AMS 147 Computational Methods and Applications

Lecture 06
Copyright by Hongyun Wang, UCSC

Recap of Lecture 5:

Newton's method for solving non-linear systems $\vec{f}(\vec{x})=0$

$$
\vec{x}_{n+1}=\vec{x}_{n}+\Delta \vec{x}_{n} \quad \text { where } \Delta \vec{x}_{n} \text { is the solution of } \nabla \vec{f}\left(\vec{x}_{n}\right) \Delta \vec{x}_{n}=-\vec{f}\left(\vec{x}_{n}\right)
$$

Floating point representation

In computers, a non-zero real number x is represented as

$$
\mathrm{fl}(x)=\sigma \times\left(. a_{1} a_{2} \cdots a_{t}\right)_{\beta} \times \beta^{p}
$$

Mathematical meaning:

$$
\sigma \times\left(. a_{1} a_{2} \cdots a_{t}\right)_{\beta} \times \beta^{p}=\sigma \times\left(\frac{a_{1}}{\beta}+\frac{a_{2}}{\beta^{2}}+\cdots+\frac{a_{t}}{\beta^{t}}\right)_{\beta} \times \beta^{p}
$$

Machine precision: $\quad \beta^{-(t-1)}$
The smallest number above 1 that can be represented exactly is

$$
\mathrm{fl}\left(1+\beta^{-(t-1)}\right)=1+\beta^{-(t-1)}
$$

For $1<x<1+\beta^{-(t-1)}$,

$$
\mathrm{fl}(x) \neq x
$$

The middle point between 1 and $1+\beta^{-(t-1)}$ is $\quad 1+\beta^{-t}$.

$$
\begin{array}{llll}
1 \leq x<1+\beta^{-t} & =\Rightarrow & \mathrm{fl}(x)=1 \\
x>1+\beta^{-t} & =\Rightarrow & \mathrm{fl}(x)>1
\end{array}
$$

(Draw the real axis to show $1,1+\beta^{-(t-1)}$ and the middle point).
The largest number below 1 that can be represented exactly is

$$
\mathrm{fl}\left(1-\beta^{-t}\right)=1-\beta^{-t}
$$

For $1+\beta^{-t}<x<1$,

$$
\mathrm{fl}(x) \neq x
$$

The middle point between $1-\beta^{-t}$ and 1 is

$$
1-\beta^{-(t+1)}
$$

$$
\begin{array}{lll}
1-\beta^{-(t+1)}<x \leq 1 & ==> & \mathrm{fl}(x)=1 \\
x<1-\beta^{-(t+1)} & == & \mathrm{fl}(x)<1
\end{array}
$$

(Draw the real axis to show $1-\beta^{-t}, 1$ and the middle point).

Example: $\quad \beta=2, \quad t=53$
Find whether or not $\mathrm{fl}\left(1-2^{-50}\right)=1$.
The middle point between $1-\beta^{-t}$ and 1 is

$$
1-\beta^{-(t+1)}=1-2^{-54}
$$

We compare $1-2^{-50}$ with the middle point.

$$
\begin{aligned}
& 1-2^{-50}<1-2^{-54} \\
\Rightarrow & \quad \mathrm{fl}\left(1-2^{-50}\right)<1
\end{aligned}
$$

For $1-2^{-60}$, we have

$$
\begin{aligned}
& 1-2^{-54}<1-2^{-60}<1 \\
\Rightarrow \quad & \mathrm{fl}\left(1-2^{-60}\right)=1
\end{aligned}
$$

Round-off error

Round-off error is the difference between $\mathrm{fl}(x)$ and x.
Case 1: \quad Suppose we do truncating.
If we are allowed to use infinitely many bits in the mantissa, x can be represented exactly as

$$
x=\sigma \times\left(. a_{1} a_{2} \cdots a_{t} a_{t+1} \cdots\right)_{\beta} \times \beta^{p}
$$

The floating point representation obtained by truncating is

$$
\begin{aligned}
& \mathrm{fl}(x)= \sigma \times\left(. a_{1} a_{2} \cdots a_{t}\right)_{\beta} \times \beta^{p} \\
&=\Rightarrow \quad \mathrm{fl}(x)-x=-\sigma \times(\underbrace{.0 \cdots 0}_{t} a_{t+1} a_{t+2} \cdots)_{\beta} \times \beta^{p} \\
&=-\sigma \times\left(. a_{t+1} a_{t+2} \cdots\right)_{\beta} \times \beta^{p-t}
\end{aligned}
$$

The absolute error (if we do truncating) is

$$
|\mathrm{fl}(x)-x|=\left(. a_{t+1} a_{t+2} \cdots\right)_{\beta} \times \beta^{p-t} \leq \beta^{p-t}
$$

Here we have used $\left(. a_{t+1} a_{t+2} \cdots\right)_{\beta} \leq 1$.
The relative error (if we do truncating) is

$$
\frac{|\mathrm{fl}(x)-x|}{|x|} \leq \frac{\beta^{p-t}}{\left(. a_{1} a_{2} \cdots a_{t} a_{t+1} \cdots\right)_{\beta} \times \beta^{p}} \leq \frac{\beta^{p-t}}{\beta^{-1} \cdot \beta^{p}}=\beta^{-(t-1)}
$$

Here we have used $\left(. a_{1} a_{2} \cdots a_{t} a_{t+1} \cdots\right)_{\beta} \geq(.1)_{\beta}=\beta^{-1}$
Summary of case \#1:
Suppose we do truncating. We have

$$
\begin{aligned}
& |\mathrm{fl}(x)-x| \leq \beta^{p-t} \\
& \frac{|\mathrm{fl}(x)-x|}{|x|} \leq \beta^{-(t-1)}
\end{aligned}
$$

Case 2: \quad Suppose we do rounding. We have

$$
\begin{aligned}
& |\mathrm{fl}(x)-x| \leq \frac{1}{2} \beta^{p-t} \\
& \frac{|\mathrm{fl}(x)-x|}{|x|} \leq \frac{1}{2} \beta^{-(t-1)}
\end{aligned}
$$

That is, the bound of $|\mathrm{fl}(x)-x|$ is halved when we switch from truncating to rounding.
This can be illustrated by looking at how real numbers between 1 and $1+\beta^{-(t-1)}$ are stored in the floating-point representation system)
(Draw the real axis with 1 and $1+\beta^{-(t-1)}$)

A mathematical form of $\mathrm{fl}(x)$ for error analysis
We can write $\mathrm{fl}(x)$ as

$$
\mathrm{fl}(x)=x+\mathrm{fl}(x)-x=x+x \cdot \frac{\mathrm{fl}(x)-x}{x}=x\left(1+\frac{\mathrm{fl}(x)-x}{x}\right)
$$

Let

$$
\varepsilon=\frac{\mathrm{fl}(x)-x}{x} .
$$

We have

$$
|\varepsilon|=\left|\frac{\operatorname{fl}(x)-x}{x}\right| \leq \frac{1}{2} \beta^{-(t-1)}
$$

We write $\mathrm{fl}(x)$ as

$$
\mathrm{fl}(x)=x\left(1+\frac{\mathrm{fl}(x)-x}{x}\right)=x(1+\varepsilon)
$$

Thus, we have

$$
\mathrm{fl}(x)=x(1+\varepsilon), \quad|\varepsilon| \leq \frac{1}{2} \beta^{-(t-1)}
$$

Note: This form of $\mathrm{fl}(x)$ is very useful in error analysis.

IEEE double precision floating point representation

$$
\begin{aligned}
& \mathrm{fl}(x)=\sigma \times\left(. a_{1} a_{2} \cdots a_{t}\right)_{\beta} \times \beta^{p} \\
& \beta=2, \quad t=53 \\
& (p+\text { bias })=\left(b_{k} b_{k-1} \cdots b_{1}\right)_{\beta}, \\
& \text { bias }=1023, \quad k=11 \\
& L \leq p \leq U \\
& L=-1022, \quad U=1023
\end{aligned}
$$

A few items about IEEE double precision:

- $\mathrm{fl}(x)$ occupies

$$
1+(t-1)+k=64 \text { bits }=8 \text { bytes } \quad(1 \text { byte }=8 \text { bits }) .
$$

- Machine precision:

$$
\beta^{-(t-1)}=2^{-52} \approx 2.22 \times 10^{-16}
$$

- Round-off error:

$$
\begin{aligned}
& \mathrm{fl}(x)=x(1+\varepsilon) \\
& |\varepsilon| \leq \frac{1}{2} \beta^{-(t-1)}=2^{-53} \approx 1.11 \times 10^{-16}
\end{aligned}
$$

- Question: How is " 0 " represented?

The range of p is

$$
-1022 \leq p \leq 1023
$$

$$
\text { bias }=1023
$$

$$
\Rightarrow \quad 1 \leq(p+\text { bias }) \leq 2046
$$

p is stored as

$$
(p+\text { bias })=\left(b_{11} b_{10} \cdots b_{1}\right)_{\beta}
$$

The smallest of $\left(b_{11} b_{10} \cdots b_{1}\right)_{\beta}$ is

$$
(\underbrace{00 \cdots 0}_{11})_{\beta}=0
$$

The largest of $\left(b_{11} b_{10} \cdots b_{1}\right)_{\beta}$ is

$$
\begin{aligned}
& (\underbrace{11 \cdots 1}_{11})_{\beta}=1+2+2^{2}+2^{10}=2^{11}-1=2047 \\
\Rightarrow & 0 \leq\left(b_{11} b_{10} \cdots b_{1}\right)_{\beta} \leq 2047
\end{aligned}
$$

We compare the range of $(p+$ bias $)$ and the range of $\left(b_{11} b_{10} \cdots b_{1}\right)_{\beta}$

$$
\begin{aligned}
& 1 \leq p+\text { bias } \leq 2046 \\
& 0 \leq\left(b_{11} b_{10} \cdots b_{1}\right)_{\beta} \leq 2047
\end{aligned}
$$

We see that $\left(b_{11} b_{10} \cdots b_{1}\right)_{\beta}=(00 \cdots 0)_{\beta}$ and $\left(b_{11} b_{10} \cdots b_{1}\right)_{\beta}=(11 \cdots 1)_{\beta}$ are not used in storing p.

They are used to store special numbers.

$$
\begin{aligned}
& \left(b_{11} b_{10} \cdots b_{1}\right)_{\beta}=\left(\begin{array}{lll}
0 & 0 & \cdots 0
\end{array}\right)_{\beta} \text { is used to store "0" (the real number zero). } \\
& \left(b_{11} b_{10} \cdots b_{1}\right)_{\beta}=(11 \cdots 1)_{\beta} \text { is used to store arithmetic exceptions (Inf, -Inf, NaN) }
\end{aligned}
$$

Overflow and underflow

In the IEEE double precision representation,

$$
\begin{aligned}
& \mathrm{fl}(x)=\sigma \times\left(. a_{1} a_{2} \cdots a_{t}\right)_{\beta} \times \beta^{p} \\
& \quad L \leq p \leq U
\end{aligned}
$$

The largest number (in absolute value) is

$$
B=(.11 \cdots 1)_{\beta} \cdot \beta^{U} \approx \beta^{U}=2^{1023} \approx 10^{308}
$$

The smallest non-zero number (in absolute value) is

$$
b=(.10 \cdots 0)_{\beta} \cdot \beta^{L}=\beta^{L-1}=2^{-1022-1} \approx 10^{-308}
$$

Overflow:
If $|x|>B$, then $\mathrm{fl}(x)=\inf$.
This is called overflow.
Note: overflow is a fatal error.
Underflow:
If $|x|<\frac{b}{2}$, then $\mathrm{fl}(x)=0$.
This is called underflow.
Note: underflow is a non-fatal error.

Now let us go through two simple examples to see the difference between the exact arithmetic and finite precision arithmetic.

Example:
Exact arithmetic:

$$
1+2^{-54}
$$

IEEE Double precision representation:

$$
\mathrm{fl}\left(1+2^{-54}\right)=1
$$

We can see $\mathrm{fl}\left(1+2^{-54}\right)=1$ by drawing the real axis.
In IEEE double precision representation, the smallest number above 1 is

$$
1+\beta^{-(t-1)}=\left(1+2^{-52}\right)
$$

The middle point between 1 and $1+\beta^{-(t-1)}$ is $\quad 1+\beta^{-t}=\left(1+2^{-53}\right)$.

$$
\begin{aligned}
& 1<1+2^{-54}<1+2^{-53} \\
\Rightarrow & \quad \mathrm{fl}\left(1+2^{-54}\right)=1
\end{aligned}
$$

Note: This example demonstrates the difference between the exact arithmetic and a finite precision arithmetic. A finite precision arithmetic has round-off errors while the exact arithmetic does not. As we will see below, if we are not careful, the effect of round-off errors can be devastating.

Example:

Exact arithmetic:

$$
\frac{\left(1+2^{-54}\right)-1}{2^{-54}}=1
$$

IEEE Double precision FPR:

$$
\frac{\mathrm{fl}\left(1+2^{-54}\right)-\mathrm{fl}(1)}{\mathrm{fl}\left(2^{-54}\right)}=\frac{1-1}{2^{-54}}=0
$$

Note: In this example, the result of IEEE Double precision FPR is 100% different from the result of the exact arithmetic.

Let us see two more examples of determining whether or not $\mathrm{fl}(x)=1$.
Example: Let $a=2^{-30}$.
Find whether or not $\mathrm{fl}(\cos (a))=1$ in IEEE double precision representation.
Taylor expansion of $\cos (a)$:

$$
\begin{aligned}
\cos (a) & =1-\frac{1}{2} a^{2}+O\left(a^{4}\right) \\
& \approx 1-\frac{1}{2} a^{2}=1-2^{-61}<1
\end{aligned}
$$

The middle point between $1-\beta^{-t}$ and 1 is

$$
1-\beta^{-(t+1)}=1-2^{-54}
$$

We compare $1-2^{-61}$ with the middle point.

$$
\begin{aligned}
& 1-2^{-54}<1-2^{-61}<1 \\
=\Rightarrow \quad & \mathrm{fl}(\cos (a))=\mathrm{fl}\left(1-2^{-61}\right)=1
\end{aligned}
$$

Example: Let $b=2^{-50}$.
Find whether or not $\mathrm{fl}(\exp (b))=1$ in IEEE double precision representation.
Taylor expansion of $\exp (b)$:

$$
\begin{aligned}
\exp (b) & =1+b+O\left(b^{2}\right) \\
& \approx 1+b=1+2^{-50}>1
\end{aligned}
$$

The middle point between $1+\beta^{-(t-1)}$ and 1 is

$$
1+\beta^{-t}=1+2^{-53}
$$

We compare $1+2^{-50}$ with the middle point.

$$
\begin{aligned}
& 1+2^{-50}>1+2^{-53} \\
\Rightarrow & \quad \mathrm{fl}(\exp (b))=\mathrm{fl}\left(1+2^{-50}\right)>1
\end{aligned}
$$

(Go through sample codes in assignment \#2)

