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Abstract—We study the capacity of random wireless ad hoc
networks when nodes are capable multi-packet transmissionand
reception (MPTR). This paper extends the unified framework
of (n, m, k)-cast by Wang et al. [9] with single-packet reception
(SPR) capability for each node to MPTR.(n, m, k)-cast considers
all types of information dissemination including unicast routing,
multicast routing, broadcasting and anycasting. In this context,
n, m, and k represent total number of nodes in the network,
number of destinations for each communication group and actual
number of destinations that receive the packets respectively. We
show that the capacity of an(n,m,k)-cast wireless ad hoc network
scales asΘ

`

n
√

mr3 (n) /k
´

, Θ
`

nr2 (n) /k
´

and Θ
`

nr4(n)
´

bits
per second whenm=O

`

1/r2 (n)
´

, Ω (k) =1/r2 (n)=O (m) and
k=Ω(1/r2 (n)) respectively, where r(n) denotes the commu-
nication range. Also we illustrate that the use of MPTR
leads to a gain of Θ (logn) compared to the capacity at-
tained with multi-packet reception (MPR), and to a gain
of Θ((logn)2) compared to the capacity attained with SPR,
when Ω(

p

logn/n ) =r (n) =O(
p

loglogn/3logn).

I. I NTRODUCTION

Gupta and Kumar [1] computed the throughput capacity of
wireless networks with unicast traffic when nodes are endowed
with single-packet reception (SPR) capability. Li et al. studied
[7] the multicast capacity of wireless networks and proved
that per-node multicast capacity isΘ(1/

√
nklogn) andΘ1/n

for k = O(n/logn) and k = Ω(n/logn) respectively where
k is the number of communication sessions in the network.
Keshavarz et al. [12] focused on the broadcast capacity of
wireless networks and observed that the capacity does not
change with the transmission range.

Wang et al. in [9] presented a unified framework for
the computation of throghuput capacity of these net-
works and introduced the(n, m, k)−casting as a general-
izaion of unicasting, multicasting, braodcasting and anycast-
ing. In this framework n is the total number of nodes
in the network, m is the number of destinations for
each communication group, andk is the actual number
of destinations in each group that receive the packets.
(n, m, k)−cast capacity was computed in [2] when nodes
are only capable of SPR communications and the authors
showed that the capacity isΘ (

√
m/nkr(n)), Θ

(

1/nkr2(n)
)

,

Θ (1/n) for m=O
(

1/r2 (n)
)

, Ω (k)=1/r2 (n)=O (m) and
k=Ω(1/r2 (n)) respectively.

This multi-packet transmission and reception (MPTR)
model was introduced in [8] and was shown to increase the
unicast capacity by a factor ofΘ(logn) in camparison with
MPR model. In this paper, we use the framework presented
by Wang et al. and compute the(n, m, k)−cast throughput
capacity when the nodes have the MPTR capability. Further,
the relationship between capacity and delay as a function of
transmission range and group size is derived.

The rest of the paper is organized as follows. In section II,
we introduce the model which is used for the network, and the
main results of our work on capacity and delay with MPTR
are shown in section III. Section IV discusses the results.

II. PRILIMINARIES

First, we define the notations used throughout this paper.
|R| indicates the area of a continuous regionR and#S shows
the cardinality of a setS. The distance between two nodesx
and y is denoted by|x − y|. The probability of eventE is
represented byPr(E) and if Pr(E) > 1 − 1/n holds for
sufficiently largen, the event E is assumed to occur with high
probability (w.h.p.). Also the standard notations ofΩ, Θ, and
O are employed in this paper.

The protocol model defined in [10] is based on single-
packet reception. The transmission ranger(n) is common
for all nodes in the network. Nodei at position Xi can
successfully transmit to nodej at positionXj if for any node
k at positionXk, k 6= i, that transmits at the same time asi,
then |Xi −Xj | ≤ r(n) and |Xk −Xj | ≥ (1 + ∆)r(n), where
Xi, Xj and Xk are the cartesian positions in the unit square
network for these nodes.
The protocol model for MPR is defined in [3]. In MPR model,
all nodes use a common transmission rangeR(n) for all their
communications. The network area is assumed to be a unit
square area. In wireless networks with MPR capability, the
protocol model assumption allows simultaneous decoding of
packets for all nodes as long as they are within a radius of
R(n) from the receiver and all other transmitting nodes have



a distance larger than(1 + ∆)R(n).
In this paper the combination of MPR and multipacket trans-
mission (MPT) is utilized for all nodes as defined in [8]. This
model restricts the nodes to operate in a half-duplex mode
(like all the other methods mentioned ealier), and similar to
MPR model prohibits the transmission from a nodek in the
region r(n) < |Xi − Xk| ≤ (1 + ∆)r(n). The difference
between MPTR and MPR protocol models is that, under the
MPTR model, a nodei transmitting a packet to nodej can
concurrently transmit packets to other nodes in the network.
This paper uses the concept of Total Active Area
(TAA(∆, R(n))) which is defined in [3] as the total area of
the network multiplied by the average maximum number of
simultaneous transmissions and receptions inside a communi-
cation region ofΘ(R2(n)).
Minimum Area (n, m, k)−cast Tree (MAMKT (r(n))) in a
(n, m, k)−cast tree is the total area covered by the circles
with radiusr(n) centered on sources and relays in the wire-
less ad hoc network, and#MEMKTC is defined as the
average total number of cells that contain all the nodes in an
(n, m, k)−cast group.

III. T HROUGHPUTCAPACITY OF NETWORK WITH MPTR
MODEL

A. Upper Bound

One of the most common techniques to find the upper bound
on capacity of networks is to calculate the total number of
simultaneous transmissions possible in the network area and
use this value to compute the upper bound throughput capacity
for each(n, m, k)−cast group.

Lemma 1:The maximum number of simultaneous trans-
missions in the network with MPTR capability isO(n2r2(n)).

Proof: We divide the network area into cells with side-
length ofr/

√
5. Define the sub-graphG1 = (V1, E1) with V1

includes all the nodes as the network (V1 = V ) and use the
subset of edgesE1 such that each edge connects the nodes in
adjacent cells; i.e.,E1 = {e ∈ E : e+ = e− ∓ 1}. In this new
graph the total number of cells is proportional toΘ(1/r2(n))
and the total number of edges coming from or to a cell is
Θ(n2r4(n)). Therefore, the maximum number of simultaneous
transmissions in the network isΘ(n2r2(n)). Note that this is
the total number of simultaneous transmissions in sub-graph
G1, so the maximum number of simultaneous transmissions
in graphG would beO(n2r2(n)).

Lemma 2:The maximum rate which can be reached in a
network with MPTR capability isO( nr2(n)

#MEMKTC
).

Proof: There aren multi-cast groups each sending data
at rateλ, and the maximum average number of cells each
bit has to travel to reach all destinations is#MEMKTC.
Thus, the total number of simultaneous transmissions in such
a network would benλ#MEMKTC which cannot be larger
thanO(n2r2(n)).

nλ#MEMKTC ≤ n2r2(n)

Then,

λ ≤ nr2(n)

#MEMKTC
.

Lemma 3:The #MEMKTC is tight bounded as

#MEMKTC(r(n)) =














Θ
(

k
r(n)

√
m

)

, for m = O
(

1
r2(n)

)

Θ (k) , for Ω (k)= 1
r2(n) = O (m)

Θ
(

1/r2(n)
)

, for k = Ω( 1
r2(n) )

Proof: The proof is given in Lemma 4.7 and 5.5 in [9].

Theorem 4:In wireless ad hoc networks with MPTR, the
upper bound on the per node throughput capacity of (n,m,k)-
cast is:

Cm,k(n) =















O
(

n
√

mr3(n)
k

)

, for m = O
(

1
r2(n)

)

O
(

nr2 (n) /k
)

, for Ω (k)= 1
r2(n) = O (m)

O
(

nr4 (n)
)

, fork = Ω( 1
r2(n) )

Proof: Combining the results of Lemma 3 and 2 will lead
to the result.

B. Lower Bound

To obtain a lower bound on capacity, we can use the TDMA
scheme similar to the one used in [3] for MPR model. It has
been shown [3] that there exists at least⌈1/ (Lr(n)/

√
2)

2
⌉

simultaneous circular regions each one containingΘ
(

nr2(n)
)

nodes w.h.p.. Note that the TDMA factorL is only a constant
value and not a function ofn.

Lemma 5:for any r(n)=Ω(
√

log n/n ),

lim
n→∞

Prob (sup {Number of trees intersecting cell Sk,j})

= O(nr2(n)#MEMKTC(r (n)))

Proof: The proof of this lemma is provided in [3].

Lemma 6:The achievable lower bound for the (n,m,k)-
cast capacity with MPTR is

Cm,k (n) = Ω(nr2(n) × #MEMKTC(r (n))
−1

).

Proof: There exists a transmitting schedule such that in
everyL2 (L is constant) slots, each cell transmits or receives at
rate W bits/second with maximum transmission distance r(n).
Therefore, the number of packets transmitted to and from a
cell is Θ (n2r4 (n)W/L2). From Lemma 6, each cell needs
to transmit at rate(Cm,k (n)nr2(n)#MEMKTC(r (n)))
w.h.p.. In order to accommodate this requirement by all cells,



we needCm,k (n)nr2 (n)#MEMKTC(r (n)) ≤ n2r4(n)
which proves the lemma.

Theorem 7:In wireless ad hoc networks with MPTR, the
lower bound per node throughput capacity of (n, m, k)-cast is
given by

Cm,k(n) =















Ω
(

n
√

mr
3(n)

k

)

, for m = O
(

1
r2(n)

)

Ω
(

nr2 (n) /k
)

, for Ω (k)= 1
r2(n) = O (m)

Ω
(

nr4(n)
)

.for k = Ω( 1
r2(n) )

Proof: Combining the results of lemmas 3 & 6 prove the
theorem.

The obtained throughput capacity has been calculated with-
out considering the maximum number of simultaneous re-
ceivers and transmitters which a node can accommodate.
According to the bins and balls theorem, the maximum number
of destinations which can be related to a single node is at
most 3log n

log log n
. The maximum rate at which a node can send

or receive data cannot be less than the total traffic load that
a node is required to accommodate. This constraint requires
that

nr2(n) ≥ Cm,k(n) × 3logn

log log n
.

It can be proved that ifr (n) = O(
√

log log n
3log n

) , then the
above inequality holds in all regions of throughput capacity.
We show the proof for region 1 as an example, i.e.,Cm,k (n) =

O(n
√

mr
3(n)

k
).

nr2(n) ≥ A1
n
√

mr
3
(n)

k
× 3logn

log log n
(1)

1 ≥ 1

A1

√
mr(n)/k × 3log n

log log n

A1
log log n

3logn
√

m
k ≥ r(n)

In the first capacity region,m follows the following inequality.

A2/r2(n) ≥ m ≥ k → r(n) ≤
√

A2

m

Now, we use this lower bound forr(n) in eq. (1).

r(n) ≤ A1
log log n

3log n
√

m
k (2)

a

≤ A1
log log n
3 log n

√
m

b

≤ A1

√
A2

log log n
3 log nr(n)

r(n) ≤ A3

√

log log n
3 log n

(a) is derived by replacingk with its upper boundm and (b)
is derived by using eq. (1). The same results can be obtained
for the other two capacity regions.

The above criterion gives us an upper bound on com-
munication range,r(n), such that the obtained capacity can

be achieved without any congestion for each node. On the
other hand, the connectivity criteria requires thatr (n) =

Ω(
√

log n
n

). Thus it concluded that ifr(n) should be in the

region ofΩ(
√

log n
n

= r (n) = O(
√

log log n
3log n

). Combining
Theorems 4 and 7 provides a tight bound on the throughput
capacity of the network when each node is endowed with
MPTR capability.

Cm,k (n) =



















Θ
(

n
√

mr
3(n)

k

)

, for m = O
(

1
r2(n)

)

Θ
(

nr2(n)
k

)

, for Ω (k)= 1
r2(n) = O (m)

Θ
(

nr4 (n)
)

, for k = Ω
(

1
r2(n)

)

C. Delay Analysis

In this section, we discuss the delay of(n,m,k)-casting and
its relationship with the capacity.

Lemma 8:The delay of(n, m, k)−cast in a random dense
wireless ad hoc network is

Dm,k (n) = Θ(#MEMKTC(r(n)))

Proof: Proof is given in Lemma 4.7 in [2].

Lemma 9:The relationship between delay and capacity
for (n,m,k)-casting is as follows:

Dm,k (n)Cm,k (n) = Θ(nr2(n))

Proof: The proof follows immediately by combining Lem-
mas 6 and 8.

IV. D ISCUSSION

In this paper we focused on the capacity of(n, m, k)-casting
when the nodes are endowed with multi-packet transmission
and reception capabilities. The capacity and delay have been
obtained for different(n, m, k)−casting including unicast,
multicast, broadcast and anycast communications.

A. Capacity as a function of transmission range and group
size

The relationship between capacity and group size(m) as
a function of communication ranger(n) is shown in figure
1. As can be seen, the throughput capacity does not change
with the group size when1 ≤ m ≤ Θ(1). In this region the
capacity is only a function ofn andr3(n) and an increase in
transmission range will increase the capacity.
Further, when the number of receivers exceeds a threshold, the
throughput capacity will be independent ofm and it is just a
function of n andr4(n).
In the first capacity region and for the multicast (k =
m < n) communications, the throughput capacity has its
minimum value and decreases with the increase ofm,
(Θ(nr3(n)/

√

(m)). In the same capacity region and for
anycast communication, i.e.,k = 1, the capacity reaches
its maximum value and increases with the increase ofm,
(Θ(nr3(n)

√
m).



Fig. 1. The relationship between throughput capacity of(n, m, k)-cast and
m as a function ofr(n).

B. Capacity and Delay Tradeoff

The tradeoff between delay and capacity using MPTR
capability in the first (unicat), second (multicast), and third
(broadcast) capacity regions are illustrated in figures 2, 3,
and 4, respectively. In the unicast region, (m = O(r−2(n))),
as r(n) increases, delay decreases and capacity increases,
so to have the minimum delay and maximum capacity, we
just need to increaser(n) to the maximum allowable value
(O(

√

loglogn/3logn)). This condition clearly requires an
increase in the computational complexity of the nodes in the
network.
In the multicast region (Ω(k) = r−2(n) = O(m)), the delay
does not change withr(n) and to achieve the maximum
capacity, the maximumr(n) should be selected.
The broadcast region (k = Ω(r−2(n))) has almost the same
capacity-delay tradeoff similar to the unicast region, as we
observe that by decreasing the delay, the capacity increases
when the transmission range increases. Therefore, the max-
imum acceptable transmission range will result in minimum
delay and maximum capacity.
Finally, our results demonstrate that in networks with MPTR
capability, there is no need to sacrifice capacity to achieve
lower delay. The main reason is the fact that MPTR takes
care of interference and by increasingr(n), more nodes can
simultaneously communicate with each other.

V.

APPENDIX

We compute the upper bound using another technique in
this appendix. We introduce a circular cut of radiusr(n) as
shown in Fig. 5 that divides the network into two regions of
S andSc. To compute the upper bound throughput capacity,
we utilize the concepts of the average total active area and the
total area required to transmit information in an(n, m, k)-cast
tree.

Lemma A1:The maximum number of transmitters in S
is Θ(nr2(n)).

Fig. 2. Capacity and delay tradeoff in the first (unicast) capacity region.

Fig. 3. Capacity and delay tradeoff in the second (multicast) capacity region.

Fig. 4. Capacity and delay tradeoff in the third (broadcast)capacity region.



SC

S     
r(n)

Fig. 5. A circular cut that divides the network into two regions of S and
Sc.

Proof: In MPTR model, each node can receive from
multiple nodes, so the existence of a transmitter in this circle
does not prohibit the transmission from other nodes in this
region. Thus, the maximum number of transmitters in this
region equals to the maximum number of nodes that contains
in this region which is equal toΘ(nr2(n)).

Lemma A2:The maximum number of transmissions per
node isΘ(nr2(n)).

Proof: MPTR model allows each node to transmit to
several nodes at a time. So the number of transmissions per
node equals to the number of receivers in the circle with radius
r(n) centered on that node, which equals to the total number
of nodes in this region(Θ(nr2(n))).

Lemma A3: The Average Total Active Area,
TAA(△, r (n)), in networks with MPTR isΘ(n2r4(n)).

Proof: The radius of region S isr(n). Let’s consider all
the nodes that are within a ring of greater thanr(n)/2 and
r(n) with respect to the center of the circle. The number of
nodes in this ring is proportional to(Θ(nr2(n))). Because
of the uniform distribution of nodes, there is on average
(Θ(nr2(n))) nodes inSC that are within the communication
range of the nodes inside this ring. Thus it can be assumed
that each transmission from any transmitter inside this ring
will pass through the cut, leading to a maximum flow equal
to the multiplication of the number of transmitters in this ring
and the number of transmissions per node in the ring which
is equal toΘ

(

nr2 (n)
)

× Θ
(

nr2 (n)
)

= Θ(n2r4(n)).

Lemma A4: In random dense wireless ad hoc networks,
the per-node throughput capacity of(n, m, k)-cast with MPTR

is given byO( 1
n
× TAA(△,r(n))

S(MAMKT (r(n)))
).

Proof: With MPTR, we observe that
S(MAMKT (r(n))) represents the total area required
to transmit information from a multicast source to all its
m destinations. The ratio between average total active area,
TAA(△, r (n)), and S(MAMKT (r(n))) represents the
average number of simultaneous(n, m, k)-cast sessions that
can occur in the network. Normalizing this ratio byn provides
per-node throughput capacity which proves the Lemma.

Lemma A5:In (n, m, k)-cast applications, the average
area of a(n, m, k)-cast tree with transmission ranger(n),

S(MAMKT (r(n))) has the following lower bound as:

S (MAMKT (r (n))) =














Ω
(

kr(n)√
m

)

, for m = O
(

1
r2(n)

)

Ω
(

kr2 (n)
)

, for Ω (k)= 1
r2(n) = O (m)

Ω (1) , for k = Ω( 1
r2(n) )

Proof: Note thatS(MAMKT (r(n))) is the same value
for MPTR, MPR and SPR, and they only depend on the
communication range in the network. This value is derived
in [2], [3].

Theorem A6:In wireless ad hoc networks with MPTR, the
upper bound on the per node throughput capacity of(n, m, k)-
cast is:

Cm,k(n) =














O
(

n
√

mr
3
(n)/k

)

, for m = O
(

1
r2(n)

)

O
(

nr2 (n) /k
)

, for Ω (k)= 1
r2(n) = O (m)

O
(

nr4(n)
)

, for k = Ω( 1
r2(n) )

Proof: The proof follows immediately by combining
Lemmas A3, A4, and A5.

REFERENCES

[1] P. Gupta, P. R. Kumar,The capacity of wireless networks, IEEE
Transaction on Information Theory, vol. 46, no. 2, pp. 388-404, 2000.

[2] Z. Wang, H. Sadjadpour, J. J. Garcia-Luna-Aceves, and S.Karande,
Fundamental limits of information dissemination in wireless ad hoc
networks- Part I: Single-packet reception, IEEE Transactions on Wire-
less Communications, vol. 8, no. 12, pp. 5749-5754, 2009.

[3] Z. Wang, H. Sadjadpour, J. J. Garcia-Luna-Aceves,Fundamental limits
of information dissemination in wireless ad hoc networks- Part II: Multi-
packet reception, To appear in , 2010.

[4] R. Ahlswede, C. Ning, S. Y. R. Li, and R. W. Yeung,Network
information flow, IEEE Transactions on Information Theory, vol. 46,
no. 4, pp. 1204-1216, 2000.

[5] J. Liu, D. Goeckel, and D. Towsley,Bounds on the gain of network cod-
ing and broadcasting in wireless networks, in Proc. of IEEE INFOCOM
2007, Anchorage, Alaska, USA., May 6-12 2007.

[6] Z. Li and B. Li, Network coding in undirected networks,in Proc. of CISS
2004, Princeton, NJ, USA., March 17-19 2004

[7] X.-Y. Li, Multicast capacity of wireless ad hoc networks, IEEE/ACM
Transaction on Networking, January, 2008.

[8] S. Karanade, Z. Wang, H. R. Sadjadpour, and J. J. Garcia-Luna-
Aceves,Optimal unicast capacity of random geometric graph: impact
of multipacket transmission and reception, Journal of selected areas in
communications, vol. 6, no. 1, January, 2009.

[9] Z. Wang, H. R. Sadjadpour, and J. J. Garcia-Luna-Aceves,A unifying
perspective on the capacity of wireless ad hoc networks, Proc. of IEEE
INFOCOM 2008, Phoenix, Arizona, USA, April 13-18 2008.

[10] F. Xue, P. R. Kumar,Scaling laws for ad hoc wireless networks: an
information theoretic approach, Now Publishers Inc., 2006.

[11] C. Wang, X.-Y. Li, C. Jiang, S. Tang, and Y. Liu,Scaling laws on
multicast capacity of large scale wireless networks, in Proc. IEEE
INFOCOM 2009.

[12] A. Keshavarz, V. Ribeiro, and R. Riedi,Broadcast capacity in multihop
wireless networks, in Proc. of ACM MobiCom 2006, Los Angeles,
California, USA, Septmber 23-29 2006.

[13] C. Peraki and S. Servetto,On the maximum stable throughput problem in
random networks with directional antennas, in Proc. of ACM MobiHoc
2003, Annapolis, Maryland, USA., June 1-3 2003.



[14] S. Yi, Y. Pei, and S. Kalyanaraman,On the capacity improvement of
ad hoc wireless networks using directional antennas, in Proc. of ACM
MobiHoc 2003, Annapolis, Maryland, USA., June 1-3 2003.


