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Abstract

I present VF-CLUST, a system for computerized analysis of psychological
tests of verbal fluency, which are used in clinical settings to detect and as-
sess neurological pathologies such as Alzheimer’s disease. While the simple
scoring of such tests may not be sensitive to underlying pathologies, more
nuanced clustering analyses often are. Currently, clustering analyses on ver-
bal fluency tests are conducted manually, by trained scorers, in a process
that is labor-intensive and prone to human error and interrater variability.
VF-CLUST is a resource for automatically generating clustering analyses,
on both semantic and phonemic verbal fluency test responses, by utiliz-
ing latent semantic analysis and computational methods for determining
phonetic similarity. Results from a pilot study indicate that VF-CLUST’s
automatically determined clustering measures are as useful as their man-
ually determined equivalents. Additionally, in this study repetitions were
more numerous in verbal fluency test responses from patients with dementia
from Alzheimer’s disease. In the case of phonemic verbal fluency, controls
differed with patients with Alzheimer’s diagnoses on the number of words
repeated, but not on the number of words generated, which is the standard
measure by which the test is scored. While repetitions are typically ignored
in even the most in-depth analyses of verbal fluency test responses, these
results indicate that future analyses should consider them. VF-CLUST is
freely available upon request.
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1 Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, with an
estimated prevalence of 30 million people worldwide (Holtzman et al., 2011).
This number is expected to quadruple by 2050, at which time 1 in 85 people
worldwide would be living with the disease (Holtzman et al., 2011; Roses
et al., 2009). It has been estimated that the global disease burden could
be decreased by over 9 million cases if disease onset were delayed by just
one year (Brookmeyer et al., 2007). Reliable early detection of Alzheimer’s,
along with early intervention, could help contribute to delaying AD onset in
individuals prone to the disease. Thankfully, there are objective measures
that have shown utility in detecting early signs of impending dementia.

Neuropsychological tests of phonemic verbal fluency (PVF) and seman-
tic verbal fluency (SVF) are commonly used as part of larger test batteries
to study and assess cognitive impairment from AD, as well as from other
neurological conditions, such as Parkinson’s and Huntington’s diseases and
traumatic brain injury (Randolph et al., 1993; Butters et al., 1986; Henry
et al., 2004). On these tests, the subject is asked to name as many words
beginning with a specified letter (for PVF) or belonging to a specified cat-
egory (usually animals; for SVF) as he or she can in one minute (Benton,
1968; Newcomb, 1969).

The standard measure by which these tests are scored is the total number
of satisfactory words produced, which tends to be less in individuals with
these conditions. The SVF test, in particular, has been shown to accurately
discriminate between persons with AD dementia or mild AD dementia and
demographically matched controls (e.g., Monsch et al., 1992; Troyer et al.,
1998b). However, prior studies have found that impairment from these con-
ditions also affects clustering and switching behavior on these tests (Troyer
et al., 1998a,b; Raskin et al., 1992; Ho et al., 2002). Clustering refers to the
contiguous grouping of semantically related or phonetically similar words in
a test response, and switching denotes transitioning from one cluster to the
next.

While phonetic and semantic clustering analyses are useful for early de-
tection of cognitive impairment from AD, they must be conducted manually.
Manual approaches to these analyses are laborious and necessarily rely on
contrivances in defining clusters, due to the infeasibility of arguably more
grounded procedures. My objective in the present work was to develop and
pilot-test a system constituting an automated, computerized approach to
this issue that would afford efficiency and scalability, along with more ver-
satile methods for determining phonetic similarity and semantic relatedness.



VF-CLUST is a piece of software that generates clustering analyses for
both PVF and SVF test responses. Its phonetic clustering analysis (PCA)
module uses phonetic representations for words to determine cluster spans,
while the semantic clustering analysis (SCA) module utilizes semantic relat-
edness scores generated by latent semantic analysis, a computational method
for determining distance in meaning between words.

I first discuss clustering analysis methodologies, and subsequently find-
ings on the effect of Alzheimer’s disease on phonetic and semantic clustering
behavior on tests of verbal fluency. Next, the VF-CLUST system architecture
is outlined, with specific treatment given to both its PCA and SCA modules.
Here, I explain the edit distance metric for determining the similarity of two
strings — which is used by VF-CLusT’s PCA module to determine phonetic
distance between words — and latent semantic analysis. Finally, I discuss
the results of a pilot study, using data from persons with Alzheimer’s disease
and mild cognitive impairment, which demonstrate the utility of VF-CLusT
in detecting subtle signs of brain impairment due to dementia.

2 Background

It is well established that persons with Alzheimer’s disease generate fewer
words on both PVF and SVF tests (e.g., Chertkow & Bub, 1990; Martin
& Fedio, 1983). Impairment on these tasks, particularly SVF, seems to be
related to deficits in semantic memory, an early characteristic of AD (e.g.,
Hodges & Patterson, 1995; Martin & Fedio, 1983). This would appear to be
supported by evidence that patients with AD perform worse on SVF tests
than on PVF tests (e.g., Pasquier et al., 1995; Rosser & Hodges, 1994).

However, there is wide belief that performance on these tasks is multi-
factorial, as evidenced by several studies finding that fluency performance
involves multiple brain regions (see discussion in Troyer et al., 1997). An
indication from these findings is that closer examination should be given
to the underlying cognitive components that contribute to performance on
verbal fluency tests, rather than to just the total number of words gener-
ated. To this end, several investigations into clustering and switching on
these tests have been undertaken.

A cluster is a group of contiguous words that are deemed by some metric
to be either phonetically similar, for phonetic clusters, or semantically re-
lated, for semantic clusters. That is, each word in a cluster must be similar
or related to each other word in the cluster, whether or not the two words
are directly adjacent in the response. Lone words that do not belong to
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Figure 1: A series of words featuring two clusters and three switches,
with connective lines indicating similarity or relatedness. W1 and W5 are
singletons.

any cluster constitute singleton clusters. Transitions between clusters and
singletons, or between clusters and other clusters or singletons and other
singletons, are called switches. FIGURE 1 illustrates these concepts.

Clustering analysis critically relies on a methodology for determining
whether any two words are similar or related. Examples of these are dis-
cussed in the next section.

2.1 Clustering analysis methodologies

Raskin et al. (1992) define phonetic clusters as comprising “successive
words with the same second phoneme (e.g. fork, form) or two successive
words which rhymed (e.g. fake, flake)” (96). It is unclear whether by
‘phoneme’ they actually mean orthographic letter, or if they indeed did
compare phonemes. Because they conducted phonetic clustering analysis
on not just PVF tests, but also SVF tests, they relax their first criterion for
the latter task so that two words are considered phonetically similar if they
share just an initial phoneme.

Troyer et al. (1997), whose method has become standard, likewise in-
clude in their similarity metric rhymes and words beginning with the same
two letters. In the latter case, they explicitly specify using orthographic
letters, presumably without special consideration for cases in which word
spelling and pronunciation diverge. This is likely due to the impractical
time burden of generating phonetic transcriptions for words prior to anal-
ysis, or alternatively the mental burden of considering words phonetically
during analysis. Additionally, they allow for words that differ by only a
vowel sound, such as sat and seat, and homophones, like some and sum.

For semantic clusters, Raskin et al. (1992) allow on PVF responses words
that share “a semantic category (e.g. apple, apricot)” (96) or are inflectional
variants of one another, such as sing and sang. They unfortunately do not



provide a list of semantic categories, if any, that were used during analysis.
However, they report interrater reliability of 0.9 on SCA for PVF tests,
so presumably they did rely on a reference list of categories, rather than
subjective ones in the minds of individual raters. For SCA on SVF tests,
the authors defined clusters as consisting of “successive words from the same
category (e.g. lion, tiger)” (ibid.). Here, they presumably mean animal
subcategories, as the category given to subjects for SVF was animals. Again,
they do not report on what exactly their list of these, if there was one, may
have included.!

Troyer et al. (1997) also used animal subcategories, which they spec-
ify, in defining what constitutes a semantic cluster. Their 22 subcategories
include African, Australian, Arctic, North American, Farm, Water, Beasts
of burden, Animals used for fur, Pets, Birds, Bovine animals, Canine an-
imals, Deer, Feline animals, Fish, Insects, Insectivores, Primates, Rabbits,
Reptiles/Amphibians, Rodents, Weasels.

For PVF and SVF, Troyer et al. (1997) calculate two clustering measures
each: mean cluster size and number of switches. Each cluster is counted for
size beginning with the second word in the cluster, so that a singleton is given
size 0, a cluster of two words size 1, and so forth. Errors and repetitions
are included in these counts, and mean cluster size is simply calculated as
the mean of these size counts. The number of switches is equivalent to
the number of transitions between clusters, in this case including singleton
clusters.

In the following section, I briefly outline results from two studies employ-
ing verbal fluency clustering analysis. For both studies, the methodology of
Troyer et al. (1997) was used.

2.2  Prior findings

Several studies have investigated verbal fluency performance, as well as clus-
tering and switching behaviors, in patients with AD dementia. While many
of these have found patients with AD to generate fewer words on SVF (Bi-
netti et al., 1998; Gomez & White, 2006; March & Pattison, 2006; Randolph
et al., 1993; Raoux et al., 2008; Troster et al., 1998; Troyer et al., 1998b),
those that looked at PVF also found fewer words generated on that test
(Gomez & White, 2006; Troster et al., 1998; Troyer et al., 1998b). Addition-
ally, patients with mild cognitive impairment have been found to generate

!The authors do, however, say that during SVF administration “categories were pro-
vided as cues (i.e. jungle animals, pets, farm animals, ocean animals)”, though it is not
clear if these are the subcategories they relied on for clustering analysis (96).



fewer words on SVF (Price et al., 2012). There has also been consistent re-
porting of AD patients generating smaller phonetic clusters on PVF (Gomez
& White, 2006%; Troster et al., 1998; Troyer et al., 1998b) and semantic clus-
ters on SVF (Gomez & White, 2006; March & Pattison, 2006; Raoux et al.,
2008; Troster et al., 1998; Troyer et al., 1998b).

As for switching behavior on PVF and SVF, there has not been such
consensus. While more than one study has found AD patients to switch less
on PVF (Gomez & White, 2006; Troster et al., 1998), Troyer et al. (1998b)
found no such difference. On SVF, the majority of studies have reported
less switching by AD patients (Gomez & White, 2006; Raoux et al., 2008;
Troster et al., 1998; Troyer et al., 1998b), though March & Pattison (2006)
did not observe any difference. The latter study, however, included only
patients with “mild to moderate AD” (549), so perhaps this explains the
lack of impoverished switching behavior. Price et al. (2012) likewise found
no difference in switching on SVF between mild cognitive impairment (MCI)
patients and controls.

Troyer et al. (1998b) attribute the smaller cluster sizes generally ob-
served on SVF among patients with AD to impoverished semantic memory,
a characteristic of that population. They, however, were the study that did
not find less switching on PVF among AD subjects, but they too studied
patients with mild AD.

3 VF-Clust

VF-CLUST is written in Python, and features both a phonetic and semantic
clustering analysis module. Currently, it supports command-line interaction
on Magc, Linux, and Windows operating systems. The following is abridged
output for an example PVF response fun fort friend fry fret fetch
flip (see APPENDIX A for examples of full system output):

Number of permissible words: 7
Number of phonetic clusters: 1
Number of phonetic cluster switches: 3

VF-Crust’s PCA module employs two methods for determining pho-
netic similarity, one of which is an edit distance metric based on a classic
algorithm for measuring string similarity. For the SCA module, semantic
relatedness is determined by latent semantic analysis. The modules, and the
computational techniques they use, are described in the following sections.

2Though in this study no difference was found for PVF with specified letter s.



3.1 PCA module

VF-CLusT’s PCA module generates values along several clustering mea-
sures by automatically identifying phonetic clusters through the use of two
similarity metrics: edit distance and a common-biphone check. Both of these
work on phonetic word representations, which come from a modified version
of the CMU Pronouncing Dictionary (CMUDbICT). If a word is not found
in the dictionary, a phonetic representation is automatically generated for
it, using a decision tree-based algorithm trained on CMUDICT. All of these
aspects of the module, as well as its architecture and workflow, are described
in more detail below.

3.1.1 Phonetic word representations

The PCA module uses phonetic word representations found in a modified
version of CMUDICT, a pronunciation dictionary developed for speech recog-
nition and synthesis applications at the Carnegie Mellon University (Weide,
1998). CMUDICT contains phonetic transcriptions, using a phone set based
on ARPABET (Rabiner & Juang, 1993), for North American English word
pronunciations. In particular, the latest version, cmudict.0.7a, which con-
tains 133,746 entries, is used.

Each CMUDICT entry is a set of plaintext phone symbols, each sepa-
rated by whitespace. Vowels that carry lexical stress have numerical indi-
cators appended to their symbols, according to word pronunciation. Words
with variant pronunciations may have multiple pronunciation entries in the
dictionary. As an example, the entry for the word phonetic is F AHO N EH1
T IHO K. Because VF-CLUST’s phonetic similarity metrics, described in the
next section, require compact phonetic word representations, the system’s
CMUDbIcT was modified as follows.

From the full set of entries in CMUDICT, I removed alternative pro-
nunciations for each word, leaving a single phonetic representation for each
heteronymous set.? Additionally, all vowel symbols were stripped of nu-
meric stress markings (e.g., AH1 — AH), and all multicharacter phone sym-
bols were converted to arbitrary single-character symbols, in lowercase to
distinguish these symbols from any original single-character phone sym-
bol (e.g., AH — c¢). Finally, all whitespace between phone symbols was
removed, yielding compact phonetic-representation strings suitable for com-
puting VF-CLUST’s similarity metrics.

3For instance, the entry for does (n., pl., ‘female deer’) was removed in favor of that of
its more prominent heteronym does (v., pres. of do).



[FA]-IBNEHlTI]—IBI(]

[ FAHNEHT IH K ]

[ FcNiTmk ]

( FeNiTmK ]

Figure 2: Modification of the default CMUDICT entry for phonetic into a
compact phonetic representation.

The whole modification process is illustrated in FIGURE 2, which shows
the steps by which the above-given default CMUDICT pronunciation entry
for the word phonetic, F AHO N EH1 T IHO K, is rendered FcNiTmK.

3.1.2 Similarity metrics

As stated above, the PCA module uses two methods for determining pho-
netic similarity: edit distance and a common-biphone check. Each of these
gives its own measure of similarity for a pair of phonetic representations,
which I respectively call a phonetic-similarity score (PSs) and a common-
biphone score (CBS).

The module’s edit distance method, which gives a PSS, is based on
the Levenshtein distance string metric (Levenshtein, 1966). Introduced by
Vladimir Levenshtein in the mid-1960s, this metric quantifies the ortho-
graphic distance between two text strings by counting the minimum number
of edit operations required to turn one of the strings into the other. The edit
operations that can be used on the string being transformed are: INSERT, in
which a character is inserted; DELETE, in which a character is deleted; and
REPLACE, in which a character is replaced with another character.

As an example, the Levenshtein distance between the strings phonetic
and fanatic is 4, because it takes four edit operations to transform the
former into the latter: first, DELETE is used on p; then, REPLACE is used to
change h to f; next, REPLACE is used again to switch out o for a; finally,
after n is skipped, e is changed to a via REPLACE, and thus phonetic has
become fanatic.

To compute the pss for two words, the PCA module first computes the
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Levenshtein distance between their compact phonetic-representation strings,
described in the previous section. (Indeed, CMUDICT entries were modified
because of how Levenshtein distance works.) This score is then normalized
to the length of the longer string, and finally that value is subtracted from
1, giving the PSS. PSS values range from 0 to 1, with higher scores indicating
greater phonetic similarity.

To illustrate PSS calculation, I will again use phonetic and fanatic as an
example. These words are much more similar phonetically than they are
orthographically. Indeed, their compact phonetic representations, respec-
tively FcNiTmK and FcNbTmK, differ by only one character. Given this, the
Levenshtein distance between the two representations is 1. Both represen-
tations have the same length, 7, so their Levenshtein distance is divided by
that, which yields 0.143. Lastly, this value is subtracted from 1, giving a
Pss score of 0.857, appropriately indicating very high phonetic similarity.

While psss are continuous, CBSs are categorical and binary. Specifically,
a CBS of 1 is given for two words whose phonetic representations have a
common initial or final biphone, and 0 for two strings that have neither in
common. In the case of phonetic and fanatic, a CBS of 1 would be given, as
their respective phonetic representations, FcNiTmK and FcNbTmK, have the
same initial two characters (and also the same final two characters, though
this does not further change the score).

3.1.3 Similarity classification

To identify phonetic clusters, the PCA module needs to classify contiguous
word pairs as either phonetically similar or dissimilar, with pairs of similar
words forming clusters. Using the common-biphone method, two words are
considered phonetically similar simply if their ¢BS is 1. When using the edit
distance method, however, the PCA module requires a PSS threshold for
categorizing a word pair as similar or dissimilar. This is because PSSs are
continuous, with values that in and of themselves do not lend to classification
like binary CBs values do.

To remedy this, phonetic similarity thresholds were determined empiri-
cally for each letter in the alphabet. First, for each letter, I randomly sam-
pled 1000 modified CMUDICT entries for words starting with that letter.
Then, I computed PSS scores for each sample’s 499,500 pairwise combina-
tions. Finally, the threshold for each letter was set as the value separating
the upper quintile of the pairwise Pss scores for that letter’s random sample.

4For ¢, z, y, and z, there were less than 1000 entries to sample from, in which case
every entry was used.
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Interestingly, some thresholds differed quite drastically from others, sug-
gesting greater phonological variation among words beginning with certain
letters relative to other letters. For instance, the threshold for ¢ was found
at 0.43, while both a and o had thresholds of 0.22.° This indicates less
phonological variation across words beginning with ¢q. This is not all that
surprising, though, given that almost all English words beginning with ¢
have [kw] for an initial biphone. Generally, however, there was not incredi-
ble variation in letter-specific thresholds, as 22 letters were given thresholds
between 0.29 and 0.33.

Because the similarity method of Troyer et al. (1997) relies on orthog-
raphy, words that intuitively should not be classified as phonetically similar
sometimes will be. For instance, take the words reconcile and reach. Since
these two words both have re as their first two letters, they would be man-
ually determined to form a cluster. However, they really do not sound alike,
as they only share an initial sound, which will be the case with nearly all
words generated on any PVF response. With the common-biphone method,
these words would not be deemed similar, as their phonetic representations
show different initial biphones (Ri and Rn, respectively), as well as different
final biphones (ng and fL, respectively). And by the edit-distance method,
these words would receive a Pss of 0.125, far below the phonetic similarity
threshold for r. These types of errors can also occur in the opposite direc-
tion, where words that are intuitively similar are not deemed to be so due
to an orthographic quirk.

3.1.4 Module workflow

FIGURE 3 shows the high-level architecture and workflow of VF-CLUST’s
PCA module. The module accepts comma-separated transcriptions of PVF
responses, and also expects the letter given for the test. As a pre-processing
step, any words that do not begin with that letter are removed from the
response, though these will be considered for count measures, described in
the next section.

After pre-processing, all words are converted to compact phonetic rep-
resentations, as described in SECTION 3.1.1. This is done by dictionary
lookup into the modified CMUDICT. If a word is not found in the dic-
tionary, a phonetic representation is automatically generated for it with a
decision tree-based grapheme-to-phoneme algorithm, based on that of Pagel
et al. (1998), that was trained on CMUDICT.® To be precise, the algorithm

SHowever, for ¢ there were only 386 CMUDICT entries to use.
5The autopronouncer used here was developed by Kyle Marek-Spartz and Serguei
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Figure 3: High-level PCA module architecture and workflow.
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first generates a phonetic representation for the word in the format of a
default CMUDICT entry, which is then compacted using the same method
by which all native CMUDICT entries were modified.

Next, the module’s count measures are totaled, and after this, Psss and
CBss are computed sequentially for each pair of contiguous phonetic rep-
resentations, and for all pairwise phonetic representations. Finally, these
scores are used to identify clusters and generate values for VF-CLUST’s
phonetic clustering measures, which are described in the next section.

3.1.5 PVF measures

The PCA module generates values along several clustering and count mea-
sures. For count measures, it produces counts for total number of words
(PHN-TOTAL), number of permissable words (PHN-WORDS), number of rep-
etitions (PHN-REPS), and number of off-topic words (PHN-ASIDES). PHN-
WORDS counts all words in a PVF response that begin with the letter
specified for the test, while PHN-ASIDES is a count of all remaining words.
PHN-REPS is a count of repeated permissible words only, and PHN-TOTAL is
equivalent to PHN-WORDS + PHN-ASIDES.

The module’s clustering measures are computed using both the edit-
distance and common-biphone method, with two ways of defining a cluster.
As explained in SECTION 2, a cluster customarily is composed of contiguous
words that are each similar to or related to one another. In addition to
clusters of this type, VF-CLUST also uses a more relaxed approach that
defines clusters as chains.

Whereas each word in a cluster must be similar to each other word in
the cluster, only directly adjacent words must be similar to one another
in a chain. More formally, a chain comprises a sequence for which each
word is similar to that of the word immediately prior to it in the chain (un-
less it is chain-initial) and the word immediately subsequent to it (unless
it is chain-final). Chains based on the edit-distance method are called pho-
netic chains, and chains based on the common-biphone method are called
common-biphone chains; both of these are illustrated in FIGURE 4. Simi-
larly, clusters found via edit distance are called phonetic clusters, and those
found with a common-biphone check are called common-biphone clusters.

Because there are two similarity classification methods that each use
two cluster definitions, VF-CLUST generates values for a large number of
phonetic clustering measures. For both the edit-distance and common-

Pakhomov.
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Figure 4: Phonetic chain and common-biphone chain (below) for an ex-
ample PVF response.

biphone method, the following measures are computed: number of clus-
ters (PHN-CLUSTERS, BPH-CLUSTERS); number of clusters, excluding sin-
gletons (PHN-CLUSTERS-NS, BPH-CLUSTERS-NS); number of chains (PHN-
CHAINS, BPH-CHAINS); number of chains, excluding singletons (PHN-CHAINS-
NS, BPH-CHAINS-NS); mean cluster size (PHN-MEAN-CLUSTER, BPH-MEAN-
CLUSTER); mean cluster size, excluding singletons” (PHN-MEAN-CLUSTER-
NS, BPH-MEAN-CLUSTER-NS); mean chain length (PHN-MEAN-CHAIN, BPH-
MEAN-CHAIN); mean chain length, excluding singletons (PHN-MEAN-CHAIN-
NS, BPH-MEAN-CHAIN-NS); mazimum cluster size, i.e., size of the largest
cluster (PHN-MAX-CLUSTER, BPH-MAX-CLUSTER); maximum chain length,
i.e., length of the largest chain (PHN-MAX-CHAIN, BPH-MAX-CHAIN); number
of cluster switches® (PHN-CL-SWITCHES, BPH-CL-SWITCHES); and number of
chain switches (PHN-CH-SWITCHES, BPH-CH-SWITCHES).

Additionally, both similarity classification methods produce a mean pair-
wise similarity score, respectively called a mean pairwise phonetic similarity
score (PHN-PAIRWISE) and a mean pairwise common-biphone score (BPH-
PAIRWISE). The former is calculated as the mean of all pairwise psSs for

"This measure is roughly an automatic equivalent to the mean cluster size measure of
Troyer et al. (1997). However, in theirs, a cluster’s size is calculated as the number of its
constituents minus 1, whereas here merely the number of constituents is counted.

8NOTE: The number of switches for an attempt will always be equal to the number
of corresponding clusters minus 1. VF-CLUST includes both as two different ways of
conceptualizing the same phenomenon.
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Table 1:

VF-CLusT’s PVF measures

BPH-CH-SWITCHES

maximum common-biphone chain switches

BPH-CHAINS

number of common-biphone chains

BPH-CHAINS-NS

number of common-biphone chains, not in-
cluding singletons

BPH-CL-SWITCHES

maximum common-biphone cluster switches

BPH-CLUSTERS

number of common-biphone clusters

BPH-CLUSTERS-NS

number of common-biphone clusters, not in-
cluding singletons

BPH-MAX-CHAIN

maximum common-biphone chain length

BPH-MAX-CLUSTER

maximum common-biphone cluster size

BPH-MEAN-CHAIN

mean common-biphone chain size

BPH-MEAN-CHAIN-NS

mean common-biphone chain size, not in-
cluding singletons

BPH-MEAN-CLUSTER

mean common-biphone cluster size

BPH-MEAN-CLUSTER-NS

mean common-biphone cluster size, not in-
cluding singletons

BPH-PAIRWISE

mean pairwise CBS

PHN-ASIDES

number of off-topic words

PHN-CH-SWITCHES

number of phonetic chain switches

PHN-CL-SWITCHES

number of phonetic cluster switches

PHN-CHAINS

number of phonetic chains

PHN-CHAINS-NS

number of phonetic chains, not including sin-
gletons

PHN-CLUSTERS

number of phonetic clusters

PHN-CLUSTERS-NS

number of phonetic clusters, not including
singletons

PHN-MAX-CHAIN

maximum phonetic chain length

PHN-MAX-CLUSTER

maximum phonetic cluster size

PHN-MEAN-CHAIN

mean phonetic chain size

PHN-MEAN-CHAIN-NS

mean phonetic chain size, not including sin-
gletons

PHN-MEAN-CLUSTER

mean phonetic cluster size

PHN-MEAN-CLUSTER-NS

mean phonetic cluster size, not including sin-
gletons

PHN-PAIRWISE

mean pairwise PSS

PHN-REPS number of repeated permissible words
PHN-TOTAL total number of words
PHN-WORDS number of permissible words
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the words in a given PVF response, and the latter likewise, except using all
pairwise CBSs.

TABLE 1 shows abbreviations for each of the VF-CLUST’s PVF measures,
along with corresponding definitions.

3.2 SCA module

VF-CrLusTt’s SCA module produces values along its own clustering measures
by identifying semantic clusters via relatedness scores generated by latent
semantic analysis.

3.2.1 Latent semantic analysis

Latent semantic analysis (LSA) is a computational technique for represent-
ing the meanings of words according to their contextual distributions in a
large corpus of text (Landauer & Dumais, 1997). LSA is typically used to
measure relatedness between words or documents. It was originally devel-
oped as a method for automatic indexing and retrieval of documents in large
databases (Deerwester et al., 1990), but has since been used in a variety of
applications, such as automatic essay grading (Miller, 2003), intelligent tu-
tor systems (Graesser et al., 2000; Wiemer-Hastings et al., 2004), and spell
checking (Jones & Martin, 1997). LSA has been found to learn new words at
a rate similar to that of schoolchildren, and to do as well on synonym knowl-
edge tests as competent second-language speakers of English (Landauer &
Dumais, 1997).

The method is built on the assumption that words close in meaning will
occur in similar contexts. From a large collection of text, called a corpus,
LSA collects each occurring word,? and each context in which those words
occur. The words are referred to as terms, and their contexts as documents.
What sort of context is treated as a document depends on the application,
but documents should be coherent units of related information, e.g., encyclo-
pedia entries or paragraphs. LSA then constructs a co-ocurrence matrix of
the terms and documents, in which each row represents an individual term
and each column an individual document. The cells of this term-document
matrix are populated with frequency counts, such that each cell will have a
count of the number of times the term of the corresponding row occurred
in the document of the corresponding column. Since this matrix represen-
tation only takes into account term-document co-occurrence, word order in

9Stop words, e.g., if and or, are normally omitted. See SECTION 3.2.2 for more infor-
mation.
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Figure 5: Steps in latent semantic analysis.

the documents is ignored — i.e., each document is represented as a ‘bag of
words’.

Rather than work with the raw term frequencies, the cell counts in the
term-document matrix are often transformed. A common first step in this
regard is to transform each cell count to the log of that cell count. As an
effect of this log transformation, there will be a greater association between
two words that both occur in two different contexts than if they had each
appeared twice in the same context (Landauer & Dumais, 1997). Next, the
cell entries generally are divided by the entropy for the event type. This
inverse entropy measure captures how meaningful co-ocurrence with a par-
ticular word is. Consider that a word that occurs in many contexts transmits
less information about words with which it co-occurs. This is because the
more contexts a word occurs in, the less informative its occurrence in any
single context becomes, and thus the less informative its co-occurrence with
any word becomes.!’ The more documents a term occurs in, the larger its
entropy will be, and so the inverse entropy transformation utilizes this effect.

At this point in the LSA derivation, each row in the matrix is a vector
corresponding to a term, with values for that term’s relatedness to each docu-
ment. In a matrix of n terms by m documents, each row is an m-dimensional
term vector. Given the number of documents in a typical corpus, these are
likely to be wvery high-dimensional vectors.!! LSA is differentiated from

10FExtreme cases of this principal are frequently occurring functional words, like the.
HT,SA is often trained on corpora comprising more than one million documents.

18



other vector space models by its dimensionality reduction, the result of a
reduced-rank singular value decomposition (SVD) performed on the matrix
(Dumais, 2005).

SVD is the general method for decomposition of a matrix into principle
components. It is invoked with a parameter k, which specifies the desired
number of dimensions. It is crucial to specify an appropriate number of
dimensions for the SVD; typically, around 300 are chosen. Once the n x
m matrix is submitted to SVD, the k dimensions with the largest singular
values'? are retained, with the remainder being set to 0. This causes the
m~dimensional term vectors to become k-dimensional vectors in the space
derived by the SVD.

It is not just a term’s own distribution across documents that determines
the values for its k-dimensional vector. Rather, the SVD uses all linear
relations at its disposal to generate term vectors that best predict exactly
which documents a term occurs in. Thus, a change in any cell of the original
matrix usually will change every coefficient of every word vector in the
reduced matrix (Landauer & Dumais, 1997).

Now, LSA has term vectors for each word that point outward in the
semantic space derived by the SVD. With these, it is straightforward to
compute relatedness between words. This is typically done by calculating
the cosine between the two vectors for each term pair. The relatedness scores
that LSA generates range from —1, where two words are not related at all,
to 1, where two words have identical trajectories in LSA space.!®> FIGURE 5
recaps the intermediate procedures by which latent semantic analysis derives
semantic relatedness scores for words in a corpus.

3.2.2 Constructing a corpus

Before latent semantic analysis could be used to generate semantic relat-
edness scores for word pairs in SVF responses, a corpus on which to train
LSA had to be assembled. Since every word in an LSA corpus will usually
affect the term vectors for every other word in the corpus, it is crucial not
to include extraneous documents that may introduce noise into the model.
In order to prevent such from happening, I constructed a corpus that would
only contain documents pertinent to the SVF task domain. The category
most commonly specified for SVF administration is animals, so I chose that

121 e., the dimensions that capture the greatest variance in the original matrix. Thus,
the SVD approximation is the best-possible k-dimensional representation of the original
matrix.

13NOTE: Only a word and itself should have a relatedness score of 1.
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for the domain to which documents for the corpus would pertain. Because
it features an expansive array of articles written about animals, and more-
over because its content is freely and easily available, I used Wikipedia to
construct the corpus for LSA.

First, I compiled a list of 8903 animal common names, using several
informal sources found on the web. This list included animals as ordinary
as cat and dog, rare ones such as acadian flycatcher and temple pit viper,
and everything between, including dinosaurs and insects.

From here, I used a Python script!? to extract the text of any Wikipedia,
article that was returned by accessing each URL http://en.wikipedia.
org/wiki/[animalname], in which [animal name] was replaced with one
of the 8903 names in my compilation. This process yielded texts from 5105
unique articles, of which 122 were excluded due to pertaining to a concept
different from the animal with which they shared a name — e.g., tailor,
javelin, rifleman.

Next, all non-ASCII characters were converted to their ASCII approx-
imations, and each of the 4983 articles was stripped of any punctuation,
symbols'®, or Wikipedia artifacts.

After the articles were cleaned, the final word of each instance of all 8903
animal names was lemmatized using the WORDNET lemmatizer (Miller,
1993) available in the Natural Language Toolkit suite of Python libraries
(Loper & Bird, 2002). Lemmatization refers to the conversion of inflected
forms of a word to that word’s canonical form, or lemma. For English nouns,
this essentially means changing plurals to their singular forms — e.g., dogs
— dog or oren — or. Animal names were lemmatized so that each name
would correspond to only one LSA term vector, rather than multiple.

Consider this: if each instance of the word dogs was not lemmatized to
dog, then LSA would consider these inflectional variants of the animal name
completely different words, each with its own unique frequency distribution
across corpus documents, and thus each with its own term vector in the
derived semantic space. Because the end goal of using LSA here is to deter-
mine animal relatedness, and because LSA does this by taking the cosine of
two words’ respective term vectors, it is important that the meaning of each
word — which LSA infers from that word’s distribution in the corpus — is
not divvied up among multiple term vectors. In the case that animal names
would not have been lemmatized, one who wishes to test, via LSA, how
related the pair cat and dog is would not be utilizing semantic information

The core of this script was written by Anja Laske.
15Hyphens, underscores, slashes, and vertical bars were replaced with whitespace.
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as to the meaning of the two animal names imparted by occurrences of the
plurals cats and dogs. When all inflectional variants of a word are merged
into its canonical form, LSA is better able to utilize all of that word’s mean-
ing, in as much as it can be inferred from the contexts of its occurrences in
the corpus.

After lemmatization, I fused all multiword animal names into single-word
tokens, so that, for the same reason I converted names to their lemmas,
each animal name would have only a single term vector in the LSA model.
Consider an animal such as the arctic ground squirrel. Because of how
LSA works, this animal’s name would be split into three separate words —
arctic, ground, and squirrel — without concern for the fact that they should
constitute a single term, in the LSA sense. As such, no term vector would
exist for arctic ground squirrel that could be used to determine this animal’s
relatedness to any other animal, because every instance of the name would
instead contribute to the term vectors for its constituent words. To remedy
this, I replaced the interior whitespace of all multiword animal names with
underscores so that, for example, each instance of arctic ground squirrel
was contracted to the single token arctic_ground_squirrel.

Some longer multiword animal names actually contain shorter multiword
names, as is the case with, e.g., annulated sea snake and sea snake. Because
of this, I first contracted the largest animal names, made up of five words,
before continuing onto four-word names, three-word names, and finally two-
word names. Otherwise, contraction of instances of these embedded shorter
names would have precluded contraction of the longer names they occurred
within. For instance, if every occurrence of sea snake was tokenized to
sea_snake, one would find annulated sea_snake, which would not be con-
tracted to annulated_sea_snake, because only instances of annulated sea
snake, without any underscores, are contracted so.

Lastly, I assembled a list of stop words, for which every instance of each
word was removed from the corpus. Stop words are generally common or
grammatically functional words that do not impart much in the way of
meaning to words they co-occur with. Because they occur so frequently in
the language, and thus in any given corpus, they are a classic source of noise
for tasks such as LSA.

The stop list I used was a combination of a general list of 470 stop words'®
and a list assembled specifically for the animals domain. The tailored list
was composed subjectively by examining the 500 most frequently occurring
words in the corpus and adding those I deemed not to impart semantic value

16This list was prepared by Anja Laske.
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Figure 6: Steps in preparing the corpus for latent semantic analysis.

in the context of animal relatedness, due to an intuitively high likelihood of
turning up in any encyclopedia article concerning animals (as evidenced by
frequent appearance in the corpus). Examples of such words include species,
habitat, and family. 652 words were included in the final stop list, which
can be found in APPENDIX B.

At this point, the prepared corpus, consisting of nearly 5000 preprocessed
documents, was suitable for latent semantic analysis. FIGURE 6 recaps the
steps taken during preprocessing.

3.2.3 Deriving a semantic space

LSA models were derived from the corpus for every dimensionality k& between
2 and 500 using GENSIM, a Python toolkit for distributional semantics that
supports, among other models, LSA (Rehtifek & Sojka, 2010).7

In order to determine which dimensionality should be used to generate
semantic relatedness scores for VF-CLUST’s SCA module, a small informal
study was conducted to elicit human relatedness judgements for use as a gold
standard. For this, myself and six others!® each indicated how semantically
related, on a Likert scale from 0 — 3, we believe sixty pairs of common
animals to be. These included pairs such as deer—elk, kangaroo—koala bear,

1"These models were built using computing resources granted by the Minnesota Super-
computing Institute.

8These were Mara Anderson Searls, Robert Bill, Nina Dylla, Aaron Free, Kyle Marek-
Spartz, Serguei Pakhomov, and Hannah Sande.
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elephant— cheetah, and dolphin—parakeet.

These ratings were then compared to relatedness scores generated by
LSA at each dimensionality k& from 2 to 500 using Spearman rank corre-
lation.!® In the end, dimensionality 91 was found to correlate best to the
human judgements. This is rather few compared to dimensionalities com-
monly chosen for LSA, but the corpus used, with its 4983 documents, is
likewise small.

3.2.4 Relatedness classification

Like its counterpart PCA module, VF-CLusT’s SCA module cannot identify
clusters without having a method for classifying word pairs as semantically
related or unrelated. To this end, the module uses semantic relatedness
scores (SRS) generated by latent semantic analysis of the corpus described
above, with 91 dimensions by default. As with the phonetic similarity scores
produced by the PCA module’s edit-distance method, SRSs generated by
LSA are continuous, and thus do not easily lend to binary relatedness clas-
sification.

To resolve this, I empirically determined SRS thresholds for dimension-
alities 50 through 100.2° First, I compiled a list of 314 unique animal names
produced in SVF responses by participants in the study described below, in
SECTION 4, as well as a preliminary sample from the Professional Fighters
Brain Health Study (Bernick et al., in press; Ryan et al., in press); this list
was intended as a fairly large sample representative of animals commonly
named during SVF testing. Then, for each of the 51 dimensionalities for
which thresholds were to be determined, SRSs were computed for all 49,141
unique pairs found among all possible combinations of the 314 animal names,
excluding pairs of names and themselves.

As with the PCA module’s edit-distance method, the threshold for each
dimensionality was initially set as the upper quintile of the pairwise SRSs
computed for it. However, upon inspection, this threshold appeared to
be too inclusive of animal pairs that were not substantially related. So,
thresholds were raised to the upper deciles of the pairwise SrRSs for each di-
mensionality, which appeared to give much better classification results. The
SRS threshold for dimensionality 91 was set at 0.14, while the remaining di-
mensionalities were given thresholds ranging from 0.135 to 0.23, with values
increasing with smaller dimensionalities.

19This analysis was conducted by Serguei Pakhomov.
20While VF-CLUST’s SCA module uses 91 for its default dimensionality, it also supports
dimensionalities 50 through 100, as explained in SECTION 3.2.5.
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Figure 7: High-level SCA module workflow.

Now, with a method for quantifying semantic relatedness, and a thresh-
old for determining relatedness classification, the SCA module is suitably
equipped for semantic clustering analysis.

3.2.5 Module workflow

FIGURE 7 shows the high-level workflow of VF-CrLusT’s SCA module. This
module accepts comma-separated transcriptions of SVF responses, and also
expects an LSA dimensionality to use for SRS computation. If a dimension-
ality is not specified, the default of 91 is used.

Prior to preprocessing of the SVF response, the LSA model for the spec-
ified dimensionality is loaded. VF-CLUST comes preloaded with models for
each dimensionality & in the range 50 through 100. (During determination
of the ideal dimensionality for the corpus and task domain, dimensionalities
in this range were found to correlate better to human relatedness judge-
ments than the rest of dimensionalities 2 through 500.) Each LSA model
has indexed term vectors for every term found in the corpus, so an SRS for
any two words is easily computed by finding the cosine between the words’
term vectors.

During preprocessing, multiword animal names produced in the SVF
response are contracted to single tokens by replacing whitespace with un-
derscores, as described in SECTION 3.2.2. Additionally, any word or token
not included in VF-CLUST’s animal names compilation — i.e., the list of
8903 names, described above — is removed, though these will be considered
for the module’s count measures, described below.

Next, the module’s count measures are totaled, and then SRSs are com-
puted sequentially for each contiguous pair of animal names, and also for
all pairwise animal names. Finally, these scores are used to identify clusters
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and to generate values for VF-CLUST’s semantic clustering measures, which
are described in the next section.

3.2.6 SVF measures

Like its counterpart module, VF-CLUSsT’s SCA module generates values
along several clustering and count measures. Its count measures are equiv-
alent to the PCA module’s. They are: total number of words (SEM-TOTAL),
number of permissable words (SEM-WORDS), number of repetitions (SEM-
REPS), and number of off-topic words (SEM-ASIDES). SEM-WORDS counts
all words in a SVF response that are found in VF-CLUST’s animal names
list, while SEM-ASIDES is a count of all remaining words. SEM-REPS is a
count of repeated permissible words only, and SEM-TOTAL is equivalent to
SEM-WORDS + SEM-ASIDES.

Again like the PCA module, the SCA module identifies both clusters and
chains, which are predictably called semantic clusters and semantic chains.
However, because this module only uses one method for determining seman-
tic relatedness, it generates fewer clustering measures than does the PCA
module. These are: number of clusters (SEM-CLUSTERS); number of clusters,
excluding singletons (SEM-CLUSTERS-NS); number of chains (SEM-CHAINS);
number of chains, excluding singletons (SEM-CHAINS-NS); mean cluster size
(SEM-MEAN-CLUSTER); mean cluster size, excluding singletons (SEM-MEAN-
CLUSTER-NS); mean chain length (SEM-MEAN-CHAIN); mean chain length,
excluding singletons (SEM-MEAN-CHAIN-NS); maximum cluster size, i.e., size
of the largest cluster (SEM-MAX-CLUSTER); mazimum chain length, i.e.,
length of the largest chain (SEM-MAX-CHAIN); number of cluster switches
(SEM-CL-SWITCHES); and number of chain switches (SEM-CH-SWITCHES).

Additionally, the module produces a mean pairwise semantic relatedness
score (SEM-PAIRWISE). This is calculated as the mean of all pairwise SRSs
for the animal names in a given SVF response.

TABLE 2 shows abbreviations for each of the VF-CLUST’s SVF measures,
along with corresponding definitions.

In the next section, VF-CLUST’s utility in detecting subtle indicators of
cognitive impairment due to dementia is demonstrated with the results from
a pilot study using data from patients with mild cognitive impairment and
dementia from Alzheimer’s disease.
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Table 2: VF-CLUST’s SVF measures
SEM-ASIDES number of off-topic words
SEM-CH-SWITCHES maximum common-biphone chain switches
SEM-CHAINS number of common-biphone chains

SEM-CHAINS-NS

number of common-biphone chains, not in-
cluding singletons

SEM-CL-SWITCHES

maximum common-biphone cluster switches

SEM-CLUSTERS

number of common-biphone clusters

SEM-CLUSTERS-NS

number of common-biphone clusters, not in-
cluding singletons

SEM-MAX-CHAIN

maximum common-biphone chain length

SEM-MAX-CLUSTER

maximum common-biphone cluster size

SEM-MEAN-CHAIN

mean common-biphone chain size

SEM-MEAN-CHAIN-NS

mean common-biphone chain size, not in-
cluding singletons

SEM-MEAN-CLUSTER

mean common-biphone cluster size

SEM-MEAN-CLUSTER-NS

mean common-biphone cluster size, not in-
cluding singletons

SEM-PAIRWISE

mean pairwise CBS

SEM-REPS number of repeated permissible words
SEM-TOTAL total number of words
SEM-WORDS number of permissible words
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4 Pilot Study

A pilot study, using verbal fluency test responses from patients with mild
cognitive impairment (MCI) and dementia from Alzheimer’s disease, was
conducted to test the utility of VF-CLUST in assessing the effect of impair-
ment from these conditions on verbal fluency performance and clustering
behavior.

4.1 Participants

The verbal fluency test responses used for this study came from participants
included in a random sample obtained from the Mayo Clinic Alzheimers
Disease Research Center and the Mayo Clinic Study of Aging. This sample
included 133 subjects, matched for age (z = 66.98, o = 11.3) and sex. At
the time of neuropsychological testing, 37 participants had a clinical diag-
nosis of probable AD, by DSM-IV (American Psychiatric Association, 1994)
and NINCDS-ADRDA (McKhann et al., 1984) criteria; 58 had a clinical di-
agnosis of MCI with an amnestic component (Peterson, 2004); and 38 were
healthy controls. These clinical diagnoses were decided upon during consen-
sus conferences among neurologists, neuropsychologists, and nurses, taking
into consideration neurological assessment, performance on a neuropsycho-
logical test battery, and the views of family informants.

Positron emission tomography with amyloid tracer Pittsburgh Com-
pound B (PiB-PET; Jack et al., 2008) — a technique used to measure amy-
loid load, elevated levels of which are a pathologic hallmark of Alzheimer’s
disease — was available for 58 of the 60 participants. Such imaging showed
PiB-PET SUVR values greater than +1.4, consistent with AD-specific pathol-
ogy, in all participants clinically diagnosed with AD.

4.2 Methods

During data collection, all participants underwent a neuropsychological test
battery that included PVF tests for letters ¢, f, and [, and an SVF test for
category animals. Additionally, all subjects were given Clinical Dementia
Ratings (CDRs), which are used to stage dementia symptoms and have
the following levels: 0, none; 0.5, very mild; 1, mild; 2, moderate; and 3,
severe (Morris, 1997). By these ratings, patients with diagnoses of AD and
MCI were generally quite mildly impaired (AD: z = 0.72, o = 0.32; MCIL:
z=0.48, 0 = 0.09).
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All verbal fluency test responses were audio-recorded during administra-
tion and later transcribed. Transcriptions were submitted to VF-CLUST for
automated clustering analysis, and each SVF response also underwent man-
ual clustering analysis, following the methodology of Troyer et al. (1997),
by myself and another scorer.?! Interrater reliabilities, determined by Pear-
son correlation coefficients, were high for both number of cluster switches
(r(131) = 0.93) and mean cluster size (r(131) = 0.84).

For each participant, VF-CLUST output was averaged across the three
PVF tests to give one value for each measure. Likewise, values for man-
ually determined measures were averaged across raters to give one score
for each subject for manually determined mean semantic cluster size (SEM-
MEAN-CLUSTER-MAN) and manually determined number of semantic cluster
switches (SEM-CL-SWITCHES-MAN). Transcriptions did not include off-topic
speech, so no analysis of PHN-ASIDES or SEM-ASIDES was conducted.

Consistent with the findings of Troyer et al. (1997), SEM-WORDS corre-
lated much more strongly with age (r(131) = —0.31, p < 0.001) than did
PHN-WORDS (7(131) = 0.02, p = 0.86). Because controls were considerable
younger (Z = 61.6) than subjects with MCI (z = 69.0) and AD (z = 69.33),
group differences in SVF measures were examined with participants younger
than 65 and older than 80 excluded. For this age-constricted subset, there
were 13 subjects with AD, 40 subjects with MCI, and 16 controls.

For comparisons of group means, t-tests were used. Logistic regression
was used to compare the predictive value of various measures. Here, receiver
operator characteristic area under the curve (AUC) is reported, along with
Nagelkerke’s 72,

4.3 Results

The results of comparisons of group differences on PVF and SVF measures,
and of manual and automatic clustering methods, as well as logistic regres-
sion using various predictors, are all reported below.

4.3.1 Differences in group means for PVF measures

These results are shown in TABLE 3. Surprisingly, no significant differ-
ences were observed in PHN-WORDS between controls and subjects with AD
(p = 0.235), or between controls and subjects with MCI (p = 0.235). Inter-
estingly, however, PHN-REPS for subjects with AD was twice that of controls
(z = 0.76 vs. 0.37, p < 0.004), while the difference between subjects with

21This was Mara Anderson Searls.

28



Table 3: Group means for PVF measures

Measure AD MCI Controls
(n=37) | (n=58) | (n=38)

PHN-WORDS 11.17 12.24 12.33
PHN-REPS 0.76%* 0.52 0.37
PHN-CLUSTERS 7.98 8.29 8.15
PHN-CLUSTERS-NS 2.84 3.24 3.25
BPH-CLUSTERS 9.92 10.26 10.43
BPH-CLUSTERS-NS 1.05%* 1.56 1.50
PHN-CHAINS 7.65 7.71 7.49
PHN-CHAINS-NS 2.34 2.67 2.57
BPH-CHAINS 10.14 10.29 10.49
BPH-CHAINS-NS 1.02%* 1.48 1.47
PHN-CL-SWITCHES 6.98 7.29 7.15
BPH-CL-SWITCHES 8.92 9.26 9.43
PHN-CH-SWITCHES 6.65 6.71 6.49
BPH-CH-SWITCHES 9.14 9.29 9.49
PHN-MEAN-CLUSTER 1.56 1.62 1.68
PHN-MEAN-CLUSTER-NS 2.23 2.35 2.40
BPH-MEAN-CLUSTER 1.15 1.21 1.20
BPH-MEAN-CLUSTER-NS 1.42 1.82 1.62
PHN-MEAN-CHAIN 1.63 1.71 1.86
PHN-MEAN-CHAIN-NS 2.56 2.67 2.90
BPH-MEAN-CHAIN 1.15 1.22 1.21
BPH-MEAN-CHAIN-NS 1.40 1.84 1.64
PHN-MAX-CLUSTER 2.61%* 2.95 3.07
BPH-MAX-CLUSTER 1.84 2.20 2.02
PHN-MAX-CHAIN 3.05* 3.40 3.79
BPH-MAX-CHAIN 1.83 2.26 2.07
PHN-PAIRWISE 0.28 0.28 0.28
BPH-PAIRWISE 0.14 0.14 0.13

Note: Asterisk(s) indicates significant difference between group mean and
that of controls: * p < 0.05, ** p < 0.01.
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MCIT and controls was not significant (p = 0.18). Unlike other PVF mea-
sures, PHN-REPS was found to correlate to age (r(131) = 0.17, p < 0.05).
However, even with participant age restricted to 65—80 years, PHN-REPS was
significantly higher among subjects with AD relative to controls (z = 0.97
vs. 0.46, p < 0.05).

While group means for PHN-CLUSTERS-NS, PHN-CHAINS-NS showed no
significant differences, subjects with AD were found to generate significantly
fewer BPH-CLUSTERS-NS (z = 1.05 vs. 1.50, p = 0.037), and likewise fewer
BPH-CHAINS-NS (Z = 1.02 vs. 1.47, p = 0.027). However, when singletons
were included in analysis, common-biphone cluster and chain counts were
equivalent between controls and subjects with AD. This was the same with
the equivalent phonetic cluster and chain counts. Because these measures
directly correspond to switching measures, no significant differences were
found with those either. With or without singletons being included, controls
and subjects with MCI generated equivalent amounts of common-biphone
clusters and chains.

Subjects with AD and MCI did not significantly differ from controls on
any mean cluster size or mean chain length measures, though differences
between subjects with AD and controls were nearly significant for PHN-
MEAN-CHAIN (p = 0.087) and PHN-MEAN-CHAIN-NS (p = 0.085). Significant
differences were observed between subjects with AD and controls on both
PHN-MAX-CLUSTER (Z = 2.61 vs. 3.07, p < 0.05) and PHN-MAX-CHAIN (T =
3.05 vs. 3.79, p = 0.032), but not on their common-biphone equivalents.
Maximum phonetic and common-biphone cluster sizes and chain lengths
were comparable across controls and subjects with MCI. Likewise, PHN-
PAIRWISE means were roughly equivalent across all groups.

4.3.2 Differences in group means for SVF measures

For SVF analysis, the age-constricted subset was used; these results are
shown in TABLE 4. Group differences in SEM-WORDS were highly significant
for both controls versus subjects with AD (p = 0.003) and controls versus
subjects with MCI (p = 0.016). Comparisons between groups in repetitions
on SVF showed similar results to those of repetitions on PVF (z = 2.54
(AD) vs. 0.69 (controls), p < 0.003), though the difference between controls
and subjects with MCI was nearly significant here (z = 1.35 vs. 0.69,
p = 0.062). Unlike with PHN-REPS, SEM-REPS was not found to correlate to
age (r(131) = 0.28).

Subjects with AD generated significantly fewer semantic clusters (z =
2.92 vs. 5.0, p < 0.004) and semantic chains (Z = 2.54 vs. 4.19, p < 0.004),
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Table 4: Age-constricted group means for SVF measures

Measure AD MCI Controls
(n=13) | (n=40) | (n=16)

SEM-WORDS 14.62** 16.08%* 20.06
SEM-REPS 2.54** 1.35 0.69
SEM-CLUSTERS 10.92 11.23* 13.63
SEM-CLUSTERS-NS 2.92%* 3.95 5.00
SEM-CHAINS 10.62 10.80 12.63
SEM-CHAINS-NS 2.54** 3.18 4.19
SEM-CL-SWITCHES 9.92 10.23* 12.63
SEM-CH-SWITCHES 9.62 9.80 9.63
SEM-MEAN-CLUSTER 1.42 1.53 1.61
SEM-MEAN-CLUSTER-NS 2.80 2.39 2.54
SEM-MEAN-CHAIN 1.48 1.57 1.67
SEM-MEAN-CHAIN-NS 3.15 2.68 2.85
SEM-MAX-CLUSTER 3.08 3.00 3.44
SEM-MAX-CHAIN 3.69 3.48 4.06
SEM-PAIRWISE 0.078 0.066 0.065

Note: Only participants aged 65 — 80 were included in this analysis. As-
terisk(s) indicates significant difference between group mean and that of
controls: * p < 0.05, ** p < 0.01.
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not including singletons, than did controls; when singletons were included,
there were no significant differences. Due to direct correlation with these,
switching measures gave the same results. Subjects with MCI, however, also
had smaller SEM-CHAINS-NS than controls — though the difference was not
quite significant (z = 3.18 vs. 4.19, p = 0.055) — but differed more on
SEM-CLUSTERS (T = 11.23 vs. 13.63, p < 0.05) than on SEM-CLUSTERS-NS
(z =3.95 vs. 5.0, p=0.1).

Controls did not differ significantly from subjects with AD or MCI on
SEM-MEAN-CLUSTER(-NS) or SEM-MEAN-CHAIN(-NS), though the largest dif-
ference was observed between subjects with AD and controls on SEM-MEAN-
CLUSTER (& = 1.42 vs. 1.61, p < 0.11). Likewise, no significant differences
were found with SEM-MAX-CLUSTER or SEM-MAX-CHAIN.

As with PHN-PAIRWISE, differences between controls and subjects with
AD and MCI for SEM-PAIRWISE were not significant.

No significant differences with controls were found on manually deter-
mined mean cluster size (z = 0.85 (AD) vs. 1.10 (controls), p = 0.133;
Z = 1.07 (MCI) vs. 1.10 (controls), p = 0.77), but differences in manually
determined number of cluster switches were significant for subjects with MCI
versus controls (Z = 7.05 vs. 8.91, p = 0.03), though not for subjects with
AD against controls (z = 7.12 vs. 8.91, p = 0.07). These results directly
correspond to those for the equivalent automatically determined measures.

4.3.3 Classification by logistic regression

TABLE 5 shows the performance of several logistic regression models. Be-
cause there are only 13 AD cases in this subset, the full data set, in which
there are 37 AD cases, was used for this analysis to allow for multiple re-
gression.

Logistic regression with SEM-MEAN-CLUSTER-MAN and SEM-CL-SWITCHES-
MAN as predictors differentiated age-constricted controls and subjects with
AD with an AUC of 0.867 (r? = 0.5), and subjects with MCI with an AUC
of 0.690 (r? = 0.155). When SEM-WORDS, which is fairly easy to deter-
mine manually, is included in this model, these AUCs respectively increase
to 0.873 (r? = 0.537) and 0.713 (r? = 0.154). The best-performing model
with the comparable automatic methods — one with SEM-WORDS, SEM-
MEAN-CHAIN, and SEM-CH-SWITCHES — performs slightly better in classify-
ing subjects with AD, with 0.878 AUC (r? = 0.552), but worse in classifying
subjects with MCI, with 0.676 AUC (r? = 0.126).

Logistic regression on the full data set with only SEM-WORDS classifies
controls and subjects with AD with an AUC of 0.867 (r? = 0.535), and
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Table 5: Performance of logistic regression models

Predictors Area under curve (r2)
AD vs. control | MCI vs. control
SEM-WORDS
SEM-REPS

SEM-CLUSTERS
BPH-MAX-CLUSTER

0.921 (0.667)

0.761 (0.28)

SEM-WORDS
SEM-REPS

0.912 (0.65)

0.728 (0.204)

SEM-WORDS
SEM-MEAN-CLUSTER-MAN
SEM-CL-SWITCHES-MAN

0.873 (0.537)

0.713 (0.154)

SEM-WORDS
SEM-MEAN-CHAIN
SEM-CH-SWITCHES

0.878 (0.552)

0.676 (0.126)

SEM-MEAN-CLUSTER-MAN
SEM-CL-SWITCHES-MAN

0.867 (0.5)

0.69 (0.155)

SEM-WORDS 0.867 (0.535) 0.672 (0.126)
PHN-REPS 0.69 (0.16) 0.526 (0.022)
PHN-WORDS

0.582 (0.026)

0.5 (0.001)

Note: All participants were included in this analysis. Values shown are re-
ceiver operator characteristic area under curve, with Nagelkerke’s 2. Models
are listed in order of total performance in classifying subjects with AD and
MCI vs. controls.
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controls and subjects with MCI with an AUC of 0.672 (r? = 0.126). A model
with only PHN-WORDS does much worse, with respective AUCs of 0.582
(r? = 0.026) and 0.5 (r? < 0.001). Using only PHN-REPS actually gives a
much better model, classifying controls and subjects with AD with an AUC
of 0.69 (r? = 0.16). Combining SEM-WORDS and SEM-REPS differentiates
controls and subjects with AD with a very high AUC of 0.912 (r2 = 0.65),
and controls and subjects with MCI with an AUC of 0.728 (r? = 0.204).

Since there are just 37 AD cases in the full data set, it is only safe to
include at most three to four independent variables in a logistic regression
model for these data (Harrell, 2001). With all of VF-CLUST’s count and
clustering measures available, the best-performing model uses SEM-WORDS,
SEM-REPS, SEM-CLUSTERS, and BPH-MAX-CLUSTER, differentiating controls
and subjects with AD with an AUC of 0.921 (r? = 0.667), and controls and
subjects with MCI with an AUC of 0.761 (r? = 0.28).

4.4 Discussion

While significant differences were found between controls and subjects with
AD and MCI in the number of words generated on SVF, surprisingly no sig-
nificant differences were found in the number of words generated on PVF, as
has been observed in several studies. It is likely that this could be explained
by the patients with MCI and AD in this study having only mild dementia
symptoms at the time of data collection, as evidenced by their fairly low
CDRs. This may also explain why mean phonetic and semantic cluster size
were not found to significantly differ between groups by any manually- or
automatically determined metric, and why subjects with AD and MCI were
not found to switch less on either PVF or SVF.

Interestingly, when singletons were excluded, subjects with AD produced
much smaller common-biphone clusters and chains, as well as semantic clus-
ters and chains. Because these measures do not include singletons in their
counts, they are unique to this study. The alternative cluster counts, which
do include singletons, directly correspond to the number of switches in an
attempt, which is a commonly reported measure. That the measures not
including singletons were more sensitive to differences between controls and
patients with very mild AD may suggest that singletons dilute cluster counts
that include them. In the case of semantic clusters, subjects with MCI were
actually significantly different than controls — which was not observed when
singletons were excluded — while subjects with AD were not. Here, subjects
with AD actually produced less clusters than subjects with MCI, but due
to the age-constricted data set used for SVF analysis, there were only 13
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AD cases compared to 40 MCI cases, giving the latter’s comparison with
controls more degrees of freedom.

Also unique to this study, and also showing significant differences be-
tween patients with AD and controls, are values for maximum phonetic
cluster size and maximum phonetic chain length. While subjects with AD
did not produce smaller phonetic clusters, their respective largest clusters
were smaller than those of controls. This would seem to indicate that while
subjects with AD produced only slightly smaller phonetic clusters, they
showed less variability on these measures. This explanation is supported by
much smaller standard deviations among patients with AD on both mean
phonetic cluster size — 0.27 (AD) vs. 0.44 (controls) — and mean phonetic
chain length — 0.34 (AD) vs. 0.72 (controls). Interestingly, the correspond-
ing SVF measures for maximum cluster size and maximum chain length did
not show significant differences between controls and subjects with AD, and
likewise did not yield remarkably different standard deviations.

Perhaps the strongest result in this pilot study pertains to the signifi-
cance of repetitions on verbal fluency tests. While most studies have ignored
them, a few have reported on repetitions, which are also called persevera-
tive errors, but only in SVF. Binetti et al. (1995) found few to no repeti-
tions among AD patients, while March & Pattison (2007) found significantly
more relative to controls; contrasting both, Raoux et al. (2008) reported no
difference. In the present study, subjects with AD generated many more
repetitions on both PVF and SVF. With PVF, this set these subjects apart
from controls while the number of words generated did not. Further, logistic
regression models that included repetition counts performed extremely well,
particularly a model with only the number of words and repetitions gener-
ated on SVF as predictors. These results strongly suggest that repetitions
should be considered in future analyses of verbal fluency test responses.

While this simple logistic regression model, including only the number of
words and repetitions generated on SVF, did perform very well in classifying
both subjects with AD and subjects with MCI, it was improved by the
inclusion of one or two of several other predictors. This would seem to
indicate that clustering measures can add classificational value beyond what
the more basic measures — counts of words generated and of repetitions —
give on their own.

In a study of the effects of repetitive head trauma in professional fight-
ers, Ryan et al. (in press) compared some of VF-CLUST’s PVF measures
with manually determined equivalents, and found the automatically deter-
mined measures — particularly those computed by the common-biphone
method — to be more sensitive and to produce less variability. Here, both
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by comparisons of group means and by logistic regression, VF-CLUST’s SVF
measures were found to perform about equivalently to their manually de-
termined counterparts. A comparison of automatically computed number
of semantic cluster switches and mean semantic cluster size with the man-
ually determined equivalents showed fairly high correlation for the former
(r(131) = 0.8), and low correlation for the latter (r(131) = 0.35). In the
case of mean cluster size, some discrepancy may be due to differing methods
for determining cluster size, as described in SECTION 3.1.5.

5 Conclusion

VF-CLUST is a publicly available system for computerized analysis of ver-
bal fluency tests. Currently, clustering analyses on verbal fluency tests are
conducted manually, by trained scorers, in a process that is labor-intensive
and prone to human error and interrater variability. The objective in devel-
oping VF-CLUST was to give a method for automatically generating cluster-
ing analyses on both semantic and phonemic verbal fluency test responses,
which it does by using latent semantic analysis and computational methods
for determining phonetic similarity.

The results from the pilot study described above show that, at worst,
VF-CLUST’s automatically determined clustering measures seem to be as
useful as their manually determined equivalents. Manual methods, how-
ever, are far more labor-intensive — VF-CLUST can process several hundred
test responses in a matter of seconds. As such, this automatic approach is
much more scalable to larger numbers of responses. Moreover, automatic
clustering analysis is not prone to human error, or to interrater variability,
as manual methods are.

Additionally, a strong finding from the pilot study is that word repeti-
tions were more numerous in verbal fluency test responses from patients with
dementia from Alzheimer’s disease. In the case of phonemic verbal fluency,
controls differed with patients with Alzheimer’s diagnoses on the number
of words repeated, but not on the number of words generated, which is the
standard measure by which the test is scored. While repetitions are typically
ignored in even the most in-depth analyses of verbal fluency test responses,
these results strongly indicate that future analyses should consider them.

In the future, VF-CLUST’s semantic clustering analysis module should
be expanded to support analysis of categories besides animals that are also
commonly specified in semantic verbal fluency test administration, such as
fruits, vegetables, furniture, and supermarket items. LSA models for these
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domains could be derived by the same methods described above. Beyond
latent semantic analysis, other distributional-semantic techniques, such as
random wndexing or latent Dirichlet allocation, could be supported as well.
While the SCA module, using LSA, does not appear to give results signifi-
cantly better than those from manual clustering analysis, it possibly could
using other computational techniques for determining semantic relatedness.

Further, both the PCA and SCA modules could be improved by support-
ing different methods by which phonetic and semantic clusters are identified.
As it is, semantic clusters and phonetic clusters determined by edit distance
use semantic relatedness score- and phonetic similarity score thresholds, re-
spectively, to determine whether two words should form a cluster. An alter-
native, perhaps a better one, would be to use a clustering algorithm, such
as k-means clustering, to determine a set of actual clusters to which words
will belong. Then, rather than determining whether two words are similar
enough, the system would check whether they belong to the same cluster.
At the very least, this approach should be carried out in order to compare
it to the current methods.

While there are system improvements to be made, and though further
clinical validation is still needed, VF-CLUST already shows utility as — if
nothing else — an efficient alternative to a common manual approach.
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Appendix A: System output

VF-CLUST also supports batch processing of several attempts, for which
a comma-separated report is instead generated. The following is full VF-
CLUST output for a single example PVF response fun fort friend fry
um i don’t know fret fetch flip:

Total number of words: 11

Number of permissible words: 7

Number of repetitions: O

Number of off-topic words: 4

Number of phonetic clusters: 4

Number of phonetic clusters (excl. singletons): 1
Number of common-biphone clusters: 5

Number of common-biphone clusters (excl. singletons): 1
Number of phonetic chains: 4

Number of phonetic chains (excl. singletons): 1

Number of common-biphone chains: 5

Number of common-biphone chains (excl. singletons): 1
Number of phonetic cluster switches: 3

Number of common-biphone cluster switches: 4

Number of phonetic chain switches: 3

Number of common-biphone chain switches: 4

Mean phonetic cluster size: 1.75

Mean phonetic cluster size (excl. singletons): 4.0
Mean common-biphone cluster size: 1.4

Mean common-biphone cluster size (excl. singletons): 3.0
Mean phonetic chain length: 1.75

Mean phonetic chain length (excl. singletons): 4.0
Mean common-biphone chain length: 1.4

Mean common-biphone chain length (excl. singletons): 3.0
Max. phonetic cluster size: 4

Max. common-biphone cluster size: 3

Max. phonetic chain length: 4

Max. common-biphone chain length: 3

Mean pairwise phonetic similarity score: 0.342857142857
Mean pairwise common-biphone score: 0.142857142857

The following is full output for an example SVF response cat cougar
spider bee fly dog wolf raccoon squirrel tiger zebra i cant think
of any more, with LSA dimensionality set to the default of 91:

43



Total number of words: 17

Number of

permissible words: 11

Number of repetitions: O

Number of off-topic words: 6

Number of semantic clusters: 8

Number of semantic clusters (excl. singletons): 3
Number of semantic chains: 8

Number of semantic chains (excl. singletons): 3
Number of semantic cluster switches: 7

Number of semantic chain switches: 7

Mean
Mean
Mean
Mean
Max.
Max.
Mean

semantic
semantic
semantic
semantic

cluster size: 1.375
cluster size (excl. singletons): 2.0
chain length: 1.375
chain length (excl. singletons): 2.0

semantic cluster size: 2
semantic chain length: 2

pairwise

semantic relatedness score: 0.00992223451022
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Appendix B: Stop words

a, able, about, above, according, across, adult, adults, after, again,
against, age, ago, al, all, almost, along, already, also, although,
always, am, among, an, and, animal, animals, another, any, anybody,
anyone, anything, anywhere, appearance, approximately, are, area, ar-
eas, around, as, ask, asked, asking, asks, at, average, away, b, back,
backed, backing, backs, based, be, became, because, become, becomes,
been, before, began, behind, being, beings, believed, below, best,
better, between, big, black, body, both, breed, breeding, breeds, but,
by, c, called, came, can, cannot, cant, case, cases, central, certain,
certainly, citation, clear, clearly, close, closely, color, colour,
come, common, commonly, complete, considered, consists, could, could-
n’t, currently, d, day, days, derived, described, developed, did, did-
n’t,diet, differ,different, differently, distinct, do, does, doesn’t,
doing, done, dont, down, downed, downing, downs, due, during, e, each,
early, eat, either, end, ended, ending, ends, enough, especially, estim-
ated, et, even, evenly, ever, every, everybody, everyone, everything,
everywhere, example, except, eye, f, fact, facts, family, far, feed,
feeding, feet, felt, female, females, few, find, finds, first, five,
following, food, for, form, formation, forms, found, four, from, front,
full, fully, further, furthered, furthering, furthers, g, gave, genera,
general, generally, genus, get, gets, give, given, gives, go, going,
good, goods, got, great, greater, greatest, ground, group, grouped,
grouping, groups, grow, h, habitat, habitats, had, hadnt, half, has,
hasnt, have, havent, having, he, head, hed, hell, her, here, here’s,
hers, herself, hes, high, higher, highest, highly, him, himself, his,
how, however, hows, i, if, 1’11, i’m, important, in, include, includes,
including, individual, individuals, interest, interested, interest-
ing, interests, into, introduced, is, isn’t, it, its, itself, i’ve,
j, just, k, keep, keeps, kind, knew, know, known, knows, 1, largely,
larger, largest, last, late, later, latest, least, length, less, let,
lets, life, light, like, likely, listed, live, lived, living, long,
longer, longest, low, lower, m, made, main, mainly, make, making, male,
males, man, many, material, mating, mature, may, me, meaning, means,
member, members, mi, middle, might, mm, more, most, mostly, mr, mrs, much,
must, mustn’t, my, myself, n, name, named, national, native, natural,
near, necessary, need, needed, needing, needs, nest, never, new, never,
newest, next, no, nobody, non, noone, nor, north, not, nothing, now,
nowhere, number, numbers, o, occasionally, occur, occurs, of, off,
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often, old, older, on, once, one, only, open, opened, opening, opens,
or, order, ordered, ordering, orders, other, others, ought, our, ours,
ourselves, out, over, own, p, part, parted, particularly, parting,
parts, per, perhaps, period, place, placed, places, point, pointed,
pointing, points, population, populations, possible, possibly, pred-
ators, present, presented, presenting, presents, prey, primarily, pro-
bably, problem, problems, put, puts, q, quite, r, range, ranges, rather,
reach, really, recent, recognized, recorded, refer, referred, region,
regions, related, relatively, remains, reported, right, room, rooms,
s, said, same, saw, say, says, scale, season, second, seconds, see, seemn,
seemed, seeming, seems, seen, sees, separate, several, shall, shant,
shaped, she, shed, shell, shes, should, shouldnt, show, showed, showing,
shows, side, sides, similar, since, single, six, size, sized, slightly,
smaller, so, some, somebody, someone, something, sometimes, somewhere,
species, specific, specimen, specimens, stage, state, states, still,
study, subspecies, such, sure, surface, t, take, taken, tend, th, than,
that, thats, the, their, theirs, them, themselves, then, there, there-
fore, there’s, these, they, they’d, they’1ll, they’re, they’ve, thing,
things, think, thinks, this, those, though, thought, thoughts, three,
through, throughout, thus, time, times, to, today, together, too, took,
total, toward, true, turn, turned, turning, turns, two, type, typical,
typically, u, under, unlike, until, up, upon, upper, us, use, used,
uses, using, usually, v, various, very, w, want, wanted, wanting, wants,
was, wasn’t, water, way, ways, we, wed, weeks, weigh, weight, well,
wells, went, were, werent, weve, what, whats, when, whens, where, wheres,
whether, which, while, who, whole, whom, whos, whose, why, whys, wide,
wikimedia, wikipedia, wild, will, with, within, without, wont, word,
work, worked, working, works, world, would, wouldn’t, x, y, year, years,
yes, yet, you, you’d, you’ll, young, your, you’re, yours, yourself,
yourselves, you’ve, z.

46



