
From Continuum Fokker-Planck Models to Discrete Kinetic Models

Jianhua Xing,* Hongyun Wang,y and George Oster*
*Departments of Molecular & Cellular Biology and Environmental Science, Policy, and Management, University of California, Berkeley,
California; and yDepartment of Applied Mathematics & Statistics, University of California, Santa Cruz, California

ABSTRACT Two theoretical formalisms are widely used in modeling mechanochemical systems such as protein motors:
continuum Fokker-Planck models and discrete kinetic models. Both have advantages and disadvantages. Here we present a
‘‘finite volume’’ procedure to solve Fokker-Planck equations. The procedure relates the continuum equations to a discrete
mechanochemical kinetic model while retaining many of the features of the continuum formulation. The resulting numerical
algorithm is a generalization of the algorithm developed previously by Fricks, Wang, and Elston through relaxing the local
linearization approximation of the potential functions, and a more accurate treatment of chemical transitions. The new algorithm
dramatically reduces the number of numerical cells required for a prescribed accuracy. The kinetic models constructed in this
fashion retain some features of the continuum potentials, so that the algorithm provides a systematic and consistent treatment
of mechanical-chemical responses such as load-velocity relations, which are difficult to capture with a priori kinetic models.
Several numerical examples are given to illustrate the performance of the method.

INTRODUCTION

Dynamical studies of molecular motors fall roughly into three

categories. Molecular dynamics (MD) purports to follow the

motions of all of the atoms by solving Newton’s equations

using a variety of semi-empirical potential functions that

model the forces between atoms (see, for example, Refs. 1–

3). At the other extreme, kinetic models of motor dynamics

describe the Markov transitions between a discrete set of

states. For example, the status of a catalytic site of an ATP-

driven motor is frequently represented by four occupancy

states: Empty (E), ATP bound (T), ADP/Pi bound (DP), and

ADP bound (D). Transitions between states are given by rate

constants that may be force-dependent via an exponential

Boltzmann factor. A kinetic model is usually based on the

assumption that the configuration space is divided into

discrete regions (i.e., potential wells), which are separated by

rather high potential barriers (4,5). The consequence of high

potential barriers is that the system spends most of its time

diffusing within the potential well, and barrier-crossing

transitions happen rarely, but instantaneously (6). Quite

often the assumption of high potential barriers breaks down

for molecular motors. For example, a unique feature of

molecular motors is that one mechanical degree of freedom

is coupled to the chemical reaction. Under high load, when

the motor is performing mechanical work, motion along this

mechanical coordinate may be slow compared to other dy-

namical processes in the system. In a theoretical treatment of

the mechanical responses of a molecular motor, such as its

load-velocity curve, the mechanical coordinate requires more

detailed treatment. Kolomeisky and Fisher (7,8) developed

an interesting and important generalization of the kinetic

model approach applied to molecular motors by introducing

some extra kinetic states along the mechanical degree of

freedom. (It will be clear regarding the physical meaning of

these states, and the relation between the generalized kinetic

models and continuous models later in this work. Please note

that, in the following discussions, we call it the ‘‘generalized

kinetic model’’ to distinguish it from the ‘‘chemical state-

only kinetic model’’.) Another alternative is to treat some

degrees of freedom continuously as in the Fokker-Planck

models discussed below.

The third approach to model molecular motors is inter-

mediate between all-atom MD simulation and discrete state

kinetic models. If one can identify collective coordinates that

capture the major conformational motions of the protein,

then the mechanical forces driving the system along these

coordinates can be captured by a set of potential energy func-

tions defined for each chemical occupancy state. These

potential energies can be inferred from the molecular struc-

tures, and capture the relevant features of the protein geom-

etry. Then the dynamics is studied by solving the continuous

governing equations, which consist of Langevin equations

along the geometrical coordinates and kinetic (Markov)

jumps between the potentials. Thus the Fokker-Planck for-

malism replaces the discrete states of kinetic models with

continuous potential functions defined on geometrical co-

ordinates that represent the major conformational motions of

the protein. We shall refer to these as Markov-Fokker-Planck

(MFP) models.

We shall not discuss MD simulation here. The Fokker-

Planck equations can be formally obtained from the complete

dynamical equations of the system (as in MD simulations) by

selecting some primary degrees of freedom, projecting out all

the remaining degrees of freedom, and introducing some

physically well-justified approximations (9). As studied in the

field of chemical dynamics, kinetic models are obtained by
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approximating the underlying continuum dynamics of the

system using a set of discrete states (6,10). As a classical

example first studied by Kramers, the dynamics of a double-

well system embedded in a heat bath can be described by

a single Fokker-Planck equation. By choosing a dividing

surface that separates the system into two regions, transitions

between these two regions (states) can be approximated by

a rate process, and the rate constants can be obtained from the

Fokker-Planck solutions. From the viewpoint of numerical

computation, kinetic and MFP models are not completely

distinct. The master equation for kinetic models consists of

systems of ordinary differential equations, whereas MFP

models are systems of partial differential equations. When

discretized in numerical simulations, both kinetic and MFP

models can be reduced to discrete Markov chains, and then the

distinction resides in the number of Markov states one assigns

to the geometrical coordinates. However, most kinetic models

are constructed by selecting the kinetic states a priori, based

on biochemical observations, or on an intuitive picture of the

protein’s motions. MFP models force one to deal more

explicitly with the conformational motions, and thus make

closer contact with the actual protein geometry. This greater

fidelity comes at the cost of having to deal with a continuous

geometrical coordinate which, in simulations, is usually dis-

cretized into many Markov states (11).

Here we present a new algorithm that generalizes the nu-

merical algorithm developed by Wang et al. (11) for solving

the MFP equations. The new algorithm reduces the continuum

MFP equations into much simpler discrete jump models, yet

retains many of the advantages of the former. This work is

motivated by the requirements: first, it is computationally less

demanding than the old algorithm of Wang et al. (11); second,

it provides sufficient treatment for the mechanical degree(s) of

freedom. The latter is particularly important when the slowest

dynamics is mechanical rather than chemical transitions—a

situation likely confronted in single molecule experiments,

where the motor operates under a large viscous load, or a large

load force is applied to the motor. However, even in the case

where the chemical transitions are rate-limiting, phenomena

may arise that are counterintuitive and difficult to capture in

a simplistic kinetic model. For example, load velocity curves

may not be monotonic, and increasing the load in a range may

actually increase the motor velocity (12). An example of

nonmonotonic load velocity relation is given in Numerical

Examples.

KINETIC AND
MARKOV-FOKKER-PLANCK MODELS

Kinetic models represent a system by discrete states, with the

dynamics governed by ordinary differential master equations

of the form

dp
dt

¼ Kp: (1)

Here p is a normalized vector containing state occupation

probabilities, K is the transition matrix with its off-diagonal

elements kaa9 giving the chemical transition rate from statea9

to state a, and the diagonal elements given by kaa ¼
�+

a9 6¼a
ka9a: Assignment of the kinetic states is usually

based on chemical considerations. For example, an ion

binding site can be in either an empty or occupied state (13),

and a catalytic site of an ATPase can have different nucleotide

binding states (4,14). Although Eq. 1 is an evolution equation

for the probability vector, the stochastic evolution of an

individual system (jumping between the discrete states) is

also governed by the transition matrix and can be simulated

numerically. Although it is natural to model the occupancy of

a catalytic site using a set of discrete states, the mechanical

motion is continuous and it is not clear whether a large

conformational change can be modeled simply as a chemical

transition. To describe the mechanical nature of molecular

motors, introduction of some intermediate states becomes

necessary. For example, an ATP-binding power-stroke can be

modeled by transition from a weakly bound state to a tightly

bound state. Fisher and Kolomeisky go further along this line

by introducing more kinetic states along the mechanical

coordinate to describe more subtle mechanical responses of

the system (7,8). They have applied this method successfully

to describe the statistics of kinesin and myosin dynamics

(15,16).

Next we turn to continuum descriptions. Proteins live in

the world of low Reynolds numbers where inertia can be

neglected. The timescale of inertia is the time it takes for the

motor to forget its current velocity due to friction. For

example, the inertial timescale of a 1-mm bead in water is

;56 ns (17). The stochastic dynamics of a protein motor

generally takes place on timescales much longer than this,

and is well described by overdamped Langevin equations of

the form (9,18),

z
dx

dt|{z}
Viscous

drag force

¼ �V9j ðxÞ|fflfflfflffl{zfflfflfflffl}
Motor
force

� FLoad|ffl{zffl}
Load
force

1
ffiffiffiffiffiffiffiffiffiffiffiffi
2kBTz

p
f ðtÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Brownian
force

; (2)

where j is the current chemical occupancy state of the system.

Here x denotes a mechanical (geometric) coordinate and z is

a drag coefficient, related to the diffusion coefficient D by the

Einstein relation z¼ kBT/D (kB is the Boltzmann constant and

T the absolute temperature). The value Vj(x) is the potential of

mean force as a function of the geometrical coordinate, x,

whereas, in chemical occupancy state j, FLoad is the external

load force on the motor and f(t) is white-noise (the derivative

of a Weiner process). Chemical transitions can accompany

motions along the mechanical degree of freedom. The

Langevin equation (Eq. 2) is not closed. It governs the sto-

chastic evolution of the mechanical coordinate given the

current occupancy state. The dynamics along the chemical

coordinates of occupancy states is governed by a discrete

Markov model of the same form as Eq. 1, with transition rates

that generally depend on the system configuration, x (19). Let
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K(x) be the matrix of transition rates along the chemical

coordinates at position x. The off-diagonal elements kji(x) are

the transition rates from chemical occupancy state i to state j;
the diagonal elements are kjj(x) ¼�Si 6¼ jkij(x). The Langevin

equation (Eq. 2) coupled with a discrete Markov process with

transition matrixK(x) describes the stochastic evolution of the

motor system.

Brownian fluctuations dominate the dynamics of molec-

ular motors, and so its trajectory is stochastic. However, ex-

periments generally measure only the average quantities,

such as mean positions, velocities, and reaction cycle rates.

Average quantities can be studied more efficiently by fol-

lowing the evolution of probability densities that are gov-

erned by Fokker-Planck equations of the form

@rj

@t
¼ 1

D

@

@x

�
1

kBT

�
FLoad 1V9j ðxÞ

�
rj

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Motion due to the potential
and the load force

1 D
@

2
rj

@x
2|fflffl{zfflffl}

Brownian
motion

1 +
i

kjiðxÞri|fflfflfflfflffl{zfflfflfflfflffl}
Chemical
reactions

; j ¼ 1; . . . ; S: (3)

Here rj(x, t) is the probability density of the motor being at

position x at time t in chemical occupancy state j. The

Fokker-Planck equations and the Langevin equations are

equivalent (9). This framework has been applied in many

theoretical studies of real and generic molecular motors; we

refer the readers to Howard (4), Zwanzig (9), and Reimann

(20), and references therein.

Generally speaking, kinetic models are simpler than

continuum models. In some cases, analytical solutions can

be obtained (e.g., Ref. 8), which can provide valuable phys-

ical insight. In principle, the two frameworks—i.e., kinetic

models (especially the generalized kinetic models) and MFP

models—achieve equivalent descriptions if a large number

of kinetic states are included to emulate the continuous geo-

metric coordinate. However, the Fokker-Planck (MFP) models

have many advantages over a priori kinetic models despite

their greater computational complexity.

1. There are clear connections between the spatial potentials

in a Fokker-Planck model and the molecular structure so

that structural information can be inferred. We believe

that this is an important aspect in modeling protein mo-

tors, which is not easy to incorporate into an a priori

kinetic model. However, the potential-based kinetic mod-

els that we will construct below from MFP models can be

related to structural information.

2. The force-velocity relation is one of the most important

characteristics of a molecular motor. Below we will show

by an example that the force-velocity relation may be

nonmonotonic. Although such a nonmonotonic force

velocity relation is naturally accommodated within the

framework of Fokker-Planck models, it is not easy to

accommodate it in an a priori kinetic model without

referring back to the potentials from which the kinetic

model was constructed. In some treatments, one assumes

a simple form for the underlying potentials so that the

effects of the external load can be added to the rate-

constant expression analytically (13).

3. Motors like myosin may function in groups where

there can be cooperative effects so that the system dy-

namics is not a simple sum of single motor dynamics

(21,22). An a priori kinetic model for a single motor is

just a phenomenological model for the behavior of the

motor when it is not coupled to other motors. When two

or more motors are coupled, the multimotor system can

be described by another kinetic model. If the coupling is

weak, the overall kinetic states can be treated as a com-

bination of individual motor states. However, when the

coupling is strong (e.g., motors are tightly coupled by

a rigid filament), chemical states of individual motors

become less well-defined, as illustrated in Fig. 1. By con-

trast, in the MFP framework, treatment of the coupling is

straightforward.

4. In constructing an a priori kinetic model, one usually

makes implicit assumptions, which are not easy to

discern when revising the model in light of new data. For

example, all the possible reaction pathways may not be

treated. Consequently, one generally assumes the exis-

tence of a dominant reaction pathway (but see, e.g., Ref.

23); however, for multisubunit motors, this notion breaks

down. For example, experiments on helicases reveal

many broadly-distributed, concentration-dependent path-

ways (24). On the other hand, in MFP models all reaction

pathways are accommodated and none need be excluded

without justification, and the existence of concentration-

dependent pathways emerges naturally.

FIGURE 1 (a) Two rigidly coupled motors are driven by a set of two-state

potentials, V1 and V2. (b) The coupled motor system has four configurations.

Vij refers to the potential with the two motors in states i and j, respectively. It

is clear that if the dynamics of the coupled motor system are described by

a kinetic model, there is no simple relation between the rate constants of the

compound system and those of each individual motor.
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We should point out that the generalized kinetic models

can overcome most of the above disadvantages of chemical-

state-only-based kinetic models by providing sufficient

treatments of the mechanical degree(s) of freedom; for ex-

ample, the nonmonotonic force-velocity relations (25). Our

approach provides a natural way to construct a generalized

kinetic model based on potentials.

NUMERICAL METHODS

Wang et al. (11) developed an efficient and robust numerical

algorithm for solving Fokker-Planck equations, hereafter

referred to as the WPE algorithm (11,26). This method has

the desired property of ensuring detailed balance while

computing the correct mean velocities and the variances in

a mean-square sense. In the algorithm, a set of continuous

Fokker-Planck equations is approximated by the master

equation for a jump process on discrete grid points. Each grid

point can exchange population/probability with its nearest

neighbors along both the spatial and reaction coordinates.

The jump rates along the spatial coordinates are calculated

based on local steady-state solutions. The jump rates in the

reaction coordinates are taken as the rates at the grid points.

The algorithm has been proved to be second-order-accurate

and robust. Recently, Fricks et al. (27) extended the algo-

rithm to study how motor dynamics is affected by a viscous

load elastically linked to the motor. However, a good

numerical solution requires that the distance between two

neighboring grid points be small enough so that

1. The potential between two neighboring grid points can be

well approximated by a linear function (the algorithm

constructs the local steady-state solution by assuming

a linear potential between two neighboring grid points).

2. The chemical transition rate in the cell around a given

grid point can be well approximated by the chemical tran-

sition rate at that grid point (the algorithm simply uses

the rate at the grid point).

This requirement on the grid size limits the applicability of

the algorithm, especially when the system has a very large

number of chemical states. For example, a ring helicase with

six hydrolysis sites has more than 46,000 chemical states,

and the continuous mechanical degree(s) of freedom adds

another multiplication factor (24).

In studies of molecular motors, system size and lack of

precise structural information prevent obtaining reliable

potentials directly from first-principle calculations (e.g.,

molecular dynamics simulations). In a recent article, Xing

et al. (28) used the Fo motor of ATP synthase as an example

to demonstrate a method of constructing empirical potential

energy surfaces from qualitative and quantitative experi-

mental data. Potentials with tunable parameters were first

constructed based on experimental observations. Then the

parameters were determined by fitting to quantitative exper-

imental data. Finally some of our model predictions were

confirmed by new dynamic experiments, and new structural

predictions were also made from the potentials. This pro-

cedure is analogous to the method of constructing an empir-

ical potential energy surface that is widely used in chemical

dynamics studies: potentials determine the forces that govern

dynamics, and potentials can be related to structures.

Construction of the potential surfaces itself may be a

complicated procedure, which we do not address here. How-

ever, the issues we do address are: 1), how to construct a

faithful and computationally efficient algorithm, for a given

set of potentials; and 2), how to formulate a natural method

for constructing simple kinetic models based on the un-

derlying continuum Fokker-Planck models. We will see that

both of these two goals are achieved by a generalization of

the WPE algorithm. The generalized algorithm retains the

use of local steady-state solutions, but relaxes the two as-

sumptions listed above. The remainder of the article is

organized in the following order. First we derive the gen-

eralized algorithm in one dimension and higher dimensions.

Next some numerical tests are presented. Finally, limitations

of the method are discussed. The consistency, stability, and

convergence of the generalized algorithm are analyzed in

Appendix B.

THE GENERALIZED ALGORITHM

We begin by observing that many systems involve phe-

nomena that operate on widely disparate timescales. Thus

one can use adiabatic approximations (i.e., singular pertur-

bation) to treat separately degrees of freedom with fast time-

scale motions that adjust quickly to the slow timescale motions.

A well-known example of this is the Born-Oppenheimer

approximation in quantum mechanics. Another closer related

example is the quasi-steady-state approximation in chemical

dynamics studies (29). If one is only interested in long

timescale dynamics, then it is usually a good approximation

to assume that a steady state is established for the high-

frequency degrees of freedom without appreciable evolution

of the low-frequency degrees of freedom. Below we describe

the generalized algorithm. Derivation details are given in the

Appendices.

Algorithm for one-dimensional equation with
no reaction

Consider first a one-dimensional Fokker-Planck equation

with no chemical transitions:

@r

@t
¼ D

@

@x

1

kBT

@V

@x
r1

@r

@x

� �
: (4)

This equation describes the stochastic evolution of a particle

driven by potential V(x). We divide the computational region

(0, L) into N sub-intervals. Let Dx ¼ L/N and xi ¼ iDx.

We call the sub-interval (xi�1, xi) the ith cell in the spatial
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direction. We use a jump process to approximate the con-

tinuous motion of the particle as shown in Fig. 2 (notice that

cells, and not grid points, are used in the current algorithm).

The particle can jump from a cell to the neighboring cells.

For a one-dimensional problem, a cell has two neighboring

cells in the spatial dimension. Let ri/i11 denote the jump rate

from (xi�1, xi) to (xi, xi11), and ri11/i the jump rate from (xi,

xi11) to (xi�1, xi). In each cell, we define the probability of the

particle being in that cell as

piðtÞ ¼
Z xi

xi�1

rðx; tÞdx:

Then Eq. 4 is approximated by the master equation of the

jump process:

d

dt
pi ¼ ðpi�1ri�1/i � piri/i�1Þ � ðpiri/i11 � pi11ri11/iÞ: (5)

First, we introduce the free energy of individual cells. The

free energy is defined such that the Boltzmann distribution of

the discrete system matches that of the continuous system.

Let Gi be the free energy of cell i. We require that

exp
�Gi

kBT

� �
¼

Z xi

xi�1

exp
�VðxÞ
kBT

� �
dx;

so that

Gi ¼ �kBT ln

Z xi

xi�1

exp
�VðxÞ
kBT

� �
dx

� �
:

Consistent with normal statistical mechanics definition, the

free energy is related to the partition function defined in the

cell. Our definition of the free energy term is also consistent

with what used in chemical dynamics (6). The right-hand

side of Eq. 4 involves second-order partial differentiation;

thus, it takes two conditions to uniquely specify a steady-

state solution. The rates ri/i11 and ri11/i are determined by

equating the numerical flux with the flux of the local steady-

state solution specified byZ xi

xi�1

rðxÞdx ¼ pi and

Z xi11

xi

rðxÞdx ¼ pi11:

This local steady-state solution can be written as a linear

combination of the Boltzmann distribution and the quantity

qiðxÞ ¼ exp
�VðxÞ
kBT

� �Z x

xi�1

exp
Vðx9Þ
kBT

� �
dx9;

where qi(x) is the steady-state solution of Eq. 4 specified by

qi(xi�1) ¼ 0 and ð1=kBTÞV9qi1q9i ¼ 1: To calculate the jump

rates ri/i11 and ri11/i, we assume that the solution of Eq. 4

in the interval (xi�1, xi11) is approximately in a steady state,

which has the general form of

rðxÞ ¼ c1 1 c2

Z x

xi�1

exp
Vðx9Þ
kBT

� �
dx9

� �
exp

�VðxÞ
kBT

� �

¼ c1exp
�VðxÞ
kBT

� �
1 c2qiðxÞ: (6)

The probability flux based on the local steady-state solution

is given by

JðxiÞ ¼ �D
1

kBT

@V

@x
r1

@r

@x

� �
¼ �Dc2: (7)

The two constants c1 and c2 are determined from the condi-

tions Z xi

xi�1

rdx ¼ pi and

Z xi11

xi

rdx ¼ pi11:

Solving for c2 and substituting into Eq. 7, we obtain

JðxiÞ ¼D

pi exp
�Gi11

kBT

� �
�pi11exp

�Gi

kBT

� �
exp

�Gi

kBT

� �Z xi11

xi

qiðxÞdx�exp
�Gi11

kBT

� �Z xi

xi�1

qiðxÞdx
:

Comparing this with the numerical flux j
ðnumÞ
i ¼ ðpiri/i11�

pi11ri11/1Þ leads immediately to the expression for ri/i11

and ri11/i,

ri/i11 ¼Dh
1

i ½V�; ri11/i ¼Dh
�
i ½V�; (8)

where

h
1

i ½V� ¼
exp

�Gi11

kBT

� �
exp

�Gi

kBT

� �Z xi11

xi

qiðxÞdx� exp
�Gi11

kBT

� �Z xi

xi�1

qiðxÞdx
;

and

h
�
i ½V� ¼

exp
�Gi

kBT

� �
exp

�Gi

kBT

� �Z xi11

xi

qiðxÞdx� exp
�Gi11

kBT

� �Z xi

xi�1

qiðxÞdx
:

Functions hi
1[V] and hi

�[V] are the jump rates (normalized

by the diffusion coefficient) derived using a local steady-

state solution. In the jump process with this set of rates, the

local steady state (without reaction term) is preserved exactly.

As stated in Wang et al. (11), there are two motivations for

using a local steady state without reaction. First, the exact

FIGURE 2 Schematic illustration of the algorithm. The jump process

defined in Eq. 8 approximates the continuum model from Eq. 4. Note that the

Markov states are now intervals corresponding to the integration domains.
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solution can be written out analytically. Second, the local

steady-state solution is a good approximation of the real time

evolving solution. Consider the local system consisting of

two adjacent cells. This local system has a spatial size of

2Dx. Assume this local system is isolated from other cells.

The timescale for the diffusion to drive it to a steady state is

of the order (Dx)2. The time for the convection to change this

local system appreciably is of the order (Dx), whereas the

timescale for the chemical reaction to change this local sys-

tem is of the order O(1) (the coefficient may be large). Thus,

although this local system is not isolated from other cells, it

is in a pseudo-steady state (relaxation to the steady state is

much faster than the evolution of the steady state). Therefore,

this approach is justified at least in the limit of Dx converging

to zero. Notice that the local steady-state solution is actually

time-evolving because the constraints on the local steady-

state solution vary with time. Here we have explicitly in-

cluded the potential, V, in the notations of hi
1[V] and hi

�[V].

As we will see, this notation will be very convenient in dis-

cussing two-dimensional problems.

The rates ri/i11 and ri11/i automatically satisfy detailed

balance

ri/i11

ri11/i

¼ exp
Gi �Gi11

kBT

� �
:

This is an important constraint on the solutions, as discussed

in Wang et al. (11) and Elston and Doering (30).

In the absence of chemical transitions, the steady-state

solution obtained with this algorithm is exact. Notice that the

algorithm does not assume a linear potential in (xi�1, xi11).

This is one of the reasons that it can represent the continuous

Fokker-Planck equation with a small number of cells. In con-

trast, the WPE algorithm approximates the potential within

(xi�1, xi11) by a linear interpolation. Because we assumed

that a steady state is established in each interval (xi�1, xi11)

for a time-dependent solution, short-time resolution is lost if

only a small number of cells are used in the simulations; this

will be illustrated in the numerical examples below.

The jump process illustrated in Fig. 2 is a discrete kinetic

model. Thus, the new algorithm provides a natural way of

building a discrete kinetic model from the underlying con-

tinuum MFP model.

Algorithm for one-dimensional equation
with reactions

Consider a variant of Eq. 3 where the external force is ab-

sorbed into the potentials:

@rj

@t
¼ 1

D

@

@x

�
1

kBT

�
FLoad1V9j ðxÞ

�
rj

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Motion due to the potential
and the load force

1 D
@

2
rj

@x2|fflffl{zfflffl}
Brownian

motion

1+
i

kjiðxÞri|fflfflfflfflffl{zfflfflfflfflffl}
Chemical
reactions

; j¼ 1; . . . ;S: (9)

The discrete reaction coordinate can be visualized as orthog-

onal to the continuous geometric coordinate. First, we intro-

duce several notations for the numerical discretization:

1. pj
i is the probability that the system is in cell (xi�1, xi) and

in state j.
2. rj

i/i11 is the transition rate in the spatial dimension from

cell (xi�1, xi) to cell (xi, xi11) in state j
3. r j/j9

i r j/j9
i is the transition rate in the reaction dimension

from state j to state j9 in cell (xi�1, xi).

4. G
j
i ¼ �kBT ln

R xi

xi�1
expð�VjðxÞ=kBTÞdx

� �
is the free

energy of cell i in chemical state j.

As in the previous section, the continuous motion along

the geometric coordinate is approximated by a jump process.

Then Eq. 9 is approximated by the master equation of the

jump process,

dp
j

i

dt
¼ p

j

i�1r
j

i�1/i �p
j

ir
j

i/i�1

	 

� p

j

ir
j

i/i11 �p
j

i11r
j

i11/i

	 

1 +

j9 6¼j

p
j9

i r
j9/j

i �p
j

ir
j/j9

i

	 

; (10)

where the jump rates along the geometrical coordinate, rj
i/i11

and rj
i11/i; are calculated using Eq. 9, which was derived for

equations with no reaction. Using Eq. 8 here implicitly

assumes that the presence of a chemical reaction does not

significantly affect the local steady-state solution. This

assumption is valid when the cell size is small enough such

that the diffusion within the cell is faster than the reaction,

and can be considered homogeneous. The jump rates along

the chemical coordinate are calculated by averaging the

chemical reaction rates in cells with Boltzmann weights:

r
j/j9

i ¼ 1R xi

xi�1
exp

�VjðxÞ
kBT

� �
dx

Z xi

xi�1

exp
�VjðxÞ
kBT

� �
kj/j9ðxÞdx;

r
j9/j

i ¼ 1R xi

xi�1
exp

�Vj9ðxÞ
kBT

� �
dx

Z xi

xi�1

exp
�Vj9ðxÞ
kBT

� �
kj9/jðxÞdx:

(11)

The rates rj/j9
i and rj9/j

i automatically satisfy detailed bal-

ance:

r
j/j9

i

r
j9/j

i

¼ exp
G

j

i �G
j9

i

kBT

� �
:

The derivation of this result and Eq. 11 is discussed in

Appendix A.

Algorithm for two-dimensional equations

Consider a Fokker-Planck model with two geometric coor-

dinates, but with no chemical transitions:

@r

@t
¼D

ðxÞ @

@x

1

kBT

@V

@x
r1

@r

@x

� �
1D

ðyÞ @

@y

1

kBT

@V

@y
r1

@r

@y

� �
;

(12)
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where D(x) and D(y) are the diffusion coefficients in the x- and

y-directions, respectively.

We divide the computational region (0, L(x)) 3 (0, L(y))

into N(x) 3 N(y) subregions. Let Dx ¼ LðxÞ=NðxÞ; Dy ¼
LðyÞ=NðyÞ; xi ¼ iDx, and yj ¼ jDy. We call the subregion

(xi�1, xi) 3 (yj�1, yj) the cell (i, j). We introduce the fol-

lowing notation for the two-dimensional discretization:

1. p(i,j) is the probability that the system is in cell (i, j).
2. r(i,j)/(i11,j) is the transition rate in the x-dimension from

cell (i, j) to cell (i11, j).
3. r(i,j)/(i,j11) is the transition rate in the y-dimension from

cell (i, j) to cell (i, j11).

4. G(i,j) ¼ �kBT log
R yj

yj�1

R xi

xi�1
exp �Vðx; yÞ=kBTð Þdx dy

� �
is

the free energy of cell (i, j).

Equation 12 is discretized as

dpði; jÞ

dt
¼ J

ðx;numÞ
ði�1; jÞ � J

ðx; numÞ
ði; jÞ

� �
1 J

ðy;numÞ
ði; j�1Þ � J

ðy;numÞ
ði; jÞ

� �
;

where the numerical fluxes in the two spatial dimensions are

J
ðx;numÞ
ði; jÞ ¼ pði; jÞrði; jÞ/ði11; jÞ �pði11; jÞrði11; jÞ/ði; jÞ;

J
ðy;numÞ
ði;jÞ ¼ pði; jÞrði; jÞ/ði; j11Þ �pði; j11Þrði; j11Þ/ði; jÞ;

and

rði; jÞ/ði11; jÞ ¼Dh
1

i V½yj�1 ;yj�

h i
; rði11; jÞ/ði; jÞ ¼Dh

�
i V½yj�1 ;yj �

h i
;

(13)

where

V½yj�1 ;yj�ðxÞ ¼�kBT ln

Z yj

yj�1

exp
�Vðx;yÞ
kBT

� �
dy

" #
:

Details of the derivation are given in Appendix C. The tran-

sition rates in the y-dimension are obtained in a similar way.

For two-dimensional equations with chemical reactions,

the jump rates in the reaction dimension are calculated by

averaging the chemical reaction rates in cells with Boltz-

mann weights as before. Equation 13 can be easily gener-

alized for problems with more than two dimensions.

Next we illustrate the algorithm with some simple models.

NUMERICAL EXAMPLES

In the following calculations, the linear equations governing

the steady-state solutions were solved using a sparse matrix

solver in MatLab (The MathWorks, Cambridge, MA). Integrals

used in the jump rates of the XWO algorithm were calculated

using the fourth-order Simpson method. MatLab codes are

available on request.

A two-state one-dimensional model

Here we consider a simple two-state system designed to

capture the main physics of a typical molecular motor where

the system switches between a pair of potentials. Each po-

tential is a periodic function with period L. The two poten-

tials are given by (see Fig. 3)

V1ðxÞ ¼
DG0

2
cosð2psðxÞÞ;

V2ðxÞ ¼V1ðx1L=2Þ�DG=2;

where

sðxÞ ¼max 0:625
modðx; LÞ

L
; 2:5

modðx; LÞ
L

�1

� �
11

� �
;

and DG0 ¼ 20 kBT, DG ¼ 30 kBT, and kBT ¼ 4.1 pN/nm.

After one cycle the motor has returned to its initial chemical

state, but the motor position has advanced by L, whereas the

free energy of the system (motor plus environment) decreases

by DG (e.g., ions are transported from high concentration

region to low concentration region, or ATP molecules are

hydrolyzed).

In general, chemical transitions are localized within cer-

tain geometric windows. For example, ion channels are

located at particular positions in the Fo motor (28), and

substrate binding affinity varies dramatically with different

catalytic site conformations in the F1 motor (31). In a typical

cycle, transitions are possible only within the window (xa1,

xb1), with the transition rates

k̂12ðxÞ ¼
k0 1�20





xL� xa11xb1

2






� �

xa1#
x

L
#xb1

0 otherwise

;

8<
:

k̂21ðxÞ ¼ k̂12ðxÞexp
V1ðxÞ�2DG�V2ðxÞ

kBT

� �
;

where k0 ¼ 2000 s�1, and within the window (xa2, xb2), with

the transition rates

k̃21ðxÞ ¼
k0 1�20





xL� xa21xb2

2






� �

xa2#
x

L
#xb2

0 otherwise

;

8<
:

k̃12ðxÞ ¼ k̃21ðxÞexp
V2ðxÞ�V1ðxÞ

kBT

� �
:

FIGURE 3 The potentials used in the one-dimensional numerical example.
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Therefore, the governing equations are

@r1

@t
¼D

@

@x

1

kBT

@V1

@x
r1 1

@r1

@x

� �
� k12r11k21r2

@r2

@t
¼D

@

@x

1

kBT

@V2

@x
r2 1

@r2

@x

� �
� k21r21k12r1; (14)

with k12 xð Þ ¼ k̂12 xð Þ1k̃12 xð Þ; k21 xð Þ ¼ k̂21 xð Þ1k̃21 xð Þ: If the

geometric coordinate, x, is periodic with period L ¼ 2p/3

(i.e., a rotary motor), then the diffusion constant is chosen as

D¼ 104 radian2/s; the mathematical formulation is the same

for a translational motor.

Case 1

The chemical transition regions are localized around the

potential minima, xa1 ¼ 0.55, xb1 ¼ 0.65, xa2 ¼ 1.55, and

xb2 ¼ 1.65. Results are shown in Fig. 4 a. Since the chemical

transitions are rather localized, with the WPE algorithm many

numerical cells are needed to cover the transition region

sufficiently. On the other hand, performance of the XWO

algorithm is remarkable.

Case 2

The chemical transition regions are moved away from the

potential minima, xa1 ¼ 0.4, xb1 ¼ 0.5, xa2 ¼ 1.4, and xb2 ¼
1.5. Results are shown in Fig. 4 b. Compared to case 1, more

numerical cells are needed for the XWO algorithm to con-

verge. The reason is that, in this case, the local steady-state

approximation is less accurate within the transition windows.

Compared to case 1 with the same choice of numerical cell

size, the relative perturbation by chemical transitions is more

severe since the window regions are less populated. This

argument is confirmed by a separate calculation with unequal

numerical cell sizes shown in Fig. 5 b. The spatial coordinate

is divided into five cells; two of them are the transition

windows which have much smaller cell sizes than the other

three cells. The resultant force-velocity curve is nearly iden-

tical to the converged result (N ¼ 32 with equal-sized cells).

Another interesting aspect with this model is that the

force-velocity curve changes dramatically compared to that

of case 1, with only a slight shift in the transition region: the

rotation rate initially increases with increasing load! Actually

this counterintuitive phenomenon has been observed exper-

imentally (12). The explanation is simple. The effective tran-

sition rate between two states is weighted by the probability

of being in the transition region. In case 2 the transition

windows are shifted from the potential bottom, and an ap-

plied load effectively shears the potentials (see Eq. 3), so that

the probability distribution on the initial state potential moves

toward the transition region under small loads. In the actual

system, the effect of the load may be to increase the rate at

which ADP can be released from the catalytic site; this in-

creases the overall rate hydrolysis cycle. Without resorting to

potentials, the different force-velocity behaviors of cases 1

and 2 might be considered as evidence of some dramatically

different type of kinetic mechanism.

Two-dimensional example

Here we connect two motors with an elastic linkage (see Fig.

6). One motor (with its position denoted by x) drives the other

motor (with its position denoted by y). Parameters describing

motor x are the same as in case 1, Dx ¼ 104 radian2/s, Lx ¼
2p/3. For the load motor y, the potential forms are similar to

those used in the one-dimensional model, except they are

reflected at x ¼ 0,

sðyÞ ¼max 0:625
modð�y;LyÞ

Ly

;

�

2:5
modð�y;LyÞ

Ly

�1

� �
11

�
;

and Dy ¼ 104 radian2/s, Ly ¼ 2p/10, DG0 ¼ 12 kBT, and

DG ¼ 6 kBT. The chemical transition regions are located

at ya1 ¼ 0.35, yb1 ¼ 0.45, ya2 ¼ 1.35, and yb2 ¼ 1.45. The

elastic linkage is given by

V12 ¼
1

2
kðx� yÞ2

;

where k ;9.6 pN/nm per rad2. The motion of motor x exerts

a torque on motor y, forcing the latter to move up its free

energy gradient. The potential barriers of motor y are not high,

FIGURE 4 Numerical convergence tests for case 1 of the one-dimensional problem. (Left). The force-velocity curves calculated with the WPE algorithm.

The numerical cell sizes are L/N, where L ¼ 2p/3 is the periodicity. (Middle). The force-velocity curves calculated with the XWO algorithm. (Right). The

averaged relative errors for one force-velocity curve estimated by errorðNÞ;ð1=MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+M

i¼1 vfi
ðNÞ=vfi

ð2NÞ � 1ð Þ2
p

; where M is the number of data points.
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so there is a certain probability that motor y slides over a

potential peak without making a chemical transition. In other

words, motor rotation and chemical transitions are not per-

fectly tightly coupled.

The steady-state solution of the corresponding two-

dimensional MFP equations can be defined within the range

x 2 [0, 2p], and y 2 [x – DL1, x 1 DL2]. The range of y is

chosen to be large enough so that the density at the boundary

is negligible (due to the elastic linkage between the two

motors). In calculations we found that it is sufficient to

choose DL1 ¼ DL2 ¼ 6Ly. Two types of boundary conditions

are used for transitions out of the working region. At a given

x, reflective boundary conditions are used for transitions out

of the range of y, thus the corresponding transition rates are

zero. Otherwise, for transitions that move the system out of

the range x 2 [0, 2p], we use periodic boundary conditions

p(x 1 2p, y 1 2p) ¼ p(x,y). As shown in Fig. 6, the

numerical results with the XWO algorithm converges with

but few cells compared to the WPE algorithm (N in Fig. 6 b is

the number of cells per degree of freedom). The number of

cells necessary for the WPE algorithm is much larger.

CONCLUDING REMARKS

We have presented an efficient numerical algorithm for solv-

ing the kinds of Fokker-Planck equations used in molecular

motor studies. The new algorithm has been tested on several

systems, and is found to be numerically accurate even for

fairly large spatial step sizes. The algorithm also provides

a natural procedure for constructing simpler kinetic models

starting from continuum Fokker-Planck models. The algo-

rithm links continuum Fokker-Planck equations naturally

with mechanochemical Markov chains while retaining many

features of the original modeling framework. Detailed bal-

ance is automatically preserved and, because potentials are

not assumed to be linear between two adjacent grid points,

satisfactory numerical accuracy can be achieved even for

fairly large spatial step sizes. The effective chemical transition

rates are calculated by averaging over each numerical cell.

With the proper distributions, numerical accuracy is signif-

icantly improved over the WPE algorithm. Kinetic models

constructed using the algorithm reproduce the force-de-

pendence of transition rates consistent with that in the original

continuum Fokker-Planck model, such as the puzzling

observations of nonmonotonic load-velocity behavior (12).

We believe that this algorithm provides a new tool for

theoretical modeling of molecular motors and other mecha-

nochemical systems. For complex systems such as multi-

meric motors like the portal protein, helicases, and PilT, the

FIGURE 5 Similar to those in Fig. 4, but for the case 2 of the one-dimensional problem. The results with N¼ 5 in b are obtained with five uneven numerical

cells per period (see text for details).

FIGURE 6 Convergence test for the two-dimensional system with the

XWO algorithm. (a) Schematic illustration of the two motors coupled by an

elastic linkage. (b) The rotation rates (upper) and the relative errors

errorðNÞ;jvðNÞ=vð2NÞ � 1j(bottom) as a function of the numerical cell

numbers Nx ¼ Ny ¼ N. The numerical cell sizes are (Lx/Nx, Ly/Ny).
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total number of chemical states is quite large. Consequently,

the computational cost of using a small spatial step is pro-

hibitively high. For such motors, the new algorithm may be

the only viable way to explore a large parameter space. In

practice it is easier to identify (and exclude) those sparsely

populated high energy chemical states with a potential-based

model. Since the computational effort to solve linear equa-

tions grows as a power law with the number of cells, the

advantage of the XWO algorithm over the WPE algorithm is

appealing for complex systems. For example, the new algo-

rithm was also tested on a combined F1-Fo system (to be

addressed in a future article). The F1 model has 64 chemical

states, with eight chemical occupancy states to describe ion

binding sites of the Fo motor. The combined F1-Fo model is a

two-dimensional system with 64 3 8 ¼ 512 chemical states.

The necessary number of cells for the WPE and XWO

algorithms are ;109 and 106, respectively. In simulations of

the combined F1-Fo system, the new algorithm yields results

similar to those of the WPE algorithm, but with a computa-

tional cost several orders-of-magnitude lower.

In treating multidimensional problems, one implicitly

assumes that the cross-potential terms can be approximated

by linear relationships. This is a serious limitation of the

current algorithm. The new algorithm shows greater advan-

tages over the old WPE algorithm for systems where the

coupling potential terms are slowly varying compared to the

direct (diagonal) terms. The current algorithm can be further

improved by combining it with more elaborate finite element

treatments (32).

APPENDIX A: DERIVATION OF EQ. 11

To calculate the reaction transition rates rj/j9
i and rj9/j

i used in discretization

Eq. 10, we compare the numerical and the theoretical probability flux along

the reaction coordinate between state j and state j9 in cell (xi�1, xi),

numerical flux¼ p
j9

i r
j9/j

i �p
j

ir
j/j9

i ;

theoretical flux¼
Z xi

xi�1

½rj9ðx; tÞkj9/jðxÞ�rjðx; tÞkj/j9ðxÞ�dx;

where pj
iðtÞ ¼

R xi

xi�1
rjðx; tÞdx. Since the exact solution rj(x,t) is unknown, we

approximate it by a local Boltzmann distribution,

rjðx; tÞ ¼ p
j

iðtÞ
e�VjðxÞ=kBTR xi

xi�1
e
�Vjðx9Þ=kBT

dx9
: (15)

Substituting this into the theoretical flux and comparing with the numerical

flux, we obtain the rates given in Eq. 11. The Boltzmann distribution ap-

proximation is justified for two extremes of motion-reaction couplings:

1. For motors in which the chemical reactions are well coordinated with

the mechanical motion, the mechanical motion cannot continue until the

reaction switches the system to another chemical state. For example, in

the F1 ATPase, each chemical transition occurs at a specific rotational

location, and rotation cannot continue until this transition is completed.

In this case, the mechanical degree of freedom is thermally equilibrated

in the local reaction region, and the probability distribution in the local

reaction region is well approximated by the Boltzmann distribution.

2. For motors in which the chemical reactions are not affected by the

motion, kj/j9(x) is independent of x. In this case, we have rj/j9
i ¼

kj/j9; r
j9/j
i ¼ kj9/j; independent of i.

Of course, as the cell size goes to zero, the rates obtained with the Boltzmann

distribution weighting converges to the rates obtained with the exact solution

weighting. In this sense the Boltzmann distribution approximation is always

justified for small cell size. Numerical examples show that the Boltzmann

distribution approximation also works well for moderate cell size.

One advantage of using Boltzmann distributions approximation is that

detailed balance is exactly preserved. The exact transition rate functions

kj/j9(x) and kj9/j(x) satisfy detailed balance

kj/j9ðxÞ
kj9/jðxÞ

¼ exp
VjðxÞ�Vj9ðxÞ

kBT

� �
;

which implies

exp
�VjðxÞ
kBT

� �
kj/j9ðxÞ ¼ exp

�Vj9ðxÞ
kBT

� �
kj9/jðxÞ:

Detailed balance for r j/j9
i and r j9/j

i follows immediately.

APPENDIX B: CONSISTENCY AND STABILITY

In this Appendix, we show that the new method is second-order accurate

for smooth potentials. Specifically, we will first show that the method is

consistent with the Fokker-Planck equation. Then we will show that the

method is stable with respect to the L2 norm. Once we have consistency and

stability, the Lax equivalence theorem implies convergence (33). The

approach of the analysis used here is similar to that used in Wang et al. (11).

For simplicity, we present the proof of the consistency and stability for

the Fokker-Planck equation:

@r

@t
¼D

@

@x

1

kBT
V9r1

@r

@x

� �
: (16)

The approach can be extended to Fokker-Planck systems with an arbitrary

number of states.

The numerical method for this Fokker-Planck equation is

p
n11

i �p
n

i

Dt
¼ ri�1/i

p
n11

i�1 1p
n

i�1

2
� ri/i�1

p
n11

i 1p
n

i

2

� �

� ri/i11

p
n11

i 1p
n

i

2
� ri11/i

p
n11

i11 1p
n

i11

2

� �
; (17)

where in the time dimension it is discretized using the Crank-Nicholson

method.

Consistency

We want to show that the truncation error of the method is second-order in

both the time and spatial dimensions. The local truncation error is the

residual of the method applied to an exact solution. Let r(x,t) be an exact

solution of Eq. 16. When we substituting �rrn
i ¼ ð1=DxÞ

R xi

xi�1
rðx; tnÞdx into

Eq. 17, the residual term is the local truncation error. To find the order of the

local truncation error of Eq. 17, we expand every term in ri/i11 and ri11/i,

around xi.

Consider two functions:

aðsÞ ¼
Z xi1s

xi

exp
�VðxÞ
kBT

� �
dx
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and

bðsÞ ¼
Z xi1s

xi

exp
�VðxÞ
kBT

� �Z x

xi

exp
Vðx9Þ
kBT

� �
dx9dx:

Expanding yields

aðsÞ ¼ exp
�Vi

kBT

� �
s 1� V9i

2kBT
s1a

ð2Þ
i s

2 �a
ð3Þ
i s

3
1Oðs4Þ

� �

and

bðsÞ ¼ 1

2
s

2
11b

ð1Þ
i s1b

ð2Þ
i s

2
1b

ð3Þ
i s

3
1Oðs4Þ

h i
;

where Vi ¼ VðxiÞ; aðkÞi ; and b
ðkÞ
i are some smooth functions evaluated at xi.

Substituting exp �Gi=kBTð Þ ¼ �a �Dxð Þ; exp �Gi11=kBTð Þ ¼ a Dxð Þ;R xi11

xi
qi xð Þdx ¼ b Dxð Þ; and

R xi

xi�1
qi xð Þdx ¼ �b �Dxð Þ into ri/i11 and ri11/i

we obtain

where aâa
ðkÞ
i is some smooth function evaluated at xi.

Expanding cðsÞ ¼
R xi1s

xi
r x; tnð Þdx around xi, we have

cðsÞ ¼ s r
n

i 1
1

2
rxj

n

i s1c
ð2Þ
i s

2
1c

ð3Þ
i s

3
1Oðs4Þ

� �
;

where rn
i ¼ r xi; tnð Þ; rxj

n
i ¼ @r xi; tnð Þ=@x; and ci

(k) is some smooth func-

tion evaluated at xi.

Substituting �rrn
i ¼ ð�1=DxÞcð�DxÞ and �rrn

i11 ¼ ð1=DxÞcðDxÞ into the

numerical flux yields

ri/i11�rr
n

i � ri11/i�rr
n

i11 ¼
D

ðDxÞ2

�
� V9i

kBT
r

n

i 1rxj
n

i

�
Dx

�

1cĉc
ð3Þ
i ðDxÞ3

1OððDxÞ4Þ
�
;

(19)

where cĉc
ðkÞ
i is some smooth function evaluated at xi. Using cĉc

ð3Þ
i � cĉc

ð3Þ
i�1 ¼

OðDxÞ; we arrive at

ðri�1/i�rr
n

i�1 � ri/i�1�rr
n

i Þ� ðri/i11�rr
n

i � ri11/i�rr
n

i11Þ

¼D
@

@x

1

kBT
V9r1

@r

@x

� �



n

j�1=2

1OððDxÞ2Þ: (20)

From this result, it is straightforward to show that the local truncation error

of Eq. 17 is second-order in both the time and spatial dimensions.

Stability

Next we prove that the method Eq. 17 is stable with respect to the two-norm.

We first introduce some notation:

p
n ¼ ðpn

1; p
n

2; . . . ;p
n

NÞ;

kpnk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
N

i¼1

ðpn

i Þ
2

s
;

p
n11=2

i ¼ 1

2
ðpn

i 1p
n11

i Þ;

p
n11=2 ¼ 1

2
ðpn

1p
n11Þ:

Multiplying both sides of Eq. 17 by p
n11=2
i ¼ 1=2 pn

i 1 pn11
i

	 

and summing

over i, we obtain

kpn11k2

22kpnk2

2

2Dt
¼+

N

i¼1

p
n11=2

i ½ðri21/ip
n11=2

i21 2ri/i21p
n11=2

i Þ

2ðri/i11p
n11=2

i 2ri11/i p
n11=2

i11 Þ�:

Using summation by parts and using periodic boundary conditions yields

kpn11k2

22kpnk2

2

2Dt
¼+

N

i¼1

ðpn11=2

i11 2p
n11=2

i Þ

3ðri/i11p
n11=2

i 2ri11/ip
n11=2

i11 Þ:
Using the identity

a1b12a2b2 ¼
a11a2

2
ðb12b2Þ1ða12a2Þ

b11b2

2

we get

kpn11k2

22kpnk2

2

2Dt
¼2+

N

i¼1

ri/i111ri11/i

2
ðpn11=2

i11 2p
n11=2

i Þ2

1+
N

i¼1

ri/i112ri11/i

2
ðpn11=2

i11 Þ2
2ðpn11=2

i Þ2
h i

:

(21)

Since ri/i11 and ri11/i are both positive, the first term on the right side of

Eq. 21 is nonpositive.

Using Eq. 18, we have

ri21/i2ri/i21

2
2
ri/i112ri11/i

2
¼ D

2kBT
V$ðxi21=2Þ1OððDxÞ2Þ:

Since V$(x) is bounded, when Dx is small enough there exists a constant C

such that

ri21/i2ri/i21

2
2
ri/i112ri11/i

2
#C: (22)

ri/i11 ¼
D

ðDxÞ2

�
1 � V9i

2kBT
Dx1 aâa

ð2Þ
i ðDxÞ2 � aâa

ð3Þ
i ðDxÞ3

1OððDxÞ4Þ
�

ri1 1/i ¼
D

ðDxÞ2 11
V9i

2kBT
Dx1 aâað2Þ

i ðDxÞ2
1 aâað3Þ

i ðDxÞ3
1OððDxÞ4Þ

�
;

� (18)
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Using summation by parts and Eq. 22, we can write the second term on the

right side of Eq. 21 as

+
N

i¼1

ri/i112ri11/i

2
p

n11=2

i11

� �2

2 p
n11=2

i

� �2
� �

¼+
N

i¼1

ri21/i2ri/i21

2
2
ri/i112ri11/i

2

� �
p

n11=2

i

� �2

#C+
N

i¼1

p
n11=2

i

� �2

#
C

2
+
N

i¼1

p
n

i

	 
2
1+

N

i¼1

p
n11

i

	 
2

� �

¼C

2
kpnk2

21kpn11k2

2

� �
:

Thus, Eq. 21 becomes

kpn11k2

22kpnk2

2

2Dt
#

C

2
kpnk2

21kpn11k2

2

� �
;

which immediately leads to

kpn11k2

2 #
11CDt

12CDt
kpnk2

2:

Therefore, Eq. 17 is stable with respect to the two-norm.

APPENDIX C: ALGORITHM FOR
TWO-DIMENSIONAL EQUATIONS

We will use approximate local steady-state solutions to determine the

numerical transition rates. In the one-dimensional case discussed above, the

general steady-state solution has only two undetermined coefficients.

However, unlike the one-dimensional case, the exact steady-state solution

of the two-dimensional equation cannot be determined from the probabilities

of two neighboring cells. Therefore, we use a local mean-field approxima-

tion to separate the dependence on the two spatial dimensions. Note that

a global mean-field treatment is generally not a good approximation, since it

omits correlations between different degrees of freedom.

Separable potentials

First, we consider a simple case where the potential can be decomposed into

two single variable functions:

Vðx;yÞ ¼f1ðxÞ1f2ðyÞ:
This allows us to separate the dependence on the two spatial dimensions

exactly. We seek a steady-state solution in (xi21, xi11) 3 (yj21, yj)

satisfying rðx; yÞ ¼ h1ðxÞh2ðyÞ;

@

@x

1

kBT

@f1

@x
h11

@h1

@x

� �
¼ 0;

@

@y

1

kBT

@f2

@y
h21

@h2

@y

� �
¼ 0;Z yj

yj21

h2ðyÞdy
Z xi

xi21

h1ðxÞdx¼ pði; jÞ;

and

Z yj

yj21

h2ðyÞdy
Z xi11

xi

h1ðxÞdx¼ pði11; jÞ:

Using a method similar to the one we used in the one-dimensional case, we

obtain that the probability flux through the right boundary of (xi21, xi) 3

(yj21, yj) is

J
ðxÞ
ði; jÞ ¼D

ðxÞ
h
1

i ½f1�pði; jÞ2h
2

i ½f1�pði11; jÞ
� �

:

Comparing the numerical flux J
ðx; numÞ
ði; jÞ with J

ðxÞ
ði; jÞ; we immediately obtain

rði; jÞ/ði11; jÞ ¼Dh
1

i ½f1�; rði11; jÞ/ði; jÞ ¼Dh
2

i ½f1�: (23)

From the definition of h1i ½�� and h2i ½��; we can express the transition rates

in terms of V(x, y) instead of f1(x) and f2(y):

rði; jÞ/ði11; jÞn¼Dh
1

i V½yj21 ;yj �

h i
; rði11; jÞ/ði; jÞ ¼Dh

2

i V½yj21 ;yj �

h i
;

(24)

where

V½yj21 ;yj �ðxÞ ¼2kBT log

Z yj

yj21

exp
2Vðx;yÞ

kBT

� �
dy

" #
:

This is Eq. 13 in the text.

The transition rates in the y-dimension can be obtained in a similar way.

Nonseparable potentials

Next we consider the general case V(x,y) ¼ f1(x) 1 f2(y) 1 f12(x,y). For

the general case, the decomposition can still be done locally and

approximately by Taylor expanding only the cross-term f12(x, y).

f12ðx;yÞ ¼f12ðx0;y0Þ1
@f12ðx0;y0Þ

@x
ðx2x0Þ

1
@f12ðx0;y0Þ

@y
ðy2y0Þ1 . . . :

When the cell size is not small, the approximate decomposition may still be

valid as long as the coupling term is slowly varying. If we use Eq. 23 to

calculate the transition rates, we have to write out the approximate

decomposition explicitly. It is not obvious how to find an approximate

decomposition that preserves detailed balance exactly. Fortunately, Eq. 13

(which can be obtained by an inverse procedure of the decomposition)

allows us to calculate the transition rates directly from V(x, y). All we need to

know is that the decomposition can be done locally and approximately.

Another advantage of Eq. 13 is that it preserves detailed balance. The free

energy of cell (i, j ) is

Gði; jÞ ¼2kBT log

Z xi

xi21

Z yj

yj21

exp
2Vðx; yÞ

kBT

� �
dydx

" #

¼2kBT log

Z xi

xi21

exp
2V½yj21 ;yj�ðxÞ

kBT

� �
dx

� �
:

Thus, the transition rates given by Eq. 13 satisfy ðrði; jÞ/ði11; jÞ=
rði11; jÞ/ði; jÞÞ ¼ exp Gði; jÞ2Gði11; jÞ=kBT
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