12. The total cost for the first 5 years is
\[M(5) - M(0) = \int_0^5 M'(x)dx \]
\[= \left[900x^2 + 5000 \right]_0^5 = 30(5)^3 + 5000(5) - 0 \]
\[= 3750 + 25,000 = 28,750 \]
The total cost for the first 5 years is $28,750.

Problems 14.7

1. \[\int_0^3 5x^2 dx = 5x_0^3 = 5(3) - 5(0) = 15 - 0 = 15 \]

2. \[\int_1^5 (e + 3e)dx = \int_1^5 4ex dx \]
\[= 4ex_l^5 \]
\[= 4e(5 - 1) \]
\[= 16e \]

3. \[\int_1^2 5x dx = 5\cdot\frac{x^2}{2}_1^2 = 10 - \frac{5}{2} = \frac{15}{2} \]

4. \[\int_2^8 -5x dx = -5\cdot\frac{x^2}{2}_2^8 = -160 - (-10) = -150 \]

5. \[\int_{-3}^{1} (2x-3)dx = \left(x^2 - 3x \right)_{-3}^{1} = -2 - 18 = -20 \]

6. \[\int_{-1}^{1} (4 - 9y) = \left(4y - \frac{9y^2}{2} \right)_{-1}^{1} = -\frac{1}{2} - \left(-\frac{17}{2} \right) \]
\[= \frac{16}{2} = 8 \]

7. \[\int_1^4 (y^2 + 4y + 4)dy = \int_1^4 (y + 2)^2 dy \]
\[= \frac{(y + 2)^3}{3}_1^4 \]
\[= \frac{1}{3}[(4 + 2)^3 - (1 + 2)^3] \]
\[= \frac{1}{3}[216 - 27] \]
\[= \frac{1}{3}(189) \]
\[= 63 \]

8. \[\int_4^1 (2t - 3t^2)dt = (t^2 - t^3)_4^1 = 0 - (-48) = 48 \]

9. \[\int_{-2}^{-1} (3w^2 - w - 1)dw = \left(w^3 - \frac{w^2}{2} - w \right)_{-2}^{-1} \]
\[= -\frac{1}{2} - (-8) = \frac{15}{2} \]

10. \[\int_8^9 dt = \int_8^9 1 dt = t_8^9 = 9 - 8 = 1 \]

11. \[\int_1^3 3r^{-3} dr = \int_1^3 r^{-3} \]
\[= \frac{1}{6} \left(\frac{3}{2} \right) = \frac{4}{3} \]

12. \[\int_2^3 \frac{3}{x^2} dx = \int_2^3 x^{-2} dx \]
\[= 3\cdot\frac{x^{-1}}{-1}_2^3 \]
\[= \frac{3}{3} \left(\frac{-3}{2} \right) \]
\[= -1 + \frac{3}{2} \]
\[= \frac{1}{2} \]
13. \(\int_{-8}^{8} \frac{\sqrt[4]{3}}{x} \, dx = \int_{-8}^{8} \frac{x^{4/3}}{dx} \)
 \[= \frac{3 \cdot 7^{4/3}}{8} \left[8 \right] \]
 \[= \frac{3 \cdot 128}{7} - \frac{3(-128)}{7} \]
 \[= \frac{768}{7} \]

14. \(\int_{1/2}^{3/2} (x^2 + x + 1) \, dx = \left(\frac{x^3}{3} + \frac{x^3}{2} + x \right) \]
 \[= \left[\frac{15}{3} + \frac{2}{3} + 37 \right] = \left[\frac{15}{3} + \frac{2}{3} + 37 \right] \]
 \[= \frac{4}{3} \cdot 37 \]

15. \(\int_{1/2}^{3/2} x^2 \, dx = \frac{1}{3} \left[x^3 \right]_{1/2}^{3/2} \)
 \[= \frac{1}{3} \left[\frac{3^3}{2^3} - \frac{1^3}{2^3} \right] \]
 \[= \frac{1}{5} \left[(2 + 1)^3 - (-2 + 1)^3 \right] \]
 \[= \frac{1}{5} \left(243 + 1 \right) \]
 \[= \frac{244}{5} \]

16. \(\int_{0}^{36} (\sqrt{x} - 2) \, dx = \left(\frac{2}{3} \cdot 3^2 - 2x \right) \]
 \[= \left[\frac{2}{3} \cdot 3^2 - 2x \right] \]
 \[= 72 - 0 = 72 \]

17. \(\int_{-2}^{2} (z + 1)^4 \, dz = \left(\frac{z + 1}{5} \right)^5 \)
 \[= \frac{1}{5} \left[(2 + 1)^5 - (-2 + 1)^5 \right] \]
 \[= \frac{1}{5} \left(243 + 1 \right) \]
 \[= \frac{244}{5} \]

18. \(\int_{1}^{3} \left(\frac{1}{x^3} - \frac{1}{x^3} \right) \, dx = \left(\frac{3}{4} \cdot 3^2 - \frac{3}{2} \right) \)
 \[= 6 - \left(\frac{3}{4} \right) = \frac{27}{4} \]

19. \(\int_{0}^{1} 2x^2 (x^3 - 1)^3 \, dx = 2 \int_{0}^{1} (x^3 - 1)^3 \left[3x^2 \, dx \right] \)
 \[= \frac{1}{6} \left(x^3 - 1 \right)^4 \]
 \[= \frac{1}{6} \left[0 - \frac{1}{6} \right] = -\frac{1}{6} \]

20. \(\int_{2}^{3} (x + 2)^3 \, dx = \left(\frac{x + 2}{4} \right)^4 \)
 \[= \frac{625}{4} - 64 = \frac{369}{4} \]

21. \(\int_{1}^{4} \frac{1}{y} \, dy = 4 \ln |y| \)
 \[= 4(\ln 8 - \ln 1) \]
 \[= 4(\ln 8 - 0) = 4 \ln 8 \]

22. \(\int_{-e^\pi}^{e^\pi} \frac{2}{x} \, dx = 2 \int_{-e^\pi}^{e^\pi} \left[\ln |x| - \ln |e^\pi| \right] \)
 \[= 2(0 - \pi) = -2\pi \]

23. \(\int_{-1}^{1} x^5 \, dx = e^5 \left[\frac{1}{5} \right] = e^5 - 0 = e^5 \)

24. \(\int_{0}^{2} \frac{1}{x - 1} \, dx = \ln |x - 1| \)
 \[= \ln e - \ln 1 = 1 - 0 = 1 \]

25. \(\int_{0}^{1/3} e^{x} \, dx = \left[\frac{1}{3} \right] \)
 \[= \frac{1}{3} \left(e^1 - e^0 \right) = \frac{1}{3} (e - 0) \]

26. \(\int_{0}^{1/3} \left(x^3 + 2x^2 \right) ^4 \, dx \)
 \[= \int_{0}^{1/3} \left(x^3 + 2x^2 \right) ^4 \left[\left(x^3 + 2x^2 \right) \, dx \right] \]
 \[= \left(\frac{x^3 + 2x^2}{5} \right) \]
 \[= \frac{243}{5} - 0 = \frac{243}{5} \]

27. \(\int_{3/4}^{3} \frac{3}{x^2} \, dx = \left[\frac{3}{x} \right] \)
 \[= \frac{1}{3} \left(x + 3 \right) ^{-2} \]
 \[= \frac{1}{3} \left(\frac{1}{4 + 3} - \frac{1}{3 + 3} \right) \]
 \[= \frac{1}{3} \left(\frac{1}{7} - \frac{1}{6} \right) = \frac{1}{14} \]
28. \[\int_{-1/3}^{20/3} \sqrt[3]{3x + 5} \, dx = \frac{1}{3} \int_{-1/3}^{20/3} (3x + 5)^{1/3} \, dx \]
\[= \frac{2}{9} (3x + 5)^{4/3} \bigg|_{-1/3}^{20/3} \]
\[= \frac{2}{9} (125 - 8) = 26 \]

29. \[\int_{1/3}^{2} \sqrt[3]{10 - 3p} \, dp = -\frac{1}{3} \int_{1/3}^{2} (10 - 3p)^{1/3} \, dp \]
\[= -\frac{2}{9} (10 - 3p)^{4/3} \bigg|_{1/3}^{2} \]
\[= -\frac{2}{9} (8 - 27) = \frac{38}{9} \]

30. \[\int_{-1}^{1} q \sqrt[3]{q^2 + 3} \, dq = \frac{1}{2} \int_{-1}^{1} (q^2 + 3)^{1/3} \, [2q \, dq] \]
\[= \frac{8}{3} - \frac{8}{3} = 0 \]

31. \[\int_{0}^{1} x^2 \sqrt[3]{7x^3 + 1} \, dx = \frac{1}{21} \int_{0}^{1} (7x^3 + 1)^{1/3} \, [21x^2 \, dx] \]
\[= \frac{1}{21} \left(\frac{7x^3 + 1}{3} \right)^{4/3} \bigg|_{0}^{1} \]
\[= \frac{16}{28} - \frac{1}{28} = \frac{15}{28} \]

32. \[\int_{0}^{\sqrt[3]{2}} \left(2x - x \right) \, \left(\frac{x}{x^2 + 1} \right)^{2/3} \, dx \]
\[= \int_{0}^{\sqrt[3]{2}} 2x \, dx - \frac{1}{2} \int_{0}^{\sqrt[3]{2}} (x^2 + 1)^{-2/3} \, [2x \, dx] \]
\[= \frac{2}{3} \left(\frac{x^3}{3} \right)^{1/3} \bigg|_{0}^{\sqrt[3]{2}} \]
\[= (2 - 0) - \frac{3}{2} (2 + 1)^{1/3} - (0 + 1)^{1/3} \]
\[= 2 - \frac{3}{2} (3^{1/3} - 1) \]
\[= 2 - \frac{3\sqrt[3]{3}}{2} + \frac{3}{2} \]
\[= \frac{7 - 3\sqrt[3]{3}}{2} \]

33. \[\int_{0}^{1} \frac{2x^3 + x}{x^2 + x^4 + 1} \, dx \]
\[= \frac{1}{2} \left(\frac{1}{x^4 + x^2 + 1} \right)^{1/2} \left[(4x^3 + 2x) \, dx \right] \]
\[= \frac{1}{2} \ln (x^4 + x^2 + 1) \bigg|_{0}^{1} = \frac{1}{2} [\ln 3 - \ln 1] = \frac{1}{2} \ln 3 \]

34. \[\int_{a}^{b} (m + ny) \, dy = \left(my + \frac{ny^2}{2} \right) \bigg|_{a}^{b} \]
\[= m(b - a) + \frac{1}{2} (b^2 - a^2) \]

35. \[\int_{0}^{1} e^{x} - e^{-x} \, dx = \left(e^x + e^{-x} \right) \bigg|_{0}^{1} \]
\[= \frac{1}{2} \left(e^1 + e^{-1} + (1 + 1) \right) \]
\[= \frac{1}{2} \left(e + \frac{1}{e} + 2 \right) \]

36. \[\int_{-2}^{1} |x| \, dx = 8 \left(\int_{-2}^{0} -x \, dx + \int_{0}^{1} x \, dx \right) \]
\[= 8 \left(\frac{-x^2}{2} \bigg|_{-2}^{0} + \frac{x^2}{2} \bigg|_{0}^{1} \right) = 8 \left([0 - (-2)] + \left(\frac{1}{2} - 0 \right) \right) \]

37. \[\int_{e}^{\sqrt[3]{2}} 3(x^2 + x^3 - x^{-4}) \, dx \]
\[= 3 \left(\frac{x^{-4}}{-1} - \frac{x^{-3}}{-3} \right) \bigg|_{e}^{\sqrt[3]{2}} \]
\[= 3 \left(-\frac{1}{x} + \frac{1}{2x^2} + \frac{1}{3x^3} \right) \bigg|_{e}^{\sqrt[3]{2}} \]
\[= 3 \left(-\frac{1}{\sqrt[3]{2}} + \frac{1}{2 \cdot \sqrt[3]{2}^2} + \frac{1}{3 \cdot \sqrt[3]{2}^3} \right) - 3 \left(-\frac{1}{e} + \frac{1}{2e^2} + \frac{1}{3e^3} \right) \]
\[= 3 \left(-\frac{5}{6 \sqrt[3]{2}} - \frac{1}{4} + \frac{1}{2e^2} + \frac{1}{3e^3} \right) \]
38. \[\int_1^2 \left(6\sqrt{x} - \frac{1}{\sqrt{2x}}\right) \, dx \]
 \[= 6 \int_1^2 \frac{\sqrt{x}}{2} \, dx - \frac{1}{2} \int_1^2 (2x)^{-\frac{1}{2}} \, dx \]
 \[= \left[4x^{\frac{3}{2}} - (2x)^{\frac{1}{2}} \right]_1^2 = (8\sqrt{2} - 2) - (4 - \sqrt{2}) \]
 \[= 9\sqrt{2} - 6 \]

39. \[\int_1^3 (x+1)e^{x^2+2x} \, dx = \int_1^3 e^{x^2+2x} \, dx \]
 \[= \frac{1}{2} x e^{x^2+2x} \bigg|_1^3 = \frac{1}{2} (e^{15} - e^1) = \frac{e^{12} - 1}{2} \]

40. \[\frac{1}{\ln e^x} \, dx = \int_1^9 e^x \, dx = \int_1^9 1 \, dx = x \bigg|_1^9 = 95 - 1 = 94 \]

41. Using long division on the integrand
 \[\int \frac{x^6 + 6x^4 + 3x^3 + 2x^2 + x + 5}{x^3 + 5x + 1} \, dx \]
 \[= \int \left(x^3 + x + \frac{3x^2 + 5}{x^3 + 5x + 1} \right) \, dx \]
 \[= \left[\frac{x^4}{4} + \frac{x^2}{2} + \ln |x^3 + 5x + 1| \right]_0 \]
 \[= (6 + \ln 19) - 0 = 6 + \ln 19 \]

42. \[\int \frac{1}{1 + e^x} \, dx = \int \frac{e^x}{e^x + 1} \, dx \]
 \[= \int_1^2 \frac{1}{e^{-x} + 1} \, dx \]
 \[= -\ln |e^{-x} + 1| \bigg|_1^2 = -\ln \left| e^{-2} + 1 \right| - \ln \left| e^{-1} + 1 \right| \]
 \[= (\ln 1 + 1) - \ln (1 + e^{-1}) \]

43. \[\int_0^1 f(x) \, dx = \int_0^{1/2} 4x^2 \, dx + \int_{1/2}^2 2x \, dx \]
 \[= \frac{4x^3}{3} \bigg|_0^{1/2} + x^2 \bigg|_{1/2}^2 = \frac{1}{6} - 0 + \left(4 - \frac{1}{4}\right) = \frac{47}{12} \]

44. \[\int_1^3 x^3 \, dx - \int_1^3 x^2 \, dx = \left(\frac{x^4}{4} \right)_1^3 - \left(\frac{x^3}{3} \right)_1^3 \]
 \[= \frac{9}{2} - \frac{1}{2} = \frac{81}{4} - \frac{1}{4} \]
 \[= 43 - 20 = 44 \]

45. \[f(x) = \int_1^3 \frac{-3}{x^2} \, dt = -3 \int_1^3 \frac{1}{t^2} \, dt = -3 \left[\frac{1}{x} \right]_1^3 = -3 + 3 = -\frac{3}{3} \]
 \[= \frac{1}{x} - 3 = 6 - 3e \]

46. \[\int_0^1 x^2 \, dx + \int_0^{\sqrt{2}} \frac{1}{3\sqrt{2}} \, dx = 0 + \frac{1}{3\sqrt{2}} \left[x \right]_0^{\sqrt{2}} \]
 \[= \frac{1}{3\sqrt{2}} \left(\sqrt{2} - 0 \right) \]
 \[= \frac{1}{3} \]

47. \[\int_x^3 f(x) \, dx = \int_1^3 f(x) \, dx - \int_1^2 f(x) \, dx \]
 \[= -\int_1^3 f(x) \, dx - \int_1^2 f(x) \, dx \]
 \[= -2 - 5 \]
 \[= -7 \]

48. \[\int_1^4 f(x) \, dx = \int_1^2 f(x) \, dx + \int_2^4 f(x) \, dx \]
 \[\int_1^4 f(x) \, dx = \int_1^3 f(x) \, dx - \int_2^3 f(x) \, dx + \int_2^4 f(x) \, dx \]
 \[= 6 - \int_2^3 f(x) \, dx + \frac{4}{3} \int_2^4 f(x) \, dx \]
 \[= 6 - \int_2^3 f(x) \, dx + 5 \]
 \[= 7 - 6 = 1 \]

49. \[\int_2^3 x^3 \, dx \] is a constant, so \[\frac{d}{dx} \left(\int_2^3 x^3 \, dx \right) = 0. \]
 Thus
 \[\int_2^3 \left(\frac{d}{dx} \int_2^3 x^3 \, dx \right) \, dx = \int_2^3 0 \, dx = C^3_2 - C = C = 0 \]
50. \(f(x) = \frac{e^x e^{-t} - e^{-t}}{e^x + e^{-t}} dt \\
= \int e^x \frac{1}{e^x + e^{-t}} [(e^t - e^{-t})] dt \\
= \ln(e^x + e^{-t}) \bigg|_t^x - \ln(e^e - e^{-e}) \\
= \ln(e^x + e^{-t}) - \ln(e^e - e^{-e}) \)

51. \(\int_0^T \alpha^2 dt = \alpha^2 \int_0^T - 0 = \alpha^2 T \)

52. \(\mu = \int_0^1 [6(x - x^2)] dx \\
= 6 \int_0^1 (x^2 - x^3) dx \\
= 6 \left(\frac{x^4}{4} - \frac{x^2}{2} \right) \bigg|_0^1 \\
= 6 \left(\frac{1}{4} - \frac{1}{2} \right) - 6(0 - 0) \\
= \frac{1}{2} \)

53. The total number receiving between \(a \) and \(b \) dollars equals the number \(N(a) \) receiving \(a \) or more dollars minus the number \(N(b) \) receiving \(b \) or more dollars. Thus
\[
N(a) - N(b) = \int_a^b e^{-x} dx.
\]

54. \(\int_0^{10^{-4}} x^{1/2} dx = \int_0^{10^{-4}} \frac{1}{2} x^{1/2} \bigg|_0^{10^{-4}} = 2 \sqrt{10^{-4}} - 0 \\
= 2 \left(10^{-2} \right) = 0.02 \)

55. \(\int_0^5 2000 e^{-0.06r} dr = 2000 \int_0^5 e^{-0.06r} [-0.06 dr] \\
= \frac{2000}{0.06} e^{-0.06r} \bigg|_0^5 = \frac{2000}{0.06} (e^{-0.03} - 1) \\
= \approx 88639 \)

56. \(\int_0^1 (e^{-a\tau} - e^{-b\tau}) d\tau \\
= \frac{1}{-a} \int_0^1 e^{-a\tau} [-a d\tau] - \frac{1}{-b} \int_0^1 e^{-b\tau} [-b d\tau] \\
= \left(\frac{e^{-a\tau}}{a} + \frac{e^{-b\tau}}{b} \right) \bigg|_0^1 \\
= \left(\frac{e^{-a\tau}}{a} + \frac{e^{-b\tau}}{b} \right) \left(-\frac{1}{a} + \frac{1}{b} \right) \\
= \frac{1 - e^{-at}}{a} - \frac{1 - e^{-bt}}{b} \)

57. \(\int_{10}^{29} 1000 \sqrt{110 - t} dt \\
= -1000 \int_{10}^{29} \sqrt{110 - t} [-dt] \\
= -1000 \left(\frac{110 - t}{{\frac{3}{2}}} \right)^2 \bigg|_{10}^{29} \\
= -2000 \left(\frac{110 - 10}{{\frac{3}{2}}} \right)^2 \bigg|_{10}^{29} \\
= -2000 \left[(110 - 29)^{3/2} - (110 - 10)^{3/2} \right] \\
= 180,667 \)

For the entire population, \(a = 0 \) and \(b = 110. \)
\(\int_{0}^{1} \frac{20000 e^{-0.05\tau}}{0.05} d\tau = 60,000 \cdot \int_0^1 e^{-0.05\tau} (0.05 d\tau) \\
= 60,000 e^{-0.05\tau} \bigg|_0^1 = 60,000 (e^{-0.05} - 1) \)
59. \[\int_{65}^{75} (0.2q + 8) \, dq = \left[0.1q^2 + 8q \right]_{65}^{75} \]
\[= 1162.5 - 942.5 = 220 \]

60. \[\int_{90}^{180} (0.004q^2 - 0.5q + 50) \, dq \]
\[= \frac{0.004}{3} q^3 - 0.25q^2 + 50q \bigg|_{90}^{180} \]
\[= 8676 - 3447 \]
\[= 5229 \]

61. \[\int_{500}^{800} \frac{2000}{\sqrt{300q}} \, dq = \int_{500}^{800} \frac{2000}{10\sqrt{3}q} \, dq \]
\[= \frac{200}{\sqrt{3}} \int_{500}^{800} q^{-1/2} \, dq = \frac{200}{\sqrt{3}} \frac{q^{1/2}}{\frac{1}{2}} \bigg|_{500}^{800} \]
\[= \frac{400}{\sqrt{3}} \sqrt{q} \bigg|_{500}^{800} = \frac{400}{\sqrt{3}} (\sqrt{800} - \sqrt{500}) = 1367.99 \]

62. \[\int_{5}^{10} (100 + 50q - 3q^2) \, dq \]
\[= (100q + 25q^2 - q^3) \bigg|_{5}^{10} \]
\[= (1000 + 2500 - 1000) - (500 + 625 - 125) \]
\[= 1500 \]

63. \[\int_{0}^{12} (8t + 10) \, dt = \left[4t^2 + 10t \right]_{0}^{12} = 696 - 0 = 696 \]
\[\int_{6}^{12} (8t + 10) \, dt = \left[4t^2 + 10t \right]_{6}^{12} = 696 - 204 = 492 \]

64. \[\int_{0}^{700} \frac{81 \times 10^6}{(300 + t)^4} \, dt = \left(81 \times 10^6 \right) \int_{0}^{700} (300 + t)^{-4} \, dt \]
\[= \left(81 \times 10^6 \right) \frac{(300 + t)^{-3}}{-3} \bigg|_{0}^{700} \]
\[= -\left(27 \times 10^6 \right) \frac{1}{(300 + t)^3} \bigg|_{0}^{700} \]
\[= -\left(27 \times 10^6 \right) \left(\frac{1}{1000^3} - \frac{1}{300^3} \right) \]
\[= -\left(27 \times 10^6 \right) \left(\frac{1}{10^9} - \frac{1}{27 \times 10^6} \right) \]
\[= -\frac{27}{10^3} + 1 = -\frac{27}{1000} + 1 = \frac{973}{1000} = 0.973 \]
65. \[G = \int_{-R}^{R} i \, dx = ix \bigg|_{-R}^{R} = iR - (-iR) = 2Ri \]

66. \[E = \int_{-R}^{R} \frac{i}{2k} \left[e^{-k(R-x)} + e^{-k(x+R)} \right] \, dx \]
\[= \frac{i}{2k} \left[\int_{-R}^{R} e^{-k(R-x)} \, dx + \int_{-R}^{R} e^{-k(x+R)} \, dx \right] \]
\[= \frac{i}{2k} \left[\int_{-R}^{R} e^{-k(R-x)} \, dx - \int_{R}^{R} e^{-k(R+R-x)} \, dx \right] \]
\[= \frac{i}{2k} \left[e^{-k(R-x)} - e^{-k(R+x)} \right] \bigg|_{-R}^{R} \]
\[= \frac{i}{2k} \left[(1 - e^{-k(2R)}) - (e^{-k(2R)} - 1) \right] \]
\[= \frac{i}{2k} \left[2 - 2e^{-2kR} \right] = \frac{i}{k} \left(1 - e^{-2kR} \right) \]

67. \[A = \int_{0}^{R} (m + x)(1 - (m + x)) \, dx = \int_{0}^{R} (m + x - m^2 - 2mx - x^2) \, dx \]
\[= \int_{0}^{R} (m + x - m^2 - 2mx - x^2) \, dx \]
\[= \left[mx^2 + \frac{x^3}{2} - mx^2 - mx^2 - \frac{x^3}{3} \right]_{0}^{R} \]
\[= \left[x^3 - mx - \frac{x^2}{2} \right]_{0}^{R} \]
\[= \left[mR + \frac{R^2}{2} - m^2R - m^2R - R^3 \right] - 0 \]
\[= \frac{R^2 - m^2R - R^3}{2} - 0 \]
\[= \frac{R \left[m + \frac{R^2}{2} - m^2R - R^3 \right]}{1 - m - \frac{R^2}{3}} \]

68. \[\int_{2.5}^{3.5} (1 + 2x + 3x^2) \, dx = \left(x + x^2 + x^3 \right) \bigg|_{2.5}^{3.5} \]
\[= 58.625 - 24.375 \]
\[= 34.25 \]

69. \[\int_{0}^{4} \frac{1}{(4x + 4)^2} \, dx = \frac{1}{4} \int_{0}^{4} (4x + 4)^{-2} \, dx \]
\[= \frac{1}{4} \left[\frac{1}{x} \right]_{0}^{4} \]
\[= -\frac{1}{4} \left[\frac{1}{16} \right]_{0}^{4} \]
\[= -\frac{1}{16} \left[\frac{1}{5} - 1 \right] = \frac{1}{20} = 0.05 \]

70. \[\int_{0}^{3} e^{4} \, dt = \int_{0}^{3} e^{4} \, dt = \left[\frac{1}{3} e^{3} \right]_{0}^{3} \]
\[= \frac{1}{3} e^{3} - 0 = 6.36 \]
Chapter 14: Integration

ISM: Introductory Mathematical Analysis

592

3. \(f(x) = x^3, \ n = 5, \ a = 0, \ b = 1 \)

 Trapezoidal
 \[
 h = \frac{b-a}{n} = \frac{1-0}{5} = \frac{1}{5} = 0.2 \\
 f(0) = 0.0000 \\
 2f(0.2) = 0.0160 \\
 2f(0.4) = 0.1280 \\
 2f(0.6) = 0.4320 \\
 2f(0.8) = 1.0240 \\
 f(1) = 1.0000 \\
 \]

 \[
 \int_0^1 x^3 \, dx = \frac{0.2}{2} (2.6000) = 0.260 \\
 \]

 Actual value: \(\int_0^1 x^3 \, dx = \frac{x^4}{4} \bigg|_0^1 = \frac{1}{4} = 0.250 \)

4. \(f(x) = x^2, \ n = 4, \ a = 0, \ b = 1 \)

 Simpson's
 \[
 h = \frac{b-a}{n} = \frac{1-0}{4} = 0.25 \\
 f(0) = 0.0000 \\
 4f(0.25) = 0.2500 \\
 2f(0.50) = 0.5000 \\
 4f(0.75) = 2.2500 \\
 f(1) = 1.0000 \\
 \]

 \[
 \int_0^1 x^2 \, dx = \frac{0.25}{3} (4.0000) = \frac{1}{3} = 0.333 \\
 \]

 Actual value: \(\int_0^1 x^2 \, dx = \frac{x^3}{3} \bigg|_0^1 = \frac{1}{3} = 0.333 \)

5. \(f(x) = \frac{1}{x^2}, \ n = 4, \ a = 1, \ b = 4 \)

 Simpson's
 \[
 h = \frac{b-a}{n} = \frac{4-1}{4} = 0.75 \\
 f(1) = 1.0000 \\
 4f(1.75) = 1.3061 \\
 2f(2.50) = 0.3200 \\
 4f(3.25) = 0.3787 \\
 f(4) = 0.0625 \\
 \]

 \[
 \int_1^4 \frac{1}{x^2} \, dx = \frac{0.75}{3} (3.0673) = 0.767 \\
 \]

 Actual value:
 \[
 \int_1^4 \frac{1}{x^2} \, dx = -\frac{1}{x} \bigg|_1^4 = -\frac{1}{4} - (-1) = 0.750 \\
 \]

6. \(f(x) = \frac{1}{x}, \ n = 6, \ a = 1, \ b = 4 \)

 Trapezoidal
 \[
 h = \frac{b-a}{n} = \frac{4-1}{6} = 0.5 \\
 f(1) = 1.0000 \\
 2f(1.5) = 1.3333 \\
 2f(2) = 1.0000 \\
 2f(2.5) = 0.8000 \\
 2f(3) = 0.6667 \\
 2f(3.5) = 0.5714 \\
 f(4) = 0.2500 \\
 \]

 \[
 \int_1^4 \frac{1}{x} \, dx = \frac{0.5}{2} (5.6214) = 1.405 \\
 \]

 Actual value:
 \[
 \int_1^4 \frac{1}{x} \, dx = \ln |x| \bigg|_1^4 = \ln 4 - \ln 1 = \ln 4 - 0 = \ln 4 \\
 \approx 1.386 \\
 \]

7. \(f(x) = \frac{x}{x+1}, \ n = 4, \ a = 0, \ b = 2 \)

 Trapezoidal
 \[
 h = \frac{b-a}{n} = \frac{2-0}{4} = 0.5 \\
 f(0) = 0.0000 \\
 2f(0.5) = 0.6667 \\
 2f(1) = 1.0000 \\
 2f(1.5) = 1.2000 \\
 f(2) = 0.6667 \\
 \]

 \[
 \int_0^2 \frac{x}{x+1} \, dx = \frac{0.5}{2} (3.5334) = 0.883 \\
 \]

 Thus
 \[
 \int_0^2 \frac{x}{x+1} \, dx = \frac{0.5}{2} (3.5334) = 0.883 \\
 \]

8. \(f(x) = \frac{1}{x}, \ n = 6, \ a = 1, \ b = 4 \)

 Simpson’s
 \[
 h = \frac{b-a}{n} = \frac{4-1}{6} = 0.5 \\
 \]

 \[
 \int_1^4 \frac{1}{x} \, dx = \frac{0.5}{2} (3.5334) = 0.883 \\
 \]
Chapter 14: Integration

ISM: Introductory Mathematical Analysis

11. \(a = 1, b = 5, h = 1 \)

\[
\begin{align*}
 f(1) &= 0.4 \\
 4f(1.5) &= 0.4 \\
 2f(2) &= 0.5 \\
 4f(2.5) &= 2.4 \\
 2f(3) &= 2.4 \\
 4f(3.5) &= 3.2 \\
 f(4) &= 1.0 \\
 f(5) &= 0.5 \\
\end{align*}
\]

\[
\int_{1}^{5} f(x) \, dx = \frac{1}{3}(8.9) = 3.0
\]

The area is about 3.0 square units.

12. \(a = 2, b = 5, h = 0.5 \)

\[
\begin{align*}
 f(2) &= 0 \\
 4f(2.5) &= 24 \\
 2f(3) &= 20 \\
 4f(3.5) &= 44 \\
 2f(4) &= 28 \\
 4f(4.5) &= 60 \\
 f(5) &= 16
\end{align*}
\]

\[
\int_{2}^{5} f(x) \, dx = \frac{0.5}{3}(192) = 32
\]

The area is about 32 square units.

13. \(a = 2, b = 5, h = 0.5 \)

\[
\begin{align*}
 f(2) &= 0.4 \\
 4f(2.5) &= 2.4 \\
 2f(3) &= 2.4 \\
 4f(3.5) &= 3.2 \\
 f(4) &= 1.0 \\
 f(5) &= 0.5
\end{align*}
\]

\[
\int_{2}^{5} f(x) \, dx = \frac{0.5}{3}(192) = 32
\]

The area is about 32 square units.

14. \(a = 2, b = 5, h = 0.5 \)

\[
\begin{align*}
 f(2) &= 0.4 \\
 4f(2.5) &= 2.4 \\
 2f(3) &= 2.4 \\
 4f(3.5) &= 3.2 \\
 f(4) &= 1.0 \\
 f(5) &= 0.5
\end{align*}
\]

\[
\int_{2}^{5} f(x) \, dx = \frac{0.5}{3}(192) = 32
\]

The area is about 32 square units.
15. \(f(x) = \sqrt{1-x^2} \), \(a = 0 \), \(b = 1 \), \(n = 4 \)

\[
h = \frac{1 - 0}{4} = 0.25
\]

Simpson’s

\[
f(0) = 1.0000
\]

\[
4f(0.25) = 3.8730
\]

\[
2f(0.50) = 1.7321
\]

\[
4f(0.75) = 2.6458
\]

\[
f(1) = 0.0000
\]

\[
\int_0^1 \sqrt{1-x^2} \, dx = \frac{0.25}{3} (9.2509) = 0.771
\]

16. \[
\int_0^{80} \frac{dr}{dq} \, dq = r(80) - r(0) = r(80)
\]

[since \(r(0) = 0 \)]

Using Simpson’s rule with \(h = 10 \) and \(f(q) = \frac{dr}{dq} \):

\[
f(0) = 10 = 10
\]

\[
4f(10) = 4(9) = 36
\]

\[
2f(20) = 2(8.5) = 17
\]

\[
4f(30) = 4(8) = 32
\]

\[
2f(40) = 2(8.5) = 17
\]

\[
4f(50) = 4(7.5) = 30
\]

\[
2f(60) = 2(7) = 14
\]

\[
4f(70) = 4(6.5) = 26
\]

\[
f(80) = 7 = 7
\]

\[
\int_0^{80} \frac{dr}{dq} \, dq = \frac{10}{3} (189) = 630
\]

The total revenue is about $630.

17. The distance along the fence is \(x \).

The distance across the pool is \(f(x) \).

\(a = 0 \), \(b = 8 \), and \(n = 8 \).

\[
h = \frac{8 - 0}{8} = 1
\]

Area = \[
\frac{h}{3} \left[4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_5) + 2f(x_6) + 4f(x_7) \right]
\]

\[
= \frac{1}{3} \left[4(3) + 2(4) + 4(3) + 2(3) + 4(2) + 2(2) + 4(2) \right]
\]

\[
= \frac{58}{3}
\]

Yes; Lesley’s calculation is correct.
18. a. \(MC = \frac{dc}{dq} \)

\[
\int_{0}^{100} \frac{dc}{dq} \, dq = c(100) - c(0)
\]

= (total cost of 100 units) − (fixed costs)

= total variable costs of 100 units

Using the trapezoidal rule with \(h = 20 \) and

\[f(q) = \frac{dc}{dq} \] to estimate the integral:

\[
\begin{align*}
 f(0) &= 260 \\
 2f(20) &= 500 \\
 2f(40) &= 480 \\
 2f(60) &= 400 \\
 2f(80) &= 480 \\
 f(100) &= 250
\end{align*}
\]

\[
\int_{0}^{100} \frac{dc}{dq} \, dq = 20 \times (2370) = 23,700
\]

b. \(MR = \frac{dr}{dq} \)

\[
\int_{0}^{100} \frac{dr}{dq} \, dq = r(100) - r(0) = r(100)
\]

[since \(r(0) = 0 \)]

= total revenue from sale of 100 units

Using the trapezoidal rule with \(h = 20 \) and

\[g(q) = \frac{dr}{dq} \] to estimate the integral:

\[
\begin{align*}
 g(0) &= 410 \\
 2g(20) &= 700 \\
 2g(40) &= 600 \\
 2g(60) &= 500 \\
 2g(80) &= 540 \\
 g(100) &= 250
\end{align*}
\]

\[
\int_{0}^{100} \frac{dr}{dq} \, dq = 20 \times (3000) = 30,000
\]

c. At \(q = 100 \): total revenue = 30,000

\[
\text{total cost} = (\text{total var. costs}) + (\text{fixed costs})
\]

= 23,700 + 2000 = 25,700

Thus maximum profit

= (total revenue) − (total costs)

= 30,000 − 25,700 = $4300.

Problems 14.9

In Problems 1–24, answers are assumed to be expressed in square units.

1. \(y = 5x + 2, \ x = 1, \ x = 4 \)

\[
\text{Area} = \int_{1}^{4} (5x + 2) \, dx = \left[\frac{5x^2}{2} + 2x \right]_{1}^{4} = 48 - \frac{9}{2} = \frac{87}{2}
\]

2. \(y = x + 5, \ x = 2, \ x = 4 \)

\[
\text{Area} = \int_{2}^{4} (x + 5) \, dx = \left[\frac{x^2}{2} + 5x \right]_{2}^{4} = 28 - 12 = 16
\]

3. \(y = 3x^2, \ x = 1, \ x = 3 \)

\[
\text{Area} = \int_{1}^{3} 3x^2 \, dx = x^3 \bigg|_{1}^{3} = 27 - 1 = 26
\]
4. \(y = x^2, x = 2, x = 3 \)
\[
\text{Area} = \int_2^3 x^2 \, dx = \frac{x^3}{3} \bigg|_2^3 = 9 - \frac{8}{3} = \frac{19}{3}
\]

5. \(y = x + x^2 + x^3, x = 1 \)
\[
\text{Area} = \int_0^1 (x + x^2 + x^3) \, dx = \left(\frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} \right) \bigg|_0^1 = \frac{13}{12} - 0 = \frac{13}{12}
\]

6. \(y = x^2 - 2x, x = -3, x = -1 \)
\[
\text{Area} = \int_{-3}^{-1} (x^2 - 2x) \, dx = \left(\frac{x^3}{3} - x^2 \right) \bigg|_{-3}^{-1} = \frac{4}{3} - (-18) = \frac{50}{3}
\]

7. \(y = 3x^2 - 4x, x = -2, x = -1 \)
\[
\text{Area} = \int_{-2}^{-1} (3x^2 - 4x) \, dx = (x^3 - 2x^2) \bigg|_{-2}^{-1} = -3 - (-16) = 13
\]

8. \(y = 2 - x - x^2 \)
\[
\text{Area} = \int_{-2}^{1} (2 - x - x^2) \, dx = \left(2x - \frac{x^2}{2} - \frac{x^3}{3} \right) \bigg|_{-2}^{1} = \frac{7}{6} - \left(\frac{-10}{3} \right) = \frac{9}{2}
\]

9. \(y = \frac{4}{x}, x = 1, x = 2 \)
\[
\text{Area} = \int_{1}^{2} \frac{4}{x} \, dx = 4 \ln |x| \bigg|_{1}^{2} = 4 \ln(2) - 0 = 4 \ln 2 = \ln 16
\]
10. \(y = 2 - x - x^3, x = -3, x = 0 \)

\[
\text{Area} = \int_{-3}^{0} (2 - x - x^3) \, dx = \left[2x - \frac{x^2}{2} - \frac{x^4}{4} \right]_{-3}^{0} = 0 - \left(-\frac{123}{4} \right) = \frac{123}{4}
\]

11. \(y = e^x, x = 1, x = 3 \)

\[
\text{Area} = \int_{1}^{3} e^x \, dx = e^3 - e
\]

12. \(y = \frac{1}{(x-1)^2}, x = 2, x = 3 \)

\[
\text{Area} = \int_{2}^{3} \frac{1}{(x-1)^2} \, dx = \int_{2}^{3} (x-1)^{-2} \, dx = \left[-\frac{1}{x-1} \right]_{2}^{3} = -\frac{1}{2} - (-1) = \frac{1}{2}
\]

13. \(y = \frac{1}{x}, x = 1, x = e \)

\[
\text{Area} = \int_{1}^{e} \frac{1}{x} \, dx = \ln|x| \bigg|_{1}^{e} = \ln e - \ln 1 = 1 - 0 = 1
\]

14. \(y = \sqrt{x+9}, x = -9, x = 0 \)

\[
\text{Area} = \int_{-9}^{0} \sqrt{x+9} \, dx = \int_{-9}^{0} (x+9)^{\frac{1}{2}} \, dx
\]

\[
= \left[\frac{2(x+9)^{\frac{3}{2}}}{3} \right]_{-9}^{0} = \frac{2(9)^{\frac{3}{2}}}{3} - \frac{2(0)^{\frac{3}{2}}}{3} = 18 - 0 = 18
\]

15. \(y = x^2 - 4x, x = 2, x = 6 \)

\[
\text{Area} = \int_{2}^{6} (x^2 - 4x) \, dx = \int_{2}^{4} (x^2 - 4x) \, dx + \int_{4}^{6} (x^2 - 4x) \, dx
\]

\[
= \left[\frac{x^3}{3} - 2x^2 \right]_{2}^{4} + \left[\frac{x^3}{3} - 2x^2 \right]_{4}^{6} = \frac{32}{3} - \frac{16}{3} + \left[0 - \frac{32}{3} \right] = 16
\]
16. \(y = \sqrt{2x-1} \), \(x = 1 \), \(x = 5 \)

Area = \(\int_1^5 \sqrt{2x-1} \, dx \)

\[= \frac{1}{2} \int_1^5 (2x-1)^{\frac{3}{2}} \, [2 \, dx] \]

\[= \frac{(2x-1)^{\frac{5}{2}}}{\frac{5}{2}} \bigg|_1^5 = \frac{9}{3} - \frac{1}{3} = \frac{26}{3} \]

17. \(y = x^3 + 3x^2 \), \(x = -2 \), \(x = 2 \)

Area = \(\int_{-2}^2 \left(x^3 + 3x^2 \right) \, dx = \left(\frac{x^4}{4} + x^3 \right) \bigg|_{-2}^2 \)

\[= 12 - (-4) = 16 \]

18. \(y = \sqrt[3]{x} \), \(x = 2 \)

Area = \(\int_0^2 \sqrt[3]{x} \, dx = \int_0^2 x^{\frac{1}{3}} \, dx = \frac{3x^{\frac{4}{3}}}{4} \bigg|_0^2 = \frac{3(2)^{\frac{4}{3}}}{4} - 0 \)

\[= \frac{3(2\sqrt{2})}{4} = \frac{3 \sqrt{2}}{2} \]

19. \(y = e^x + 1 \), \(x = 0 \), \(x = 1 \)

Area = \(\int_0^1 (e^x + 1) \, dx = (e^x + x) \bigg|_0^1 = (e^1 + 1) - 1 = e \)

\[
\int_0^1 (e^x + 1) \, dx = (e^x + x) \bigg|_0^1 = (e^1 + 1) - 1 = e
\]

20. \(y = |x| \), \(x = -2 \), \(x = 2 \)

Area = \(\int_{-2}^2 |x| \, dx = \int_{-2}^0 (-x) \, dx + \int_0^2 x \, dx \)

\[= -\int_{-2}^0 x \, dx + \int_0^2 x \, dx \]

\[= [0 - (-2)] + [2 - 0] = 4 \]

21. \(y = x + \frac{2}{x} \), \(x = 1 \), \(x = 2 \)

Area = \(\int_1^2 \left(x + \frac{2}{x} \right) \, dx = \left(\frac{x^2}{2} + 2 \ln |x| \right) \bigg|_1^2 \)

\[= (2 + 2 \ln 2) - \frac{1}{2} = \frac{3}{2} + 2 \ln 2 = \frac{3}{2} + \ln 4 \]
22. \(y = x^3, x = -2, x = 4 \)

\[
\text{Area} = \int_{-2}^{0} -x^3 \, dx + \int_{0}^{4} x^3 \, dx = -\left[\frac{x^4}{4}\right]_{-2}^{0} + \left[\frac{x^4}{4}\right]_{0}^{4} = [0 - (-4)] + [64 - 0] = 68
\]

23. \(y = \sqrt{x-2}, x = 2, x = 6 \)

\[
\text{Area} = \int_{2}^{6} \sqrt{x-2} \, dx = \left[\frac{2(x-2)^{3/2}}{3}\right]_{2}^{6} = \frac{16}{3} - 0 = \frac{16}{3}
\]

24. \(y = x^2 + 1, x = 0, x = 4 \)

\[
\text{Area} = \int_{0}^{4} (x^2 + 1) \, dx = \left[\frac{x^3}{3} + x\right]_{0}^{4} = \frac{76}{3} - 0 = \frac{76}{3}
\]

25. \(f(x) = \begin{cases} 3x^2 & \text{if } 0 \leq x < 2 \\ 16-2x & \text{if } x \geq 2 \end{cases} \)

\[
\text{Area} = \int_{0}^{2} 3x^2 \, dx + \int_{2}^{3} (16-2x) \, dx = x^3\bigg|_{0}^{2} + \left[16x - x^2\right]_{2}^{3} = [8 - 0] + [39 - 28] = 19 \text{ sq units}
\]

26. \(y = \frac{1}{b-a} \)

\[
\text{Area} = \int_{a}^{b} \frac{1}{b-a} \, dx = \left[\frac{x}{b-a}\right]_{a}^{b} = \frac{b-a}{b-a} = b-a \text{ sq units}
\]

27. a. \(P(0 \leq x \leq 1) = \int_{0}^{1} \frac{11}{8} \, dx = \frac{11}{16} \cdot 1 = \frac{1}{16} - 0 = \frac{1}{16} \)

b. \(P(2 \leq x \leq 4) = \int_{2}^{4} \frac{1}{8} \, dx = \frac{1}{16} \cdot 2 = \frac{1}{4} - \frac{3}{4} \)

c. \(P(x \geq 3) = \int_{3}^{4} \frac{1}{8} \, dx = \frac{1}{16} \cdot 1 = \frac{9}{16} = \frac{7}{16} \)
28. a. \(P(1 \leq x \leq 2) = \int_{1}^{2} \frac{1}{3} (1-x)^2 \, dx \)

= \(\frac{1}{3} \left[-x \right]_{1}^{2} (1-x)^2 \, dx = \frac{1}{3} (1-x)^3 \bigg|_{1}^{2} \)

= \(-\frac{1}{3} (2-1) = \frac{1}{9} \)

b. \(P \left(1 \leq x \leq \frac{5}{2} \right) = \int_{1}^{\frac{5}{2}} \frac{1}{3} (1-x)^2 \, dx \)

= \(-\frac{1}{9} (1-x)^3 \bigg|_{1}^{\frac{5}{2}} = -\frac{1}{9} \left(\frac{27}{8} - 0 \right) = \frac{3}{8} \)

c. \(P(x \leq 1) = \int_{0}^{1} \frac{1}{3} (1-x)^2 \, dx = \frac{1}{9} (1-x)^3 \bigg|_{0}^{1} \)

= \(-\frac{1}{9} (0-1) = \frac{1}{9} \)

d. \(\int_{0}^{1} f(x) \, dx = \int_{0}^{1} f(x) \, dx + \int_{1}^{3} f(x) \, dx \)

= \(\frac{1}{9} + P(x \geq 1) \)

Thus, \(P(x \geq 1) = \frac{8}{9} \)

29. a. \(P(3 \leq x \leq 7) = \int_{3}^{7} \frac{1}{x} \, dx = \ln|x| \bigg|_{3}^{7} \)

= \(\ln 7 - \ln 3 = \ln \frac{7}{3} \)

b. \(P(x \leq 5) = \int_{e}^{5} \frac{1}{x} \, dx = \ln|x| \bigg|_{e}^{5} \)

= \(\ln 5 - \ln e = \ln 5 - 1 \)

c. \(P(x \geq 4) = \int_{4}^{e^2} \frac{1}{x} \, dx = \ln|x| \bigg|_{4}^{e^2} \)

= \(\ln e^2 - \ln 4 = 2 - \ln 4 \)

d. \(P(e \leq x \leq e^2) = \int_{e}^{e^2} \frac{1}{x} \, dx \)

= \(\ln |x| \bigg|_{e}^{e^2} = \ln e^2 - \ln e \)

= \(2 - 1 = 1 \)

30. a. \(\int_{1}^{r} \frac{1}{x^2} \, dx = -\frac{1}{x} \bigg|_{1}^{r} = -\frac{1}{r} + 1 = 1 - \frac{1}{r} \)
35. Intersection points:
\[x^2 - x = 2x, \quad x^2 - 3x = 0, \quad x(x-3) = 0 \Rightarrow x = 0 \text{ or } x = 3 \]
Area = \[\int_0^3 (y_{\text{upper}} - y_{\text{lower}}) \, dx + \int_3^4 (y_{\text{upper}} - y_{\text{lower}}) \, dx \]
= \[\int_0^3 [2x - (x^2 - x)] \, dx + \int_3^4 [(x^2 - x) - 2x] \, dx \]

36. Intersection points: \(x(x-3)^2 = 2x, \quad x(x-3)^2 - 2x = 0, \quad x[3(x-3)^2 - 2] = 0, \quad x(x^2 - 6x + 7) = 0 \Rightarrow x = 0, \quad 3 \pm \sqrt{2} \)
(from the quadratic formula)
Area = \[\int_0^{3+\sqrt{2}} (y_{\text{upper}} - y_{\text{lower}}) \, dx + \int_{3-\sqrt{2}}^{3+\sqrt{2}} (y_{\text{upper}} - y_{\text{lower}}) \, dx \]
= \[\int_0^{3+\sqrt{2}} [x(x-3)^2 - 2x] \, dx + \int_{3-\sqrt{2}}^{3+\sqrt{2}} [2x - x(x-3)^2] \, dx \]

37. The graphs of \(y = 1 - x^2 \) and \(y = x - 1 \) intersect when \(1 - x^2 = x - 1, \quad 0 = x^2 + x - 2, \quad 0 = (x-1)(x+2) \Rightarrow x = 1 \text{ or } x = -2 \). When \(x = 1 \), then \(y = 0 \). We use horizontal elements, where \(y \) ranges from 0 to 1. Solving \(y = x - 1 \) for \(x \) gives \(x = y + 1 \), and solving \(y = 1 - x^2 \) for \(x \) gives \(x^2 = 1 - y \). We must choose \(x = \sqrt{1 - y} \) because \(x \) is not negative over the given region.
Area = \[\int_0^1 (x_{\text{right}} - x_{\text{left}}) \, dy = \int_0^1 [(y+1) - \sqrt{1-y}] \, dy \]

38. The graphs of \(y = 2x \) and \(y = -2x - 8 \) intersect when \(2x = -2x - 8, \quad 4x = -8, \quad x = -2 \). When \(x = -2 \), then \(y = -4 \). We use horizontal elements, where \(y \) ranges from -4 to 4. Solving \(y = 2x \) for \(x \) gives \(x = \frac{y}{2} \); solving \(y = -2x - 8 \) for \(x \) gives \(2x = -y - 8, \quad x = \frac{-y - 8}{2} \).
Area = \[\int_{-4}^4 (x_{\text{right}} - x_{\text{left}}) \, dy = \int_{-4}^4 \left[\frac{y}{2} - \left(\frac{-y - 8}{2} \right) \right] \, dy \]

39. The graphs of \(y = x^2 - 5 \) and \(y = 7 - 2x^2 \) intersect when \(x^2 - 5 = 7 - 2x^2, \quad 3x^2 = 12, \quad x^2 = 4, \quad \text{so } x = \pm \sqrt{4} = \pm 2 \). We use vertical elements.
Area = \[\int_1^2 (y_{\text{upper}} - y_{\text{lower}}) \, dx \]
= \[\int_1^2 [(7 - 2x^2) - (x^2 - 5)] \, dx \]
40. The curves \(y^2 = x \) and \(2y = 3 - x \) (or \(x = 3 - 2y \)) intersect when \(y^2 = 3 - 2y, \ y^2 + 2y - 3 = 0, \) \((y + 3)(y - 1) = 0 \Rightarrow y = -3 \) or 1. We use horizontal elements.

\[
\text{Area} = \int_{1}^{0} (x_{\text{RIGHT}} - x_{\text{LEFT}}) \, dy
\]
\[
= \int_{1}^{0} (3 - 2y - y^2) \, dy
\]

In Problems 41–58, the answers are assumed to be expressed in square units.

41. \(y = x^2, \ y = 2x \)

Region appears below.

Intersection: \(x^2 = 2x, \ x^2 - 2x = 0, \ x(x - 2) = 0, \) so \(x = 0 \) or 2.

\[
\text{Area} = \int_{0}^{2} (2x - x^2) \, dx = \left[x^2 - \frac{x^3}{3} \right]_{0}^{2}
\]
\[
= \left(4 - \frac{8}{3} \right) - 0 = \frac{4}{3}
\]

42. \(y = x, \ y = -x + 3, \ y = 0 \). Region appears below.

Intersection: \(x = -x + 3, \ 2x = 3, \ x = \frac{3}{2} \)

\[
\text{Area} = \int_{0}^{3/2} x \, dx + \int_{3/2}^{3} (-x + 3) \, dx
\]
\[
= \left[\frac{x^2}{2} \right]_{0}^{3/2} + \left[-\frac{x^2}{2} + 3x \right]_{3/2}^{3}
\]
\[
= \left[\frac{9}{8} - 0 \right] + \left[\left(-\frac{9}{2} + 9 \right) - \left(-\frac{9}{8} + \frac{9}{2} \right) \right] = \frac{9}{4}
\]

43. \(y = 10 - x^2, \ y = 4 \). Region appears below.

Intersection: \(10 - x^2 = 4, \ x^2 = 6, \) so \(x = \pm \sqrt{6} \)

\[
\text{Area} = \int_{-\sqrt{6}}^{\sqrt{6}} [(10 - x^2) - 4] \, dx
\]
\[
= \int_{-\sqrt{6}}^{\sqrt{6}} (6 - x^2) \, dx
\]
\[
= \left[6x - \frac{x^3}{3} \right]_{-\sqrt{6}}^{\sqrt{6}}
\]
\[
= \left(6\sqrt{6} - \frac{6\sqrt{6}}{3} \right) - \left(-6\sqrt{6} + \frac{6\sqrt{6}}{3} \right) = 8\sqrt{6}
\]

44. \(y^2 = x + 1, \ x = 1 \). Region appears below.

Intersection: \(y^2 = 2, \ y = \pm \sqrt{2} \)

\[
\text{Area} = \int_{-\sqrt{2}}^{\sqrt{2}} \left[1 - (y^2 - 1) \right] \, dy = \left[2y - \frac{y^3}{3} \right]_{-\sqrt{2}}^{\sqrt{2}}
\]
\[
= \left(2\sqrt{2} - \frac{2\sqrt{2}}{3} \right) - \left(-2\sqrt{2} + \frac{2\sqrt{2}}{3} \right) = \frac{8\sqrt{2}}{3}
\]
45. \(x = 8 + 2y, \ x = 0, \ y = -1, \ y = 3. \) Region appears below.

\[
\text{Area} = \int_{-1}^{3} (8 + 2y) \, dy = \left[8y + y^2 \right]_{-1}^{3} = (24 + 9) - (-8 + 1) = 40
\]

46. \(y = x - 6, \ y^2 = x. \) Region appears below.

Intersection: \(y^2 = y + 6, \ y^2 - y - 6 = 0, \)

\((y + 2)(y - 3) = 0, \) so \(y = -2, 3. \)

\[
\text{Area} = \int_{-2}^{3} \left[(y + 6) - (y^2) \right] \, dy
\]

\[
= \left[\frac{y^3}{2} + 6y - \frac{y^3}{3} \right]_{-2}^{3}
\]

\[
= \left(\frac{9}{2} + 18 - 9 \right) - \left(2 - 12 + \frac{8}{3} \right) = 125/6
\]

47. \(y^2 = 4x, \ y = 2x - 4. \) Region appears below.

Intersection: \(y^2 = 4 \left(\frac{y}{2} + 2 \right), \ y^2 - 2y - 8 = 0, \)

\((y + 2)(y - 4) = 0, \) so \(y = -2 \) or \(4. \)

\[
\text{Area} = \int_{-2}^{4} \left[\frac{y}{2} + 2 \right] - \frac{y^2}{4} \, dy
\]

\[
= \left[\frac{y^2}{4} + 2y - \frac{y^3}{12} \right]_{-2}^{4}
\]

\[
= \left(4 + 8 - \frac{16}{3} \right) - \left(1 - 4 + \frac{2}{3} \right) = 9
\]

48. \(y = x^3, \ y = x + 6, \ x = 0 \)

Region appears below.

Intersection: \(x^3 = x + 6, \ x^3 - x - 6 = 0, \)

\((x - 2)(x^2 + 2x + 3) = 0 \Rightarrow x = 2 \)

\(x^3 = 0 \Rightarrow x = 0 \)

\[
\text{Area} = \int_{0}^{2} [(x + 6) - x^3] \, dx
\]

\[
= \left(\frac{x^2}{2} + 6x - \frac{x^4}{4} \right)_{0}^{2}
\]

\[
= (2 + 12 - 4) - (0) = 10
\]

49. \(2y = 4x - x^2, \ 2y = x - 4. \) Region appears below.

Intersection: \(x - 4 = 4x - x^2, \ x^2 - 3x - 4 = 0, \)

\((x + 1)(x - 4) = 0, \) so \(x = -1 \) or \(4. \) Note that the \(y \)-values of the curves are given by \(y = \frac{4x - x^2}{2} \) and \(y = \frac{x - 4}{2}. \)
Area = \int_{-1}^{4} \left[\frac{4x-x^2}{2} - \frac{x-4}{2} \right] dx
= \int_{-1}^{4} \left(\frac{3x^2 - x^3 + 2x}{2} \right) dx
= \left[\frac{3x^2 - \frac{x^3}{6} + 2x}{2} \right]_{-1}^{4}
= \left(\frac{12 - \frac{64}{6} + 8}{2} - \left(\frac{3}{4} - \frac{6}{6} - 2 \right) \right)
= \frac{125}{12}

50. \ y = \sqrt{x}, \ y = x^2. \ Region \ appears \ below.
Intersection: \ x^2 = \sqrt{x}, \ x^4 = x, \ x^4 - x = 0,
\ x(x^3 - 1) = 0, \ so \ x = 0, 1.
Area = \int_{0}^{1} (\sqrt{x} - x^2) dx = \left[\frac{2x^{\frac{3}{2}}}{3} - \frac{x^3}{3} \right]_{0}^{1}
= \left(\frac{2\cdot1^{\frac{3}{2}}}{3} - \frac{1^3}{3} \right) - 0 = \frac{1}{3}

51. \ y = 8 - x^2, \ y = x^2, \ x = -1, x = 1. \ Region \ appears \ below.
Intersection: \ x^2 = 8 - x^2, \ 2x^2 = 8, \ x^2 = 4, \ so \ x = \pm 2.

Area = \int_{-1}^{1} \left[(8-x^2) - x^2 \right] dx = \int_{-1}^{1} (8 - 2x^2) dx
= \left[\frac{8x - \frac{2x^3}{3}}{1} \right]_{-1}^{1}
= \left(\frac{8 - \frac{2}{3}}{3} - \left(-8 + \frac{2}{3} \right) \right) = \frac{44}{3}

52. \ y = x^3 + x, \ y = 0 (x-axis), \ x = -1, x = 2
Region appears below.
Area = \int_{-1}^{2} -(x^3 + x) dx + \int_{0}^{2} (x^3 + x) dx
= \left[\frac{-x^4 - \frac{x^2}{2}}{1} \right]_{-1}^{0} + \left[\frac{x^4 + \frac{x^2}{2}}{1} \right]_{0}^{2}
= \left[0 - \left(\frac{-1}{4} - \frac{1}{2} \right) \right] + [(4 + 2) - 0]
= \frac{27}{4}

53. \ y = x^3 - 1, \ y = x - 1. \ Region \ appears \ below.
Intersection: \ x^3 - 1 = x - 1, \ x^3 - x = 0,
\ x(x^2 - 1) = 0,
\ x(x + 1)(x - 1) = 0, \ so \ x = 0 \ or \ x = \pm 1.
Area = \int_{-1}^{0} [x^3 - 1 - (x-1)] \, dx + \int_{0}^{1} [x-1 - (x^3-1)] \, dx

= \int_{-1}^{0} (x^3 - x) \, dx + \int_{0}^{1} (x-x^3) \, dx

= \left[\frac{x^4}{4} - \frac{x^2}{2} \right]_{-1}^{0} + \left[\frac{x^2}{2} - \frac{x^4}{4} \right]_{0}^{1}

= \left[0 - \left(\frac{1}{4} - \frac{1}{2} \right) \right] + \left[\frac{1}{2} - \frac{1}{4} - 0 \right] = \frac{1}{2}

54. \ y = x^3, \ y = \sqrt{x} \ . \ Region \ appears \ below. \ Intersection: \ x^3 = \sqrt{x}, \ x^6 = x, \ x^6 - x = 0 \ , \ x(x^5 - 1) = 0 \ , \ x = 0, \ 1

Area = \int_{0}^{1} (\sqrt{x} - x^3) \, dx = \left[\frac{2x^{\frac{7}{4}}}{3} - \frac{x^{\frac{4}{2}}}{4} \right]_{0}^{\frac{1}{3}}

= \left(\frac{2}{3} - \frac{1}{4} \right) - 0 = \frac{5}{12}

55. \ 4x + 4y + 17 = 0, \ y = \frac{1}{x} \ . \ Region \ appears \ below. \ Intersection: \ \frac{-17 - 4x}{4} = \frac{1}{x}, \ -17x - 4x^2 = 4 \ , \ 4x^2 + 17x + 4 = 0 \ ,

(4x + 1)(x + 4) = 0, \ so \ x = -\frac{1}{4} \ or \ -4.

Area = \int_{-4}^{-1/4} \left[\frac{1}{x} + \left(\frac{-17 - 4x}{4} \right) \right] \, dx = \left[\ln|x| + \frac{17}{4}x + \frac{x^2}{2} \right]_{-4}^{-1/4}

= \left(\ln \frac{1}{4} - \frac{17}{16} + \frac{1}{32} \right) - \left(\ln 4 - 17 + 8 \right) = \frac{255}{32} - 4 \ln 2
56. \(y^2 = -x - 2 \), \(x - y = 5 \), \(y = -1 \), \(y = 1 \).

Region appears below.

Intersection: \(y^2 = -x - 2 \) intersects \(y = \pm 1 \) when \(x = -3 \); \(x - y = 5 \) intersects \(y = 1 \) when \(x = 6 \);
\(x - y = 5 \) intersects \(y = -1 \) when \(x = 4 \)

Area \(= \int_{-1}^{1} [(y+5)-(-y^2-2)]dy = \int_{-1}^{1} (y+7+y^2)dy = \left[\frac{y^2}{2} + 7y + \frac{y^3}{3} \right]_{-1}^{1} \)

\(= \left(\frac{1}{2} + 7 + \frac{1}{3} \right) - \left(\frac{1}{2} - 7 - \frac{1}{3} \right) = \frac{44}{3} \)

57. \(y = x - 1 \), \(y = 5 - 2x \). Region appears below.

Intersection: \(x - 1 = 5 - 2x \), \(3x = 6 \), so \(x = 2 \).

Area \(= \int_{0}^{2} [(5-2x)-(x-1)]dx + \int_{2}^{4} [(x-1)-(5-2x)]dx = \int_{0}^{2} (6-3x)dx + \int_{2}^{4} (3x-6)dx \)

\(= -\frac{1}{3} \int_{0}^{2} (6-3x)[-3 \, dx] + \frac{1}{3} \int_{2}^{4} (3x-6)[3 \, dx] = -\frac{(6-3x)^2}{6} \bigg|_{0}^{2} + \frac{(3x-6)^2}{6} \bigg|_{2}^{4} \)

\(= -[0 - 6] + [6 - 0] = 6 + 6 = 12 \)
58. \(y = x^2 - 4x + 4, \ y = 10 - x^2 \). Region appears below.

Intersection:
\[x^2 - 4x + 4 = 10 - x^2, \ 2x^2 - 4x - 6 = 0, \ x^2 - 2x - 3 = 0, \ (x-3)(x+1) = 0 \text{, so } x = 3, -1. \]

Area = \[\int_2^3 [(10-x^2) - (x^2-4x+4)] \, dx + \int_3^4 [(x^2-4x+4) - (10-x^2)] \, dx \]

\[= \int_2^3 (6+4x-2x^2) \, dx + \int_3^4 (2x^2-4x-6) \, dx = 2 \left(\int_2^3 (3+2x-x^2) \, dx + \int_3^4 (x^2-2x-3) \, dx \right) \]

\[= 2 \left(\left[3x + x^2 - \frac{x^3}{3} \right]_2^3 + \left[\frac{x^3}{3} - x^2 - 3x \right]_3^4 \right) = 2 \left[\left[\frac{9 - \frac{22}{3}}{3} \right] + \left[\frac{-20}{3} - (-9) \right] \right] = 2(4) = 8 \]

59. Area between curve and diag.
Area under diagonal
\[
\frac{\text{Numerator} \int_0^1 x - \left(\frac{14}{15} x^2 + \frac{1}{15} x \right) \, dx}{\int_0^1 x \, dx}
\]

Numerator = \[\int_0^1 \left[\frac{14}{15} x - \frac{14}{15} x^2 \right] \, dx = \frac{14}{15} \int_0^1 \left(x - x^2 \right) \, dx = \frac{14}{15} \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = \frac{14}{15} \left[\frac{1}{2} - \frac{1}{3} - 0 \right] = \frac{14}{15} \cdot \frac{1}{6} = \frac{7}{45} \]

Denominator = \[\int_0^1 x \, dx = \frac{x^2}{2} \left|_0^1 \right. = \frac{1}{2} \]

Coefficient of inequality = \[\frac{7}{45} \cdot \frac{2}{1} = \frac{14}{45} \]

60. Area between curve and diag.
Area under diagonal
\[
\frac{\text{Numerator} \int_0^1 x - \left(\frac{11}{12} x^2 + \frac{1}{12} x \right) \, dx}{\int_0^1 x \, dx}
\]

Numerator = \[\int_0^1 \left(x - x^2 \right) \, dx = \frac{11}{12} \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = \frac{11}{12} \left[\frac{1}{2} - \frac{1}{3} - 0 \right] = \frac{11}{12} \cdot \frac{1}{6} = \frac{11}{72} \]

Denominator = \[\int_0^1 x \, dx = \frac{1}{2} \] (see Problem 35).

Coefficient of inequality = \[\frac{11}{72} \cdot \frac{2}{1} = \frac{11}{36} \]
61. \(y^2 = 3x, \ y = mx \)

Intersection: \((mx)^2 = 3x, \ m^2x^2 = 3x\)

\[m^2x^2 - 3x = 0, \ x(m^2x - 3) = 0, \ x = 0 \text{ or } \frac{3}{m^2}. \]

If \(x = 0 \), then \(y = 0 \); if \(x = \frac{3}{m^2} \), then \(y = \frac{3}{m} \).

With horizontal elements,

\[
\text{Area} = \int_0^{3/m} \left(\frac{y}{m} - \frac{y^2}{3} \right) dy = \left(\frac{y^2}{2m} - \frac{y^3}{9} \right)_0^{\frac{3}{m}} = \frac{9}{2m^3} - \frac{3}{m^3} = \frac{3}{2m^3} \text{ square units}.
\]

Note: With vertical elements,

\[
\text{Area} = \int_0^{3/m} \left(\sqrt{\frac{3}{m} - mx} \right) dx.
\]

62. \(y = x^2 - 1, \ y = 2x + 2 \)

Intersection: \(x^2 - 1 = 2x + 2 \),

\(x^2 - 2x - 3 = 0, \ (x - 3)(x + 1) \), so \(x = 3 \) and \(-1\). The area is

\[
\int_{-1}^{3} \left[2x + 2 - (x^2 - 1) \right] dx = \left[-x^3 + x^2 + 3x \right]_{-1}^{3} = \frac{32}{3}
\]

63. \(y = x^2 \) and \(y = k \) intersect when \(x^2 = k, \ x = \pm \sqrt{k} \). Equating areas gives

\[
\int_{-\sqrt{k}}^{\sqrt{k}} (k - x^2) dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} (4 - x^2) dx = \frac{1}{2} \left[4x - \frac{x^3}{3} \right]_{-\frac{1}{2}}^{\frac{1}{2}} = \frac{16}{3} \]

\(k^{\frac{3}{2}} = \frac{16}{3} \Rightarrow k = \frac{256}{27} = 2.52 \)

64. 0.23 sq units

65. 4.76 sq units

66. Two integrals are involved.

Answer: 36.65 sq units

67. Two integrals are involved.

Answer: 7.26 sq units

68. Three integrals are involved.

Answer: 358.18 sq units
Chapter 14: Integration

ISM: Introductory Mathematical Analysis

Problems 14.10

1. \(D: p = 22 - 0.8q \)
 \(S: p = 6 + 1.2q \)

 Equilibrium pt. = \((q_0, p_0) = (8, 15.6)\)

 \[
 \text{CS} = \int_0^{q_0} [f(q) - p_0] dq
 \]

 \[
 = \int_0^8 [(22 - 0.8q) - 15.6] dq = \int_0^8 (6.4 - 0.8q) dq
 \]

 \[
 = \left(6.4q - 0.4q^2\right)_0^8 = (51.2 - 25.6) - 0 = 25.6
 \]

 \[
 \text{PS} = \int_0^{q_0} [p_0 - g(q)] dq
 \]

 \[
 = \int_0^8 [15.6 - (6 + 1.2q)] dq = \int_0^8 (9.6 - 1.2q) dq
 \]

 \[
 = \left(9.6q - 0.6q^2\right)_0^8 = (76.8 - 38.4) - 0 = 38.4
 \]

2. \(D: p = 2200 - q^2 \)
 \(S: p = 400 + q^2 \)

 Equilibrium point = \((q_0, p_0) = (30, 1300)\)

 \[
 \text{CS} = \int_0^{q_0} [(2200 - q^2) - 1300] dq
 \]

 \[
 = \int_0^{30} (900 - q^2) dq = \left(900q - \frac{q^3}{3}\right)_0^{30}
 \]

 \[
 = (27,000 - 9000) - 0 = 18,000
 \]

 \[
 \text{PS} = \int_0^{q_0} [1300 - (400 + q^2)] dq
 \]

 \[
 = \int_0^{30} (900 - q^2) dq
 \]

 \[
 = \left(900q - \frac{q^3}{3}\right)_0^{30}
 \]

 \[
 = (27,000 - 9000) - 0 = 18,000
 \]

3. \(D: p = \frac{5q}{q + 5} \)
 \(S: p = \frac{q}{10} + 4.5 \)

 Equilibrium pt. = \((q_0, p_0) = (5, 5)\)

 \[
 \text{CS} = \int_0^{q_0} [f(q) - p_0] dq
 \]

 \[
 = \int_0^5 \left[\frac{50}{q + 5} - 5\right] dq = \left(50\ln(q + 5) - 5q\right)_0^5
 \]

 \[
 = [50\ln(10) - 25] - [50\ln(5)]
 \]

 \[
 = 50\ln(2) - 25 = 50\ln(2) - 25
 \]

 \[
 \text{PS} = \int_0^{q_0} [p_0 - g(q)] dq
 \]

 \[
 = \int_0^5 \left[\frac{5q}{10} - 4.5\right] dq = \int_0^5 \left(0.5 - \frac{q}{10}\right) dq
 \]

 \[
 = \left(0.5q - \frac{q^2}{20}\right)_0^5
 \]

 \[
 = (2.5 - 1.25) - 0 = 1.25
 \]

4. \(D: p = 900 - q^2 \)
 \(S: p = 10q + 300 \)

 Equilibrium point = \((q_0, p_0) = (20, 500)\)

 \[
 \text{CS} = \int_0^{q_0} [(900 - q^2) - 500] dq
 \]

 \[
 = \int_0^{20} (400 - q^2) dq
 \]

 \[
 = \left(400q - \frac{q^3}{3}\right)_0^{20}
 \]

 \[
 = (8000 - 3333.33) - 0
 \]

 \[
 = 16,000
 \]

 \[
 \text{PS} = \int_0^{q_0} [500 - (10q + 300)] dq
 \]

 \[
 = \int_0^{20} (200 - 10q) dq
 \]

 \[
 = (200q - 5q^2)_0^{20}
 \]

 \[
 = (4000 - 2000) - 0
 \]

 \[
 = 2000
 \]

5. \(D: q = 100(10 - 2p) \)
 \(S: q = 50(2p - 1) \)

 Equilibrium pt. = \((q_0, p_0) = (300, 3.5)\)

 We use horizontal strips and integrate with respect to \(p\).

 \[
 \text{CS} = \int_{3.5}^{225} 100(10 - 2p) dp = 100[(10 - p)^2]_{3.5}^{225}
 \]

 \[
 = 100[(50 - 25) - (35 - 12.5)]
 \]

 \[
 = 100(25) = 2500
 \]

 \[
 \text{PS} = \int_{0.5}^{3.5} 50(2p - 1) dp = 50(p^2 - p)_{0.5}^{3.5}
 \]

 \[
 = 50[(12.25 - 3.5) - (0.25 - 0.5)]
 \]

 \[
 = 450
 \]
6. \(D: q = \sqrt{100 - p} \)
\[S: q = \frac{p}{2} - 10 \]
Equilibrium pt. \((q_0, p_0) = (8, 36) \)
Integrating with respect to \(p \),
\[CS = \int_{36}^{100} \sqrt{100 - p} \, dp \]
\[= -\frac{2}{3} (100 - p)^{\frac{3}{2}} \bigg|_{36}^{100} \]
\[= 0 - \left(-\frac{2}{3} \cdot 512 \right) = \frac{1024}{3} \]
\[PS = \int_{36}^{100} \left(\frac{p}{2} - 10 \right) \, dp \]
\[= \left[\frac{p^2}{4} - 10p \right]_{36}^{100} = (324 - 360) - (100 - 200) \]
\[= 64 \]

7. We integrate with respect to \(p \). From the demand equation, when \(q = 0 \), then \(p = 100 \).
\[CS = \int_{84}^{100} 10\sqrt{100 - p} \, dp \]
\[= \int_{84}^{100} 10(100 - p)^{\frac{1}{2}} \, [\!-dp] \]
\[= -\frac{20}{3} (100 - p)^{\frac{3}{2}} \bigg|_{84}^{100} \]
\[= -\frac{20}{3} \left[0 - 16^{\frac{3}{2}} \right] = -\frac{20}{3} (-64) \]
\[= 426 \frac{2}{3} = \$426.67 \]

8. At equilibrium, \(p = \frac{400 - p^2}{60}, \) \(60p = 400 - p^2 + 300, p^2 + 60p - 700 = 0, \)
\((p + 70)(p - 10) = 0 \Rightarrow p = 10 \) and
\(q = 400 - 10^2 = 300, \) so equilibrium pt. is \((q_0, p_0) = (300, 10) \).
\[PS = \int_{0}^{300} \left[10 - \left(\frac{q}{60} + 5 \right) \right] \, dq \]
\[= \left(5q - \frac{q^2}{120} \right)_{0}^{300} = (1500 - 750) - 0 = 750 \]
For CS we integrate with respect to \(p \). From the demand equation, \(q = 0 \Rightarrow p = 20 \).
\[CS = \int_{10}^{20} \left(400 - p^2 \right) \, dp = \left(400p - \frac{p^3}{3} \right)_{10}^{20} \]
\[= \left(8000 - \frac{8000}{3} \right) - \left(4000 - \frac{1000}{3} \right) = 1666 \frac{2}{3} \]

9. At equilibrium, \(2^{10 - q} = 2^{q + 2} \Rightarrow 10 - q = q + 2 \Rightarrow q = 4, \) so
\(p = 2^{10 - q} = 64 \)
\[CS = \int_{0}^{4} (2^{10 - q} - 64) \, dq \]
\[= \left(\frac{2^{10 - q}}{\ln 2} - 64q \right)_{0}^{4} \]
\[= \left(\frac{2^6 - 256}{\ln 2} - \frac{2^6 - 0}{\ln 2} \right) \]
\[= 1128.987 \text{ hundred} \]
\[= \$113,000 \]

10. a. \((10 + 10)(30 + 20) = 1000, (20)(50) = 1000, 1000 = 1000 \)
\(30 - 4(10) + 10 = 0, 30 - 40 + 10 = 0, 0 = 0 \)