Reducing Label Cost by Combining Feature Labels and Crowdsourcing

Combining Learning Strategies to Reduce Label Cost
7/2/2011

Jay Pujara jay@cs.umd.edu
Ben London blondon@cs.umd.edu
Lise Getoor getoor@cs.umd.edu

University of Maryland, College Park
Labels are expensive

- Immense amount of data in the real world
- Often, no corresponding glut of labels
 - Precise labels may require expertise
 - Must ensure training labels have good coverage
Two strategies to mitigate cost

- Leverage unlabeled data in learning
- Find a cheaper way to annotate
Two strategies to mitigate cost

• Leverage unlabeled data in learning
 ◦ **Bootstrapping:** Use your labeled data to generate labels for unlabeled data
 ◦ **Active Learning:** Choose the most useful unlabeled data to label

• Find a cheaper way to annotate
 ◦ **Feature Labels:** Use a heuristic to generate labels
 ◦ **Crowdsourcing:** Get non-experts to provide labels
Feature Labels + Bootstrapping

- Feature Labels
 - Choose features that are highly correlated with labels
 - Remove features from input and use as labels
 - Possibly introduces bias into training data

- Bootstrapping
 - Train a classifier on labeled data
 - Predict labels on unlabeled data
 - Use the most confident predictions as labels

McCallum, Andrew and Nigam, Kamal. Text classification by bootstrapping with keywords, EM, and shrinkage. ACL99
Active Learning + Crowdsourcing

- **Active Learning**
 - Train a classifier
 - Predict labels on unlabeled data
 - Choose least confident predictions for label acquisition

- **Crowdsourcing**
 - Provide data to non-experts, reward for labels
 - Few requirements/guarantees about labelers
 - Resulting labels may be noisy, gamed

Ambati, V., Vogel, S., and Carbonell, J. Active learning and crowd-sourcing for machine translation. LREC10
Comparing **Learning/Annotation Strategies**

- **Active Learning**
 - Find labels for uncertain instances

- **Bootstrapping**
 - Find labels for certain instances

- **Feature Labels**
 - High precision, Low coverage

- **Crowdsourcing**
 - Low precision, High coverage
Active Bootstrapping

- Input: Feature label rules F, unlabeled data, U and constants T, k and α
- Initialize S by applying feature labels F to data U
- For $t = 1, \ldots, T$:
 - Train a classifier on S
 - Predict labels on U
 - Add top-k most certain positive predictions to S
 - Add top-k most certain negative predictions to S
 - Add crowdsourced responses to top-αk uncertain predictions to S
 - $U = U - S$
- Output: Classifier trained on S
Evaluation on Twitter dataset

- **Task:** Sentiment Analysis (happy/sad tweets)
- **Data:** 77920 normalized* tweets originally containing emoticons (6/2009-12/2009)
- **Evaluation Set:** 500 hand-labeled tweets
- **Feature labels:** happy and sad emoticons from Wikipedia
- **Crowdsourcing:** HIT on Amazon’s Mechanical Turk platform. Use known evaluation set labels to validate results
- **Active Learning/Bootstrapping:** Use MEGAM maximum entropy classifier label probabilities

Yang, Jaewon and Leskovec, Jure. Patterns of temporal variation in online media. WSDM11

Wikipedia: List of Emoticons

Experiments on Twitter dataset

• Compare different approaches:
 ◦ Feature Labels + Bootstrapping
 • Start with seed set of 1K, 2K, 10K feature labels
 • Add 10% of seed set in each iteration
 ◦ Crowdsourcing + Bootstrapping
 • Start with 2000 crowdsourced labels (1000 instances)
 • After validation, 670 labels
 • Add 200 new labels in each iteration
 ◦ Active Bootstrapping (k=50, \(\alpha=2\))
 • Start with 1000 labels, add 100* crowdsourced and 100 bootstrapped labels in each iteration
Results:

Active Bootstrapping vs. Feature Labels + Bootstrapping

- Same amount of data per iteration
- Active Bootstrapping outperforms Feature Labels + Bootstrapping, at minimal cost ($16)
Results:

Active Bootstrapping vs. Feature Labels + Bootstrapping

- Even with additional starting data, Feature Labels + Bootstrapping starts well but is eventually overcome by Active Bootstrapping
Results:

Active Bootstrapping vs. Crowdsourcing + Bootstrapping

- Both methods cost about the same ($16), but **Active Bootstrapping** clearly outperforms.
Active Bootstrapping combines the best of both worlds:
- Minimal time/expense from domain expert (to create feature labels)
- Crowdsource the rest
Results:
Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Err, 10</th>
<th>Err, 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Lables, 1K</td>
<td>.332</td>
<td>.367</td>
</tr>
<tr>
<td>Feature Lables, 2K</td>
<td>.302</td>
<td>.353</td>
</tr>
<tr>
<td>Feature Lables, 10K</td>
<td>.295</td>
<td>.348</td>
</tr>
<tr>
<td>Crowdsource, 2K</td>
<td>.374</td>
<td>.478</td>
</tr>
<tr>
<td>Active Bootstrapping</td>
<td>.332</td>
<td>.292</td>
</tr>
</tbody>
</table>
Thank You!

- Reduce label cost by combining strategies
- Introduce algorithm, **Active Bootstrapping**:
 - Combines complementary annotation strategies (feature labels and crowdsourcing)
 - Combines complementary learning strategies (bootstrapping and active learning)
- Evaluate on a real-world dataset/task (sentiment analysis on Twitter), show superior results

Questions?