AMS 212, Assignment #2

1. Use a perturbation method to solve the IVP (initial value problem)
 \[
 \begin{aligned}
 y' - \varepsilon y + 1 &= 0 \\
 y(0) &= \varepsilon
 \end{aligned}
 \]
 Find the first two terms in the expansion.

2. Use a perturbation method to solve the IVP (initial value problem)
 \[
 \begin{aligned}
 y'' &= 2y - \frac{1}{(1 + \varepsilon y)^2} \\
 y(0) &= 0, \quad y'(0) = 0
 \end{aligned}
 \]
 Find the first two terms in the expansion of \(y \).
 Find the first two terms in the expansion of \(T \), the period of oscillation.

3. Use a perturbation method to solve the BVP (boundary value problem)
 \[
 \begin{aligned}
 y'' - 2y' + \varepsilon y &= 0 \\
 y(0) &= 0, \quad y(1) = 1
 \end{aligned}
 \]
 Find the first two terms in the expansion.

4. (Optional) Solve numerically the IVP
 \[
 \begin{aligned}
 y'' &= \frac{1}{\varepsilon} \sin(\varepsilon y) \\
 y(0) &= 1, \quad y'(0) = 0
 \end{aligned}
 \]
 Compute \(T(\varepsilon) \), the period of oscillation as a function of \(\varepsilon \), for \(\varepsilon \) in \([0.01:0.01:1]\).
 Plot \(T(\varepsilon) \) as a function of \(\varepsilon \) and compare with the asymptotic expansion
 \[
 T(\varepsilon) \sim 2\pi \left(1 + \frac{\varepsilon^2}{16} \right)
 \]
Plot \(\frac{1}{\varepsilon^4} \left(\frac{T(\varepsilon)}{2\pi} - 1 - \frac{\varepsilon^2}{16} \right) \) as a function of \(\varepsilon \) to numerically predict the next coefficient.