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Abstract In this paper, we will demonstrate that a system
employing a space time convolutional code (STCC) can be
imnplemented with only a single transmit antenna when there
are multiple receive antennas. The idea is to transmit more than
one symbol from a single transmit antenna during a symnbol
period by superimposing the encoded symnbols on top of each
other. This objective is achieved by inducing randomness into
the system, that creates additional channel paths, called virtual
paths. The design of such an approach is studied for slow
Rayleigh fading channels. One immediate application of this
approach is to model an n x m multiple-input mutiple-output
(MIMO) system as an equivalent group of n distinct 1 x m
systems. Consequently, we demonstrate that STCCs with high
spectral efficiencies can be designed utilizing QPSK STCCs as
component codes for each 1 x m system. Simulation results
evaluate the performance of this technique for the case of
two transmit antennas and several different number of receive
antennas, a spectral efficiency of 4 bits/s/Hz, and slow Rayleigh
fading channels.

I. Introduction

Multiple antennas are very important to increase ca-
pacity and reliability of wireless channels. It is a common
belief that future wireless systems will have multiple
antennas at both transmitter and receiver end to be
able to transmit high data rate video, data, and voice.
A system with multiple-input multiple-output (MIMO)
capability has much higher spectral efficiency than single-
input single-output (SISO) and single-input multiple-
output (SIMO) systems [1]. Recent research results have
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shown that not only is the channel capacity of MIMO
systems very high [1], [2], but large fractions of this
can actually be acheived in implementations [3], [4]. One
practical system called Vertical Bell Labs Layered Space-
Time (V-BLAST), is capable of carrying tens of bits per
second per hertz (b/s/Hz). For example, it has been shown
in [5] that with multi-element array (MEA) technology,
one can achieve 42 b/s/Hz with 8 transmit and 8 receive
antennas and 1% outage capacity at 21-dB average signal-
to-noise ratio (SNR).
The main idea behind the high capacities of MIMO

channels stems from their mathematical equivalence to a
set of parallel independent channels. We can exploit this
same idea to send redundant data to achieve diversity to
combat channel fading and increase transmission reliabil-
ity. These two aspects of MIMO channels, namely diversity
and multiplexing and their tradeoffs, were investigated by
many researchers [6], [7]. Thus [13], [5], the concept of
sending different data from separate transmit antennas
(spatial multiplexing) or coded data from more than one
transmit antenna (spatial diversity) has been explored. In
this context, for n transmit antennas, one can at most
transmit n different symbols at a time. One can also
view an n x m MIMO system as an equivalent group of
n distinct 1 x m systems and a natural question would
be how can we utilize these n different 1 x m systems
to transmit data reliably using existing STCC designs?
In this paper, we propose a technique to transmit data
reliably, by using a STCC, with only a single transmit
antenna. Hence, with n transmit antennas, we are able to
transmit using n STCCs from these transmit antennas. In
a typical cellular communication system, the number of
antennas at the base station is larger than the number of
antennas at the mobile station, i.e., n < m so considering
cases with n + m can be important.

Inducing randomness into a physical channel has been
proposed by many authors [8], [9], [10], [11]. The main
objective of these techniques is to induce more fluctuations
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into the channel. In [8j, the authors induce randomness
into the downlink of a wireless communication channel to
create more fluctuations into an environment where slow
fading or little scattering may occur. By taking advantage
of the multiuser diversity effect [12], it can be shown
that (opportunistic) beamforming gains can be achieved
when there are a large number of users in the cell. In
[9], the idea of inducing intentional frequency offset was
introduced to create a fast fading environment with the
goal of creating point-to-point time diversity in slow fading
environments. The randomizationi concept has been also
proposed for space-time code applications [10], [11]. The
main idea behind these works is to increase fluctuations
in the channel similar to the previous work. For example
in [11], for stationary users with line-of-sight scenarios,
a phase randomization strategy inmproves performance of
the system significantly. In this paper, we propose to
induce randomness into the physical channel in what
appears to be a new way. The goal is to explore the rich
diversity capabilities of MIMO systems. We will derive the
conditions under which maximum coding and diversity
gain can be attained for fading channels. We find the
optimum randomization scheme for our approach. Our
optimality criterion is based on the upper bound on the
pairwise block error probability.

The landmark paper [13] defined the first systematic
way to design channel codes for reliable transmission
of data over wireless fading channels utilizing multiple
transmit antennas. By formulating an upper bound on
the pairwise block error probability, they devised several
space-time codes for various number of states and symbol
constellation sizes. We will use those results to design
systems with similar capabilities when there is only a
single transmit antenna.

The outline of the paper is as follows. In section II, we
will review the system model and STCC design [13] for
slow fading wireless channels. The proposed algorithm for
utilizing a STCC for the single transmit antenna case is
formulated in section III. The optimum induced random-
ization for slow Rayleigh fading channels is described in
section IV. It is shown in this section, that this optimum
randomization cannot be obtained for all error patterns.
In section V, we design two randomization approaches to
approximate the optimum approach as closely as possible.
Simulation results on the performance of the proposed

II. System Model

We consider a wireless communication system utilizing
n transmit and ni receive antennas. The channel path gain
from transmit antenna i to receive antenna j is denoted
by h and is a complex Gaussian random variable with
zero mean and variance 0.5 per complex dimension (real-
imaginary parts). We assume that different channel path
gains are statistically independent. We also assume that
the channel coefficients are constant during one block of
data and change independently from one block to another.
The received data rt at antenna j and time t (slow fading
channel) can be written as

n
rt = h ct E +, < j<.m

i1=l

(1)

where c' is the complex transmit symbol with unit average
power sent from antenna i at time t, nJ is the additive
Gaussian noise sample with zero mean and variance N' per
dimension, and Es is the contraction factor of the signal
constellation. A block error occurs when the decoded data
sequence

E = el . .. el . .. eN . .. eN

is different from the transmit sequence

C = Cl . .. C 1 .. CN . .. CN,

where N is the number of symbols in one block. It is shown
in [13] that for a maximum likelihood receiver, an upper
bound on the conditional pairwise block error probability
(slow fading channel) is

P(C E hi,j, I < a- < n, 1 < j< m, I < t < N)

. fjexp (-QjB8(C,E)Q>N), (2)

where Qj (h1lj, h2J,... hn,i), BS(C, E) (slow fad-
ing) is an n x n matrix whose elements are defined as
Bs,mn(C,E) = Z:N_ -e m)(n n)* and * denotes the
complex conjugate transpose operation. It can be shown
that [13] Bs(C,E) = V*DV is a Hermitian matrix, V
is a unitary matrix whose rows vi, 1 < j < n are the
eigenvectors of B, (C, E) and D = diag(A1, . , An) where
the A1 's are the eigenvalues of Bs,mn (C, E). If a vector Oj
is defined as 3j = [f,ij . .. /3n,j] QjV*, then

n

Q -Bs,mn(C, E)Qj* Aj=1E3i 1'-3 i E~t= (3)

By substituting (3) into (2), one can average over O,j
Vi,j to arrive at

algorithm are given in section VI. Section VII contains
the conclusion.

P(C-+).m

(rIt (1 + E4NAi)
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III. Problem Formulation

STCCs were originally designed to achieve diversity
and coding gain in wireless fading channels utilizing
multiple transmit antennas. The search space for these
codes increases exponentially with the constellation size.
In this paper, we will first show that one can apply
STCCs in systems with only a single transmit antenna
by using randomization techniques as long as we have
multiple receive antennas. Then we use this approach to
design STCCs with high spectral efficiencies using smaller
constellation size STCCs such as QPSK STCC. Therefore,
we assume for now that the number of transmit antennas
is equal to 1, i.e., n = 1. Using this assumption, (1) can
be written as

r'= hijCt E±+'n, 1 < j <m. (5)
Here again, the physical channel path gains, the h1 j's, are
independent coinplex normal random variables with zero
mean and variance 0.5 per dimension. How can we modify
the transmit signal (Ct) such that the system can use a
STCC? We propose to use as the transmitted signal

Ct = Alc±+ A2C2 + + A, n (6)

where the induced random variables, the Ai's, are sta-
tistically independent random variables and the c"'s are
symbols chosen from the output of a STCC encoder. The
Ai's are also independent of the physical channel path
gains, the h1ij's. Combining (5) and (6) leads to

n

rL=Z hi,-jc'E + n , 1Ij.rn,
i=l

(7)

where h' 3 = h1j Ai is called a virtual path gain. We call
this the virtual path gain because only m physical paths
exist in this system and by introducing random data at
the transmitter, we have created n x m virtual paths.
Of course, some of these virtual paths are statistically
dependent, but this approach will allow us to employ a
STCC in a setting with a single transmit antenna and
numerical results to be presented will demonstrate the
gains that can be achieved. One way to interpret these
gains is to recall that STTCs can provide gains in channels
with correlated path gains, provided the correlation is not
too close to unity.
One immediate application of the approach outlined

above is to model an n x m MIMO system as an equivalent
group of n distinct 1 xm systems. Figure 1 compares a 2 x 2
MIMO system with its equivalent SIMO system and with
a group of 1 x 2 systems that illustrate our approach. Note
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that we do not claim that such an approach can change
a SIMO channel into a MIMO channel with independent
path gains, nor do we claim that the rank of the new
channel matrix changes. The induced random variables
(Ai's) can either change from symbol to symbol or they
can be constant during one data frame. Our intention
is to derive conditions under which one can obtain the
minimum upper bound on the block error probability.

Applying (2) and (3) to the virtual paths (hij 's), we
see that the conditional pairwise upper bound block error
probability is

P(C -* E Ail hl,j, I < i < n, 1 < j<M I1 < t < 1)

< flexp(-I h,j 12 ABS(C, E)A* )
j=1

(8)
where A= [Al, A2, .,A,] is the vector whose elements
are the induced random variables.

Since B, (C, E) is a Hermitian matrix [13], then it can be
written as BS(C, E) = V*DV, where the diagonal matrix
D has the real eigenvalues of matrix B8 (C, E) along its
diagonal, i.e., Ai, 1 < i < n.

Let [Ti,..., Tn]= AV*, then (8) can be written as

P(C - E A-, h .j, i< n,1 <j < m) <
m n

|exp(- hi,j2ZiATii2 4N0)- (9)
j=1i=

By the taking the average over (9) with respect to chan-
nel coefficients and induced random variables assuming
Rayleigh fading, we arrive at

P( E)<(10) = 1(l1 + A7 T- 2 4E,

where KF(X1,..., Xn, Y)) denotes the expected value of
F(X1,... , Xn, Y) with respect to all random variables. In
(10), the expected value is with respect to T1,.. Tn.

IV. Optimum Solution for Slow Rayleigh Fading
Channels

In this section, we first find the optimum solution for
Rayleigh fading channels. To simplify matters we will
search only for solutions with T., .. , Tn independent.
Thus, for Rayleigh fading channels, we want to find the
pdf of Ti for all values of i such that the upper bound
to the pairwise block error probability given in (10) is
minimized. Mathematically, the optimization problem is
defined as

min (K1+ Ri Ti 12) )
<IT, 12>=

(11)



where Ri = A -4Ei and the condition <I T, 2>= 1
is set to normalize the power of the induced random
variables to one (increasing power would clearly allow
better performance so this is important). In order to solve
this minimization problem, we use Jensen's inequality,
i.e., if g(y) is a convex function (g"(y) > 0), then

Kg(Y)) > g((Y)). The following theorem (without any
proof) describes the optimum distribution for Ti such that
(10) is minimized.
Theorem 4.1: The minimum of (10) is attained when

the pdf of Ti is flTjI(x) = (x -1).
Theorem 4.1 indicates that the amplitude of Ti should be
deterministic and equal to 1. However, the phase of Ti can
be a random variable.

V. Selection of induced random variables
In general, it is not possible to select random variables

A1,..., A, to achieve ITTi 1 for all possible choices of vi
Since v* is eigenvector of B, (C, E) which is constructed
from the difference between the transmitted codeword and
the decoded error data sequence, there are many values of
V* to consider. To address this difficulty, in the following
we provide two alternate solutions, neither of which are
optimum.

A. Design of induced random variables Based on Eigen-
vectors of B, (C, E)

In the previous section, we showed that for Rayleigh
fading channels, the optimum solution is fjTij(x) = 6(x -
1). However, we do not have the freedom of selecting Ti.
Instead, Ti depends on random variables A1,... , A,, and
V*

Ti = (AA,... )v

In this section, we seek to minimize the average distance
between ITil and 1 for all choices of v*. We use n = m = 2
to illustrate the derivation.

Because v* is a unit vector, we can write it as

Ve= (

b- bexp(iob2)
i .

We can show that, in order to minimize the distance
between ITtI and 1, we need to select JA11 = IA21 = 1.
Thus, we write A1 and A2 as

A1 = exp(i01), A2 = exp(i032)

where 61 and 02 are random variables. Expanding IT1l,
we have

ITi I= |AlVb exp(io1) + A2 exp(it2)

= V1 + q cos(±+ 0)

where q = 2 b(I-b), ) = 02-1 andO = 02-01-
We determine the optimum pdf of 0 by minimizing
K Ti l-1 ) for all values of Q. Mathematically, the
optimization problem is

min (maxK + qcos(q+±)-1I (12)

where Pe is the probability distribution function of 0).
The result is provided without any proof.
Theorem 5.1: The minimum of (12) is attained when 0)

is uniformly distributed in [0, 2r].
Note that we assumed in the proof of this theorem that

the pdf of X is uniform. However, the phase distributions of
the eigenvectors of the B8 (C, E) matrix are not known and
therefore, these results are suboptimal. Moreover, with the
proposed scheme, the actual transmitted signal can have a
different amplitude at each time interval. This poses some
constraints on the complexity of the transmitter. Such an
approach may not be very desirable from a practical point
of view. Therefore, we propose to use random variables
that are conditioned on the output of the STCC encoder
such that, the final constellation has a finite number of
points with possibly constant amplitude. The next section
describes the criterion for designing these induced random
variables.

B. Design of induced random variables that depend on
information data

In the approaches discussed previously in this paper,
the final transmitted symbols can have any continuous
amplitude inside a circle of radius 2. It would be more
desirable if the transmitted symbol employed only a finite
number of constellation points.
Our objective in this section is to design a set of discrete

random variables that statistically depend on the STCC
encoder output. The objective is twofold, first, to reduce
the number of points in the constellation for the transmit
signal Ct that was defined in (6), and second to force
the amplitude of the transmit signal to be constant. This
approach will be more suitable for practical applications.
The conditional upper bound on the pairwise block error

probability in this case can be derived as

P(C E hij, I <i <n,lI <j < m,I < t<l1)
m N E

< ]7 exp(-I hbj 12 E Ct-Et 12 Es ), (13)
j=1 t= 4N
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where Et is the error signal defined similar to (6). Note
that in this case, the induced random variables, the A2's,
are statistically dependent on the output of the STCC
encoder and for that reason, it is not feasible to separate
them in this equation. Averaging over (13) with respect
to the channel coefficients, we arrive at

P(C-__~ _). (H>(,+ EN 1 Ct Et 12 )

(14)
This equation suggests that in order to minimize the upper
bound on the pairwise block error probability, we need to
maximize the minimum Euclidean distance between the
modified codeword (Ct, t = 1,... ,N) and the codeword
chosen in error (Et, t = 1, . . . , N). Therefore, we need
to design the induced random variables such that this
minimum Euclidean distance is maximized.

VI. Simulation results

In the simulations presented in this section, coherent
detection is assumed along with perfect knowledge of the
channel coefficients at the receiver. We also assume that
the induced random variables are generated in advance
and known at the receiver. We apply this technique to
MIMO systems where each transmit antenna can employ
a STCC. Therefore, for a n x m system, we can model it as
an equivalent group of n distinct 1 x n systems, each one
transmitting a STCC with small constellation size. Fig. Ic
demonstrates this concept for a 2 x 2 system. We have used
this approach to design a STCC with spectral efficiency of
4 bits/s/Hz, using a QPSK STCC for each antenna, and
compare it with the 16-QAM STCC of [13]. Simulation
results clearly show that our approach can perform better
than that of [13] for 2 x 3 and 2 x 4 MIMO systems
and block length 260 and 520 bits in Figures 2 and 3
respectively.

VII. Conclusion

In this paper, we explored the idea of exploiting the
good performance of the space-time code designs from
[13] for cases with a single transmit and multiple receive
antennas. Using this idea, we can model an it x m system
with n distinct 1 x m systems. Therefore, each 1 x rn
system can transmit a separate STCC. Simulation results
show that this approach performs better than the 16-QAM
STCC design when using two QPSK STCCs for 2 x 3 and
2 x 4 systems in Rayleigh fading channels.
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Fig. 2. Frame Error Rate Comparison Between 16-QAM STCC and
the PA for 2 x 3 and 2 x 4 systems in Rayleigh fading Channels with
260 bits for each block.
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Fig. 1. Comparison of (a): a 2 x 2 MIMO system with (b): a 1 x 2
SIMO system using the proposed algorithm (PA) and (c): a 2 x 2
MIMO system using the PA.

Fig. 3. Frame Error Rate Comparison Between 16-QAM STCC and
the PA for 2 x 3 and 2 x 4 systems in Rayleigh fading Channels with
520 bits for each block.
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