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AMS 147 Computational Methods and Applications 

Lecture 06 
Copyright by Hongyun Wang, UCSC 

 

Recap of Lecture 5: 

Newton’s method for solving non-linear systems 
  

 

f 
 

x ( ) = 0  

  

 
x n+1 =

 
x n +

 
x n  where 

  

 
x n  is the solution of 

  

 

f 
 

x n( )
 

x n =
 

f 
 

x n( )  

Floating point representation  

In computers, a non-zero real number x is represented as  

  
fl x( ) = .a1 a2 at( ) p  

Mathematical meaning:  

 

.a1 a2 at( ) p
=

a1 +
a2

2
+ +

at
t

p  

Machine precision: 
t 1( )  

The smallest number above 1 that can be represented exactly is  

fl 1+
t 1( )( ) = 1+

t 1( )  

For 1 < x < 1+
t 1( ) ,  

fl x( ) x  

The middle point between 1 and 1+
t 1( )  is  1+

t .  

1 x < 1+
t   ==> fl x( ) = 1 

x > 1+
t   ==> fl x( ) > 1  

(Draw the real axis to show 1, 1+
t 1( )  and the middle point).  

The largest number below 1 that can be represented exactly is  

fl 1 t( ) = 1 t   

For 1+
t

< x < 1 ,  

fl x( ) x  

The middle point between 1 t  and 1 is  1
t+1( )

.  
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1
t+1( )

< x 1   ==> fl x( ) = 1 

x < 1
t+1( )    ==> fl x( ) < 1  

(Draw the real axis to show 1 t , 1 and the middle point). 

 

Example:   = 2,  t = 53 

Find whether or not  fl 1 2 50( ) = 1. 

The middle point between 1 t  and 1 is   

1
t+1( )

= 1 2 54  

We compare 1 2-50 with the middle point.  

1 2 50
< 1 2 54  

==> fl 1 2 50( ) < 1  

For 1 2 60 , we have  

1 2 54
< 1 2 60

< 1  

==> fl 1 2 60( ) = 1 

 

Round-off error 

Round-off error is the difference between fl(x) and x. 

Case 1:  Suppose we do truncating. 

If we are allowed to use infinitely many bits in the mantissa, x can be represented exactly as 

  
x = .a1 a2 at at +1( ) p  

The floating point representation obtained by truncating is  

  
fl x( ) = .a1 a2 at( ) p  

==> 

  

fl x( ) x = .0 0
t
   

at +1 at + 2

 

 
 

 

 
 

p  

 
= .at +1 at +2( ) p t  

The absolute error (if we do truncating) is 

 
fl x( ) x = .at +1 at +2( ) p t p t  
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Here we have used 
  
.at +1 at + 2( ) 1 . 

The relative error (if we do truncating) is 

 

fl x( ) x

x

p t

.a1 a2 at at +1( ) p

p t

1 p
=

t 1( )  

Here we have used 
  
.a1 a2 at at +1( ) .1( ) =

1 

Summary of case #1: 

Suppose we do truncating. We have 

fl x( ) x p t  

fl x( ) x

x

t 1( )  

 

Case 2:  Suppose we do rounding. We have 

fl x( ) x
1

2
p t  

fl x( ) x

x

1

2
t 1( )  

That is, the bound of fl x( ) x  is halved when we switch from truncating to rounding. 

This can be illustrated by looking at how real numbers between 1 and 1+
t 1( )  are stored in the 

floating-point representation system) 

(Draw the real axis with 1 and 1+
t 1( ) ) 

 

A mathematical form of fl(x) for error analysis   

We can write fl x( )  as 

fl x( ) = x + fl x( ) x = x + x
fl x( ) x

x
= x 1+

fl x( ) x

x
 

Let  

=
fl x( ) x

x
.  

We have  
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=
fl x( ) x

x

1

2
t 1( ) . 

We write fl x( )  as  

fl x( ) = x 1+
fl x( ) x

x
= x 1+( )  

Thus, we have  

fl x( ) = x 1+( ) ,
1

2
t 1( )

 

Note: This form of fl x( )  is very useful in error analysis. 

 

IEEE double precision floating point representation 

  
fl x( ) = .a1 a2 at( ) p  

= 2 , t = 53  

  
p + bias( ) = bk bk 1 b1( ) , 

bias = 1023 , k = 11  

L p U  

L = 1022 , U = 1023  

A few items about IEEE double precision:  

• fl x( )  occupies  

1 + (t  1) + k = 64 bits = 8 bytes  (1 byte = 8 bits). 

• Machine precision: 

t 1( )
= 2 52 2.22 10 16  

• Round-off error:  

fl x( ) = x 1+( )   

1

2
t 1( )

= 2 53 1.11 10 16  

• Question: How is “0” represented? 

The range of p is 

1022 p 1023  

bias = 1023  
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==> 1 p + bias( ) 2046  

p is stored as  

 
p + bias( ) = b11 b10 b1( )  

The smallest of 
 
b11 b10 b1( )  is 

  

0 0 0
11
     

 

 

 
 

 

 

 
 

= 0  

The largest of 
 
b11 b10 b1( )  is 

 

11 1
11

= 1+ 2 + 22
+ 210

= 211 1 = 2047  

==> 
 
0 b11 b10 b1( ) 2047  

We compare the range of p + bias( )  and the range of 
 
b11 b10 b1( )  

1 p + bias 2046  

 
0 b11 b10 b1( ) 2047  

We see that 
 
b11 b10 b1( ) = 0 0 0( )  and 

 
b11 b10 b1( ) = 11 1( )  are not used in 

storing p.  

They are used to store special numbers.  

 
b11 b10 b1( ) = 0 0 0( )  is used to store “0” (the real number zero). 

 
b11 b10 b1( ) = 11 1( )  is used to store arithmetic exceptions (Inf, Inf, NaN) 

 

Overflow and underflow  

In the IEEE double precision representation,  

  
fl x( ) = .a1 a2 at( ) p  

L p U  

The largest number (in absolute value) is 

  
B = .11 1( ) U U

= 21023 10308  

The smallest non-zero number (in absolute value) is 
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b = .1 0 0( ) L

=
L 1

= 2 1022 1 10 308 

Overflow: 

If x > B , then fl x( ) = inf . 

This is called overflow. 

Note: overflow is a fatal error. 

Underflow: 

If x <
b

2
, then fl x( ) = 0 .  

This is called underflow.  

Note: underflow is a non-fatal error. 

 

Now let us go through two simple examples to see the difference between the exact arithmetic 
and finite precision arithmetic. 

 

Example:  

Exact arithmetic:  

1+ 2 54  

IEEE Double precision representation:  

fl 1+ 2 54( ) = 1  

We can see fl 1+ 2 54( ) = 1  by drawing the real axis.  

In IEEE double precision representation, the smallest number above 1 is  

1 + -(t-1) = (1 + 2 52).  

The middle point between 1 and 1 + -(t-1) is  1 + -t = (1 + 2 53).  

1 < 1+ 2 54
< 1+ 2 53  

==> fl 1+ 2 54( ) = 1  

Note: This example demonstrates the difference between the exact arithmetic and a finite 
precision arithmetic. A finite precision arithmetic has round-off errors while the exact 
arithmetic does not. As we will see below, if we are not careful, the effect of round-off 
errors can be devastating. 

 

Example:  

Exact arithmetic: 
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1+ 2 54( ) 1

2 54 = 1  

IEEE Double precision FPR: 

fl 1+ 2 54( ) fl 1( )

fl 2 54( )
=

1 1

2 54
= 0  

Note: In this example, the result of IEEE Double precision FPR is 100% different from the 
result of the exact arithmetic. 

 

Let us see two more examples of determining whether or not fl x( ) = 1.  

Example:  Let  a = 2-30.  

Find whether or not fl cos a( )( ) = 1  in IEEE double precision representation.  

Taylor expansion of cos(a):  

cos a( ) = 1
1

2
a2

+ O a4( )  

1
1

2
a2

= 1 2 61
< 1 

The middle point between 1 t  and 1 is   

1
t+1( )

= 1 2 54  

We compare 1 2 61 with the middle point. 

1 2 54
< 1 2 61

< 1  

==> fl cos a( )( )=fl 1 2 61( ) = 1 

 

Example:  Let  b = 2-50.  

Find whether or not fl exp b( )( ) = 1  in IEEE double precision representation.  

Taylor expansion of exp(b):  

exp b( ) = 1+ b + O b2( )  

1+ b = 1+ 2 50
> 1  

The middle point between 1+
t 1( )  and 1 is   

1+
t

= 1+ 2 53  

We compare 1+2 50 with the middle point. 
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1+ 2 50
> 1+ 2 53  

==> fl exp b( )( ) = fl 1+ 2 50( ) > 1 

 

 

(Go through sample codes in assignment #2) 

 

 


