properly in DFF35, because the amino acid sequence ends at residue 261, i.e. in the middle of the DFF-C domain. Furthermore, the presence of a large cluster of negative charges on the molecular surface of DFF-C suggests that charge complementation is important in the chaperone activity of DFF45. Additionally, the structure of DFF-C, combined with analyses of the sequences of DFF45 and its Drosophila homologue, DREP-1, suggests that DREP-1 lacks a DFF-C domain.

Results and Discussion

DFF-C is a stable domain that can fold in isolation

On the basis of previous biochemical reports indicating that DFF45, but not DFF35, exhibits a chaperone activity, we hypothesized the presence of an independently folded C-terminal domain in DFF45. The precise boundaries of this domain were determined by N-terminal sequencing and matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectroscopy of a fragment stable to digestion by trypsin. The strong resistance to proteolytic degradation (two hours at room-temperature at pH 7.5, with a protein concentration of 500 μg/ml and a trypsin concentration of 0.5 μg/ml) is by itself an indication of a stable structural domain that can fold in isolation. The structural domain we identified, DFF-C, begins just after the caspase 3 cleavage site and ends at the start of a nuclear-localization signal peptide. The sharp and dispersed peaks in the 1H–15N heteronuclear single-quantum coherence (HSQC) spectrum (Figure 1(a)) indicate a well-folded structure. All of the peaks corresponding to residues 225–307 are visible in the HSQC spectra, and the well-folded structure is further substantiated by the reversible thermal denaturation curve with a midpoint temperature of 61 °C (Figure 1(b)). The resulting van’t Hoff enthalpy (ΔH = 189 kJ/mol) agrees well with values typically observed upon the unfolding of globular proteins of this size.

Although a full picture of the chaperone activity will require an understanding of the synergistic binding of the multiple DFF45 domains to DFF40, the presence of a stable structural domain at the C-terminal end of DFF45 provides further evidence for the modular nature of DFF45. In particular, this finding corroborates a model in which DFF45, or at least the DFF-C domain, is first natively folded and then binds to the nascent DFF40 to act as a folding chaperone.
We carried out the NMR experiments at pH 6.5, where DFF-C was highly soluble and the amide proton exchange rates were relatively low. At a lower pH, DFF-C had a tendency to aggregate, especially when the pH was close to its isoelectric point of 5.1. The sequential assignment could be achieved using standard (15N and 13C) heteronuclear experiments (also see Materials and Methods). The secondary structures of DFF-C, as determined by TALOS and the characteristic NOE patterns, are composed of four helices, located at residues 239–247 (α_1), 257–265 (α_2), 268–275 (α_3), and 280–300 (α_4) (Figure 1(c)). The sharp and well-dispersed peaks in the ^{1}H–^{13}C HSQC spectra (Figure 2(a)) were helpful for obtaining the almost complete assignment of the side-chain atoms, including the methyl groups. A careful assignment of the inter-side-chain NOEs between the helices (Figure 2(b)) was essential to determine the initial global fold of DFF-C. Especially, several inter-side-chain NOEs between residues contributing to the hydrophobic core around W277 facilitated the determination of the relative orientations of α_2, α_3, and α_4. On the other hand, α_1 interacts with the other helices mainly through its C-terminal end, and most long-range NOE involving α_1 are located at its C-terminal end (12 and seven long-range NOE from L245 and R246, respectively). As a result, the position of the N-terminal end of α_1 relies on one long-range NOE from S239 and five long-range NOEs from I241 and L242, and the orientation of α_1 relative to the other helices was relatively laborious to specify.

The structure of DFF-C was calculated on the basis of 841 NOE-derived distance constraints. In addition to these NOE constraints, we refined the solution structure of DFF-C by introducing restraints derived from the residual dipolar coupling values. Considering that DFF-C is negatively charged, we chose Pf1 phage as the nematogen for the residual dipolar coupling measurements. The peaks in the IPAP-HSQC spectra were well dispersed and resolved in both the isotropic and the aligned states, and we were able to determine 49 coupling values (Figure 3). The introduction of restraints derived from the residual dipolar coupling values improved the precision (RMSD from the average structure) of the calculated structure by more than 0.2 Å (Table 1; Figure 4(a)). Figure 4(b) shows how the inertia tensor of the DFF-C lies with respect to the alignment tensor determined for the Pf1 phage media. The long axis for these two tensors differed by approximately $2\pi/15$ rad (24.5°) because of the weak electrostatic interactions between the phage and the DFF-C.

Description of the structure

The structure of DFF-C is formed by four helices, with α_2 and α_3 packing against a long C-terminal helix (α_4) (Figure 4). The side-chains of P251 and W277, which are located, respectively, in the loops between α_1 and α_2 and between α_3 and α_4, are inserted into the hydrophobic core and help to stabilize the structure of DFF-C. On the other hand, the first helix (α_1) protrudes almost perpendicularly from the structure constituted by α_2, α_3, and α_4.
and α4. An extensive network of hydrophobic interactions stabilizes this helical structure (Figures 4 and 6(b)). The center of the hydrophobic core is formed by L242 and L245 on α1, L260 and V263 on α2, L271, and L275 on α3, and V285, Q286, C289, and L293 on α4. Two hydrophobic residues at the C-terminal end of α4, L295 and L297, are located at the periphery of the hydrophobic core. Additionally, three hydrophobic residues (L262, V273, and I279) located on the helices (or just before the start of a helix) are exposed on the protein surface (average accessibility over 60%). However, these residues are isolated from each other, and do not form a large hydrophobic patch (Figure 6(b)).

Despite the relatively simple structure composed of only four helices, a DALI search21 against 3156 sequence families representing 30,071 protein structures showed that this arrangement of helices is novel by its distinct helix-packing mode (Figure 4; no structure with a Z-score > 3.6 was found). Low structural similarities with helical bundle structures were reported. Among the structures with a DALI score over 2.0 (which is an usual threshold value for significance), a fragment corresponding to residues 422–481 of carbomoyl phosphate synthetase was the only one containing four helices, and the other contained only three helices. Even in this case, the detailed helix packing arrangement differed from that of DFF-C.

Dynamic features of DFF-C

The central structure formed by the four helices of DFF-C was essentially rigid on both the fast (pico- to nanosecond) and slow (millisecond) time-scales, as revealed by the T_2 and the $^{1}H-^{15}N$ heteronuclear NOEs (hNOE) experiments, and the HFS-exchange experiment, respectively (Figure 5). The order of magnitude of the T_2 values in the DFF-C core region was 100 ms, which is reasonable for a protein of this size. Consistent with the fast motions suggested by the T_2 and hNOE experiments (Figure 5), neither the 15 N-terminal nor the seven C-terminal residues have a defined structure in DFF-C (Figure 4(a)). However, some structures might form in the intact DFF45 or in the DFF40/DFF45 complex.

On the slow time-scale, the exchange rates of the L253 and L255 amide protons, which are located in the long 248–256 loop, are slow. Indeed, the protection factors of L253 and L255 are similar to those of residues belonging to loop 266–267 and loop 276–279, which are only two and four residues long, respectively. In addition, we observed several long-range NOEs assigned to residues in this long loop (Figure 5), and residues 249–253
and L255 were buried in the final structure. Together with the results of the H-H-exchange experiments, these observations suggest that, in spite of its extended conformation, this loop participates actively in the structure of DFF-C.

A large cluster of negatively charged residues

The DFF-C domain contains almost as many positive as negative charges, with 12 positive (R, K, H) and 13 negative (D, E) residues and a calculated isoelectric point of 5.11 (Figure 1). However, while the positive residues are distributed rather evenly on the molecular surface of DFF-C, the negative residues are located close to each other (Figure 6(a)). A surface representation of the DFF-C electrostatic potential indeed reveals a large negative surface formed by E283, E287, and E290 on α4 and extended by D259, E261, D267, and E266 (Figure 6(a)). With the exception of E287Q and E290T, all of the residues contributing to the negative surface are conserved in the mouse DFF45 sequence (mICAD; Figure 1(c)). Thus, we hypothesize that this large cluster of negative residues mediates the interaction of DFF-C with the positively charged C-terminal domain of DFF40, which has a calculated isoelectric point of 9.8 and bears the nuclease activity of DFF40.11

The structure of DFF-C suggests a straightforward explanation for the lack of chaperone activity in DFF35.15,17 The sequence of DFF35 ends at residue 261, in the middle of the second helix α2 (Figure 6(c)). With the sequence ending at residue 261, the hydrophobic core of DFF-C is disrupted, which would prevent this domain from folding correctly (Figure 1(c)). As a result, the large negative surface is not present in DFF35.

Along with the disruption of the negative residue cluster, another putative cause for the lack of the chaperone activity in DFF35 is the loss of the cysteine residues in DFF-C. Indeed, the chaperone activity of DFF45 is observed, in vitro, under highly reducing conditions,4 and thus cysteine residues might be involved in the chaperone activity of DFF-C. Among the many cysteine residues within the DFF40/DFF45 complex, C289 is the only one that is present in DFF45 but not in DFF35. However, this C289 residue is embedded in the center of the negative surface (Figure 6(b)), and is buried completely within the hydrophobic core.

Figure 4. (a) Stereo view of ten superimposed NMR-derived structures with the lowest overall energy and without NOE restraint violations >0.4 Å. The α-helices are shown in red. (b) Ribbon model of DFF-C with the axis of the overall alignment tensor in the anisotropic medium (A_x, A_y, A_z) and of the inertial tensor (I_x, I_y, I_z). The amide hydrogen and nitrogen atoms of 49 residues whose residual dipolar coupling values were used in the structure calculation, are shown in green and blue, respectively. Residual dipolar coupling constraints were used for residues with H-15N heteronuclear NOE larger than 0.6. The alignment tensor was calculated with the program SSIA, using the lowest-energy structure. The long axis of the alignment tensor (A_z) differs by approximately 2π/15 from the inertia tensor (I_z).
Figure 5. Protein dynamics and structural properties of DFF-C. The T_2 values, the heteronuclear NOEs, protection factors, the residue’s averaged displacement, and the number of middle-range (open bars) and long-range NOEs (filled bars) observed for each residue are plotted versus the residue number. The continuous horizontal line at 0.6 in the heteronuclear NOE plot represents the standard criteria for a rigid structure. The broken line at 0.8 represents the average heteronuclear NOE value for residues 239–300. The heteronuclear NOE values for residues in α helices varied from 0.794 to 0.819. The heteronuclear NOE values were slightly smaller for residues in loop regions (0.774–0.793). Residues for which protection factors could not be determined because of peak overlap are indicated by stars and are distinguished from those with small values. The residue’s average displacement is calculated for the ten best NMR structures, and the error bars show the standard deviations. At the bottom of the panel, the diagram indicates the locations of the α helices, and the extent of DFF35 and DFF45, by cyan and magenta, respectively.
Thus, one can speculate that an involvement of C289 in the chaperone activity would require a dramatic conformational change to expose this cysteine residue to DFF40.

No DFF-C-like structure is present in DREP-1

DREP-1/dICAD is the Drosophila homologue of DFF45. It inhibits DNA fragmentation by the DFF40 Drosophila homologue, and a significant sequence similarity exists between their N-terminal regions, indicating that DREP-1 contains a CD domain (37% identity between the CD domains of DREP-1 and mCAD). On the other hand, the putative sequence similarity reported between their C-terminal regions is much less significant, especially near the DFF-C region.

The solution structure of DFF-C does not provide clues that would corroborate previous sequence alignment attempts of the C-terminal sequence of DREP-1 with that of DFF-C. In particular, neither the residues stabilizing the
hydrophobic core nor the charged residues clustering on the molecular surface are conserved. Moreover, the secondary structure prediction correctly predicts that DFF-C is a helical protein, whereas the same prediction program suggests that the C-terminal domain of DREP-1 contains mainly β strands. Thus, although DREP-1 definitely inhibits dCAD and is thus the demonstrated Drosophila equivalent of DFF45/ICAD, both the sequence and the structural information presented here strongly suggest that DREP-1 lacks a DFF-C domain.

Conclusion

We determined the first structure of the C-terminal structural domain of DFF45, DFF-C, which is composed of four helices folded in a novel packing arrangement. DFF-C has a large negatively charged patch, suggesting that charge complementation facilitates the interaction of DFF-C with the positively charged C-terminal catalytic domain of DFF40. Based on the structure of DFF-C, the absence of a DFF40-specific chaperone activity for DFF35 can be rationalized by the disruption of the DFF-C structure, particularly of the negatively charged residue cluster. Additionally, our comparison of the DFF45 structure and sequence with the DREP-1 sequence suggests that DREP-1 lacks a structural equivalent of the DFF-C domain.

Materials and Methods

Sample preparation

The DNA sequence encoding residues 225–307 of DFF45 was generated from a HeLa cell cDNA library (Invitrogen) by polymerase chain reaction (PCR) and was ligated to pET15b (Novagen) at the BamHI/XhoI sites. Uniformly 15N and 13C-labeled samples were prepared in M9 medium supplemented with 1 g/l of NH4Cl and 3 g/l of 13C-labeled D-glucose as the nitrogen and carbon sources, respectively. After expression, the protein was purified by nickel column chromatography. Subsequently, the His tag was cleaved with thrombin and was removed by a second passage through the nickel column. The protein was purified further by reversed phase HPLC, and its identity was confirmed by MALDI-TOF mass spectroscopy (calculated = 9623.9 Da, measured = 9629.34 Da).

Circular dichroism

Measurements were performed with a 1 cm optical path-length cuvette on a JASCO J720 spectrometer equipped with a temperature-control unit. DFF-C was dissolved in 5 mM phosphate buffer (pH 6.5) at a concentration of 10 μM, as determined by the extinction coefficient of the tryptophan residue. The temperature was raised at a rate of 1 °C/minute.

NMR spectroscopy

The protein concentration was between 700 μM and 3.0 mM, in 20 mM potassium phosphate buffer (pH 6.5), 5 mM DTT. The spectra used for the structure determination were measured at 25 °C with a protein concentration of 2.0 mM on a Bruker DRX 600 spectrometer. Standard HNCO, HN(CA)CO, HNCA, HN(CO)CA, CBCA(CO)NH, CBCANH, and 15N-edited NOEY-HSQC (mixing time 80 ms) experiments were used for the backbone assignments, and HCCY-total correlation spectroscopy (TOCSY), 3D 15N- and 13C-edited NOEY-HSQC spectra were used for the side-chain assignments. The NOE signals were collected on 3D 15N- and 13C-edited NOEY-HSQC spectra (mixing time 100 ms at 25 °C). NMR spectra were processed using NMRPipe28 and NMRView.29

Residual dipolar couplings

The residual dipolar couplings were determined essentially as described.26 The anisotropic medium we employed was a nematic phase liquid crystalline state induced by Pf1 phage.20 The final optimized Pf1 phage concentration was 20 mg/ml for 1.0 mM DFF-C (see the following section). A 2D-IPAP (1H–15N) experiment was used to measure the J(1H,15N) values.27 A total of 512 complex f1 (15N) and 2048 complex f2 (1H) points were recorded with 48 scans per f1 increment. The spectral widths were 1460 Hz and 12,020 Hz for f1 and f2, respectively. The indirect dimension was zero-filled to 2048 points in the final data matrix. A Gaussian apodization window was used to process the f1 and f2 free induction decays.

Relaxation measurements

The 1H–15N heteronuclear NOE (hNOE) measurements were performed according to the described method,26 at pH 6.5 and 25 °C, with a proton resonance frequency of 800 MHz. A 15N spin-lock spaced 1.2 ms apart was used in the T1 experiments to minimize the effects of the resonance offset and of the field inhomogeneity. For the T2 measurements, eight delay times of 1.6, 3.2, 8.0, 14.4, 24.0, 40.0, 81.6, 161.6, and 241.6 ms were used, with a recycle delay time of 3.0 seconds. In order to quantify the signal intensities, a Lorentzian-to-Gaussian window with a Lorentzian linewidth of 15 Hz and a Gaussian linewidth of 20 Hz was applied in both dimensions, prior to Fourier transformation.29 A fifth-order polynomial baseline correction was subsequently applied in the f1 dimension.

Structure calculation

An initial calculation was carried out with all NOE-derived constraints set to 1.8–5.0 A, and with the backbone φ, ψ torsion angles restrained according to the Cα, Cβ and the following residue's CO chemical shifts, using the program TALOS.19 The calculations were started with extended structures,32 and consisted of a torsion angle space dynamics (TAD), followed by a Cartesian minimization.33 The TAD consisted of 10,000
molecular dynamics steps of 15 ps, performed at 50,000 K, and a cooling phase (60,000 steps of 2 fs each) with temperature annealing from 50,000 K to 0 K. A second TAD cooling phase, consisting of 40,000 steps of 1 fs each, was applied with temperature annealing from 1000 K to 0 K. All parameters were scaled to default values.

Ten resultant structures with the lowest overall energies were selected and used as the starting structures for a second calculation to refine the structures. At this stage, the NOE-derived inter-proton distance restraints were classified into three categories: 1.8–3.5 Å, 1.8–4.0 Å, and 1.8–5.0 Å, corresponding to strong, medium and weak NOE intensities, respectively. The hydrogen bond restraints (two per hydrogen bond) were set to $r_{\text{NH--O}} = 1.7$–2.3 Å and $r_{\text{N--O}} = 2.7$–3.3 Å, according to the TALOS-based secondary structure identification and the backbone NOE patterns. The residual dipolar coupling derived restraints were used in the SANI modules for performing a direct refinement against the measured dipolar couplings with the program CNS version 1.0.33 The final energy minimization was performed with the following force-field values: 1000 kcal mol$^{-1}$ Å$^{-1}$ (1 cal = 4.184 J) for bond lengths, 500 kcal mol$^{-1}$ rad$^{-1}$ for angles and improper torsions (which served to maintain planarity and chirality), 4 kcal mol$^{-1}$ Å$^{-1}$ for the quartic Van der Waals repulsion term, 50 kcal mol$^{-1}$ Å$^{-1}$ for the experimental distance restraints, and 1.0 kcal mol$^{-1}$ Hz$^{-2}$ for the $^{3}J_{\text{NNH}}$ residual dipolar coupling restraints.

H$^{+}$H-exchange

Amide proton exchange rates were measured as described at 15 °C by dissolving lyophilized samples buffered at pH 6.5 in H_{2}O. The fractions of unexchanged protons were calculated by the volume integration of peaks in the HSQC spectra measured at 40 minute intervals. The exchange rates of residues S228, A238, and L245, whose amide protons exchanged rapidly, were determined at pH 5.5. The effect of the pH in the exchange rates was corrected when computing the 1H$^{+}$H-exchange protection factor, which is the ratio of observed exchange rate and its amino acid NH-exchange protection factor, as reported by Bai et al.22 Thus, a protection factor of 100 indicates that this amide proton is protected 100-fold, as compared to the same amino acid in an unstructured polypeptide.

Protein Data Bank accession number

The coordinates are deposited at the RCSB Protein Data Bank under the accession number 1KOY. The chemical shifts are available at the BioMagResBank (BMRB) under accession number 5408.

Acknowledgments

We thank Eiko Matsumoto for plasmid construction, and Makoto Inoue and members of the Protein Research Group for discussion and advice.

References

Edited by M. F. Summers

(Received 5 April 2002; received in revised form 5 June 2002; accepted 5 June 2002)