AMS 147 Computational M ethods and Applications

L ecture 06
Copyright by Hongyun Wang, UCSC

Recap of Lecture5:
Newton’s method for solving non-linear systems f(X) =0
X,., = X, +AX, where AX, isthe solution of Vf(%,)AX, = —f(x,)
Floating point representation
In computers, a non-zero real number x is represented as
fi(x)=ox(.aaa),xp"
Mathematical meaning:

GX(aia,zat)BX p :GX[%*_%*_'”*_%J Xﬂp
B

Machine precision: ﬁ_(t_l)

The smallest number above 1 that can be represented exactly is

fl (1+ ,B_(H)) =1+ ﬂ'(t_l)

For 1<x<1+ ﬁ_(t_l) :
fl(x) = x

The middle point between 1 and 1+ B_(t_l) is 1+87

1<x<1+pY = fl(x)=1
x>1+p7" => fl(x)>1

(Draw thereal axistoshow 1, 1+ ﬁ_(t_l) and the middle point).

The largest number below 1 that can be represented exactly is

fi(1-p")=1-p"
For 1+ Bt <x<1,
fl(x) = x

T

The middle point between 1- ' and1is | 1-p
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Moy == fl(x)=1

1-B

Xx<l- ,8_(t+1)

=> fl(x)<1

(Draw thereal axisto show 1- 87", 1 and the middle point).

Example: B=2, t=53
Find whether or not  fl (1— 2’50) =1.

The middle point between 1- 7' and 1is
1-8
We compare 1-2"*° with the middle point.
1-2°<1-2
=> fi(1-2%)<1

(Y=g o=

For 1- 2%, we have
1-2%<1-2%<«1
==> (1— 2*60) =1

Round-off error
Round-off error is the difference between fl(x) and x.

Casel:  Suppose we do truncating.
If we are allowed to use infinitely many bitsin the mantissa, x can be represented exactly as

x=0x(aa,aa.,),xp"
The floating point representation obtained by truncating is
fi(x)=ox(.aaa),xp"
==> fl(x)- x=—o><[.0---0at+lq+2---] x B°
B

t
=—0o X ('at+1at+2"')ﬁ X ﬂp—t
The absolute error (if we do truncating) is
|ﬂ(X)—X| :('at+1at+2“')ﬁxﬁp_t Sﬁp_t

-2-
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Here we have used (.aHlaHz- . -)ﬁ <1.
Therelative error (if we do truncating) is

[f1)-x| _ B B gl
x| T (agaaun),xpP T BB°

Herewe have used (., 8,8, 8., ), 2 (1), = B~

Summary of case #1:

Suppose we do truncating. We have
[f1(x)- x| < 87

| fI(x) - x| 3 ﬁ,(t_l)

X

Case2:  Suppose we do rounding. We have
fI(x)-x| <557

[1(-x] 1 ey

x| 2
That i, the bound of | fl(x) - x| is halved when we switch from truncating to rounding.

This can beillustrated by looking at how real numbers between 1 and 1+ B_(t_l) are stored in the
floating-point representation system)

(Draw thereal axiswith 1and 1+ ﬁ‘(t_l))

A mathematical form of fl(x) for error analysis

We can write fl(x) as
f|(X):X+f|(X)—x:x+x.ﬂ(x)_xzx(1+ fl(X)—x)

Let
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Thus, we have

1

f(x) = x(L+é), |e|s%ﬁ‘(t_

Note: Thisform of fl(x) isvery useful in error analysis.

| EEE double precision floating point representation
fi)=ox(aa,a),xp’
B=2, t=53
(p+bias) = (b b by,
bias=1023, k=11
L<p<uU
L =-1022, U =1023
A few items about | EEE double precision:
+ fl(x) occupies
1+(t—1)+k=64bits=8bytes (1 byte= 8 hits).
* Machine precision:
ﬂ‘(t‘l) =2 ~222x10"

e Round-off error:
fl(x) = x(1+¢)

BE % gl =2 11110
e Question: How is“0” represented?

Therangeof pis
-1022 < p <1023

bias =1023
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==> 1<(p+bias) <2046

pisstored as
(p+bias) = (b, by--by),

The smallest of (b, by, ---b,), is

p
[oo...o] =0
%/_J
1 Jg

The largest of (by,by--by), is

[11...1} =1+2+22+20 =21 _1=2047
11 B

==>  0<(byby,--b;), <2047

We compare the range of (p + bias) and therange of (b, by,---b),

1< p+bias< 2046
0<(byby-by), <2047

We seethat (b, by,--b;), =(00---0), and (b, by---b;), =(11---1), arenct usedin
storing p.
They are used to store special numbers.

(byby---b), =(00---0), isusedtostore“0" (thereal number zero).

(bubyo---by), =(11---1) is used to store arithmetic exceptions (Inf, —Inf, NaN)

Overflow and underflow
In the |EEE double precision representation,
fi(x)=ox(aaa),xp’
L<p<uU
The largest number (in absolute value) is
B=(11-1),-p’ =g’ = 2% =10%

The smallest non-zero number (in absolute value) is
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b=(10---0),- B =p-*=2""" =10
Overflow:
If |x|> B, then fI(x) =inf .
Thisis called overflow.

Note: overflow isafatal error.
Underflow:

If|x|<g,thenfl(x):0.

Thisis caled underflow.
Note: underflow is a non-fatal error.

Now let us go through two simple examples to see the difference between the exact arithmetic
and finite precision arithmetic.

Example:
Exact arithmetic:

1+27
| EEE Double precision representation:

fil1+2*) =1
We can see fl(1+2*) =1 by drawing the redl axis.
In |EEE double precision representation, the smallest number above 1is
1+ =1+29)
The middie point between 1and 1+ B Pis  1+pt=(1+2%).
1<1+2%<1+2%
==> fl(1+2%)=1

Note: This example demonstrates the difference between the exact arithmetic and afinite
precision arithmetic. A finite precision arithmetic has round-off errors while the exact
arithmetic does not. As we will see below, if we are not careful, the effect of round-off
errors can be devastating.

Example:
Exact arithmetic:
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(1+2%)-1
T2
|EEE Double precision FPR:
f(1+2%)-f(1) 1-1_ .
fi(2*) 2%
Note: In thisexample, the result of IEEE Double precision FPR is 100% different from the
result of the exact arithmetic.

=1

Let us see two more examples of determining whether or not fl(x) = 1.

Example: Let a=2%

Find whether or not fl(cos(a)) =1 in IEEE double precision representation.
Taylor expansion of cos(a):
1
cos(a) =1-=a*+0(a’
(@)=1- L+ ofa)

1
z1—§a2 =1-2"%"<1

The middle point between 1- 7' and 1is

1-8
We compare 1-2"° with the middle point.
1-2"<1-2%<1
==> fl(cos(a))=fl(1-2) =1

(t+1) _1_ o

Example  Let b=2
Find whether or not fl(exp(b)) =1 in IEEE double precision representation.
Taylor expansion of exp(b):
exp(b) =1+b+0O(b?)
~1+b=1+2%>1
The middle point between 1+ 8™ and 1is
1+pt=1+2"

We compare 1+2*° with the middle point.

-7-
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1+27%°>1+2°
==> fl(exp(b)) =fI(1+2°%)>1

(Go through sample codesin assgnment #2)



