
 - 1 -

AMS 147 Computational Methods and Applications

Lecture 06
Copyright by Hongyun Wang, UCSC

Recap of Lecture 5:

Newton’s method for solving non-linear systems

f

x () = 0

x n+1 =

x n +

x n where

x n is the solution of

f

x n()

x n =

f

x n()

Floating point representation

In computers, a non-zero real number x is represented as

fl x() = .a1 a2 at() p

Mathematical meaning:

.a1 a2 at() p
=

a1 +
a2

2
+ +

at
t

p

Machine precision:
t 1()

The smallest number above 1 that can be represented exactly is

fl 1+
t 1()() = 1+

t 1()

For 1 < x < 1+
t 1() ,

fl x() x

The middle point between 1 and 1+
t 1() is 1+

t .

1 x < 1+
t ==> fl x() = 1

x > 1+
t ==> fl x() > 1

(Draw the real axis to show 1, 1+
t 1() and the middle point).

The largest number below 1 that can be represented exactly is

fl 1 t() = 1 t

For 1+
t

< x < 1 ,

fl x() x

The middle point between 1 t and 1 is 1
t+1()

.

AMS 147 Computational Methods and Applications

- 2 -

1
t+1()

< x 1 ==> fl x() = 1

x < 1
t+1() ==> fl x() < 1

(Draw the real axis to show 1 t , 1 and the middle point).

Example: = 2, t = 53

Find whether or not fl 1 2 50() = 1.

The middle point between 1 t and 1 is

1
t+1()

= 1 2 54

We compare 1 2-50 with the middle point.

1 2 50
< 1 2 54

==> fl 1 2 50() < 1

For 1 2 60 , we have

1 2 54
< 1 2 60

< 1

==> fl 1 2 60() = 1

Round-off error

Round-off error is the difference between fl(x) and x.

Case 1: Suppose we do truncating.

If we are allowed to use infinitely many bits in the mantissa, x can be represented exactly as

x = .a1 a2 at at +1() p

The floating point representation obtained by truncating is

fl x() = .a1 a2 at() p

==>

fl x() x = .0 0
t

at +1 at + 2

p

= .at +1 at +2() p t

The absolute error (if we do truncating) is

fl x() x = .at +1 at +2() p t p t

AMS 147 Computational Methods and Applications

- 3 -

Here we have used

.at +1 at + 2() 1 .

The relative error (if we do truncating) is

fl x() x

x

p t

.a1 a2 at at +1() p

p t

1 p
=

t 1()

Here we have used

.a1 a2 at at +1() .1() =

1

Summary of case #1:

Suppose we do truncating. We have

fl x() x p t

fl x() x

x

t 1()

Case 2: Suppose we do rounding. We have

fl x() x
1

2
p t

fl x() x

x

1

2
t 1()

That is, the bound of fl x() x is halved when we switch from truncating to rounding.

This can be illustrated by looking at how real numbers between 1 and 1+
t 1() are stored in the

floating-point representation system)

(Draw the real axis with 1 and 1+
t 1())

A mathematical form of fl(x) for error analysis

We can write fl x() as

fl x() = x + fl x() x = x + x
fl x() x

x
= x 1+

fl x() x

x

Let

=
fl x() x

x
.

We have

AMS 147 Computational Methods and Applications

- 4 -

=
fl x() x

x

1

2
t 1() .

We write fl x() as

fl x() = x 1+
fl x() x

x
= x 1+()

Thus, we have

fl x() = x 1+() ,
1

2
t 1()

Note: This form of fl x() is very useful in error analysis.

IEEE double precision floating point representation

fl x() = .a1 a2 at() p

= 2 , t = 53

p + bias() = bk bk 1 b1() ,

bias = 1023 , k = 11

L p U

L = 1022 , U = 1023

A few items about IEEE double precision:

• fl x() occupies

1 + (t 1) + k = 64 bits = 8 bytes (1 byte = 8 bits).

• Machine precision:

t 1()
= 2 52 2.22 10 16

• Round-off error:

fl x() = x 1+()

1

2
t 1()

= 2 53 1.11 10 16

• Question: How is “0” represented?

The range of p is

1022 p 1023

bias = 1023

AMS 147 Computational Methods and Applications

- 5 -

==> 1 p + bias() 2046

p is stored as

p + bias() = b11 b10 b1()

The smallest of

b11 b10 b1() is

0 0 0
11

= 0

The largest of

b11 b10 b1() is

11 1
11

= 1+ 2 + 22
+ 210

= 211 1 = 2047

==>

0 b11 b10 b1() 2047

We compare the range of p + bias() and the range of

b11 b10 b1()

1 p + bias 2046

0 b11 b10 b1() 2047

We see that

b11 b10 b1() = 0 0 0() and

b11 b10 b1() = 11 1() are not used in

storing p.

They are used to store special numbers.

b11 b10 b1() = 0 0 0() is used to store “0” (the real number zero).

b11 b10 b1() = 11 1() is used to store arithmetic exceptions (Inf, Inf, NaN)

Overflow and underflow

In the IEEE double precision representation,

fl x() = .a1 a2 at() p

L p U

The largest number (in absolute value) is

B = .11 1() U U

= 21023 10308

The smallest non-zero number (in absolute value) is

AMS 147 Computational Methods and Applications

- 6 -

b = .1 0 0() L

=
L 1

= 2 1022 1 10 308

Overflow:

If x > B , then fl x() = inf .

This is called overflow.

Note: overflow is a fatal error.

Underflow:

If x <
b

2
, then fl x() = 0 .

This is called underflow.

Note: underflow is a non-fatal error.

Now let us go through two simple examples to see the difference between the exact arithmetic
and finite precision arithmetic.

Example:

Exact arithmetic:

1+ 2 54

IEEE Double precision representation:

fl 1+ 2 54() = 1

We can see fl 1+ 2 54() = 1 by drawing the real axis.

In IEEE double precision representation, the smallest number above 1 is

1 + -(t-1) = (1 + 2 52).

The middle point between 1 and 1 + -(t-1) is 1 + -t = (1 + 2 53).

1 < 1+ 2 54
< 1+ 2 53

==> fl 1+ 2 54() = 1

Note: This example demonstrates the difference between the exact arithmetic and a finite
precision arithmetic. A finite precision arithmetic has round-off errors while the exact
arithmetic does not. As we will see below, if we are not careful, the effect of round-off
errors can be devastating.

Example:

Exact arithmetic:

AMS 147 Computational Methods and Applications

- 7 -

1+ 2 54() 1

2 54 = 1

IEEE Double precision FPR:

fl 1+ 2 54() fl 1()

fl 2 54()
=

1 1

2 54
= 0

Note: In this example, the result of IEEE Double precision FPR is 100% different from the
result of the exact arithmetic.

Let us see two more examples of determining whether or not fl x() = 1.

Example: Let a = 2-30.

Find whether or not fl cos a()() = 1 in IEEE double precision representation.

Taylor expansion of cos(a):

cos a() = 1
1

2
a2

+ O a4()

1
1

2
a2

= 1 2 61
< 1

The middle point between 1 t and 1 is

1
t+1()

= 1 2 54

We compare 1 2 61 with the middle point.

1 2 54
< 1 2 61

< 1

==> fl cos a()()=fl 1 2 61() = 1

Example: Let b = 2-50.

Find whether or not fl exp b()() = 1 in IEEE double precision representation.

Taylor expansion of exp(b):

exp b() = 1+ b + O b2()

1+ b = 1+ 2 50
> 1

The middle point between 1+
t 1() and 1 is

1+
t

= 1+ 2 53

We compare 1+2 50 with the middle point.

AMS 147 Computational Methods and Applications

- 8 -

1+ 2 50
> 1+ 2 53

==> fl exp b()() = fl 1+ 2 50() > 1

(Go through sample codes in assignment #2)

