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Abstract: To compensate the performance degradation induced by polarisation mode dispersion
(PMD) in high-speed optical transmission, a single-input multiple-output (SIMO) decision feed-
back equaliser (DFE) technique is proposed to combat all orders of PMD-induced distortion.
The scheme is based on a new SIMO PMD channel model which utilises information embedded
in both polarisation states. The performance analysis of the proposed PMD SIMO DFE scheme
is provided along with explicit expressions for the filter coefficients. The analysis results show
that the new scheme provides a significant improvement over using a first-order optical compen-
sator and conventional DFE.
1 Introduction

Polarisation-mode dispersion (PMD) becomes the capacity
limiting factor for sufficiently long transmission distances
and sufficiently high bit rates optical communications. In
fact, deployed systems are rapidly approaching these
limits. New signal processing techniques are needed to
deal with the signal distortions introduced by PMD as
well as by other impairments.
Polarisation-mode dispersion is caused by optical bire-

fringence in fibres. The unintentional and random asymme-
try of any optical fibre introduces a difference in the phase
and group velocities of the two orthogonally polarised
modes. The signal propagating along one polarisation
moves slower or faster than the signal along the other polar-
isation. At the receiver, the shape of the signal is spread and
distorted because of the differential group delay (DGD).
Several PMD compensation techniques have been proposed
in both the optical and electrical domains. Optical PMD
compensators [1] correct the phase difference between the
two polarisation modes using polarisation controllers and
optical delays with feedback from the receiver.
The inter-symbol interference (ISI) caused by PMD is

linear in the optical domain. Electrical compensators
usually operate after the nonlinear square-law detector,
therefore optical compensators are more effective than elec-
trical ones because they process light directly without losing
any information. Although electrical compensators can
fully take advantage of the signal processing techniques
developed in the electrical domain, unfortunately after the
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detection receiver (square-law detection), the polarisation
phase information is lost in electrical domain [2] and the
channel becomes a nonlinear channel. (The ‘nonlinearity’
used in this article is based on the signal processing defi-
nition discussed by A. Oppenheim and R. Schafer in
‘Discrete-time signal processing’ (Prentice Hall Inc, 1989)
[3]. It is different than the ‘power dependent nonlinearity’
used in some optical literature.) In most of the previous
research on signal processing techniques for PMD [4, 5],
PMD optical channels were assumed to be linear, which is
not an accurate assumption when a square-law detector is
used in the receiver. This is one of the reasons that the con-
ventional DFE or linear equaliser (LE) is not effective [6] as
such schemes can only mitigate the first-order PMD [7]. In
this article, we present a new approach in utilising electrical
domain equalisers in the optical domain by modelling a
PMD dominant fibre optic channel as a SIMO model.
Until very recently, research on electrical PMD compen-

sation focused almost exclusively on the first-order PMD
and assumed the PMD channels are single-input single-
output (SISO) channels. The SISO assumption cannot
resolve the two polarisation modes and therefore is a
rough representation of the PMD channels which cannot
represent high-order PMD. The proposed SIMO PMD
model is able to reflect more accurately the interaction
between the two polarisation modes which results in the
DGD phase shift.
In this article, we propose a single-input multiple-output

decision feedback equaliser (SIMO-DFE) scheme which
compensates for all orders of PMD. In particular, we
employ DFE-like equaliser on a new filtering structure
that is motivated by the SIMO-PMD channel model and
consequently, it is more effective. The new approach
takes into consideration the fact that the output signals in
the two polarisation modes are not linearly combined at
the receiver. Using the recently developed MIMO signal
processing techniques, the proposed equaliser detects the
received signal optimally based on the outputs from both
polarisation modes. The scheme can mitigate all orders of
PMD and obtain significant performance gain over the con-
ventional SISO DFE and first-order optical or electrical
compensators.
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The chapter is organised as follows: Section II proposes a
SIMO channel model for PMD with its statistical character-
istics. In Section III, a SIMO-DFE scheme based on this
model is formulated. Optimal coefficients are derived and
performance of the scheme is analysed with different oper-
ating conditions. Section IV compares the SIMO-DFE per-
formance to two well-known PMD compensators, one using
PSP transmissions and another using a nonlinear canceller.
Section V draws the conclusion.

2 SIMO-PMD channel model

Based on the PMD vector concatenation rule and the prin-
ciple states model [1, 7], a PMD-limited optical channel
can be modelled using a series of linear birefringent
elements which are sandwiched between polarisation
adjustments. This model characterises all orders of PMD,
not only the first-order. Signal propagation along the polar-
isation modes of a fibre is modelled in Jones space [7].
The baseband transmitted signal is assumed to be

fin(t) ¼
X
k

skq(t � kT ) (1)

where q(t) is the transmitted pulse and sk is a binary input
sequence. The transmitter modulates the signal by translat-
ing it to a laser carrier frequency fc. The complex baseband
representation of the electric field of the launched optical
signal can be expressed as a two-dimensional vector of
the orthogonal polarisation components as

m1(t)

m2(t)

� �
¼ fin(t)

cos (u)

sin (u)e jd

� �
(2)

where u and d define the input state of polarisation (SOP)
along the polarisation axis. The launched SOP has a big
impact on the resulting PMD distortion. When the input
SOP is aligned with the fibre’s principle states of polaris-
ation (PSP), the first-order DGD can be minimised. This
is called the PSP transmission method.
The transmitted signal is distorted by a PMD-limited fibre

channel. The transfer function of the PMD channel can be
expressed as transmission matrix T(v)

T (v) ¼ U 0(aN )
e�jtNv=2 0

0 e jtNv=2

� �

� U
0(aN�1)

e�jtN�1v=2 0

0 e jtN�1v=2

� �

� U 0(aN�2) . . .U
0(a1)

e�jt1v=2 0

0 e jt1v=2

� �
U 0(a0)

(3)

where U(a) is the rotation matrix

U(ai) ¼
cos(ai) sin e(ai)

� sin(ai) cos(ai)

� �
(4)

Birefringence element i has a delay of ti and ai is the
rotation angle between two adjacent retarders. Assuming
no chromatic dispersion and polarisation-dependent loss,
the optical field at the output of a PMD limited fibre can
be written as

P1(v)

P
2(v)

� �
¼ T (v)

M1(v)

M2(v)

� �
¼ T (v)

cos u

sin ue�jd

� �
Fin(v) (5)

where M1(v), M2(v) and Fin(v) are the frequency domain
representations of m1(t), m2(t) and fin(t), respectively. All
234
the frequency domain representations are complex
numbers which contain phase information.
It is clear that the model in (3) captures the frequency

dependence of PMD, which represents first, and all higher
orders components of PMD. The following proposed
SIMO-DFE technique is designed based on this channel
model and is capable to mitigate all-order PMDs. The trans-
fer function in (3) causes a DGD between two orthogonal
SOPs, that is, the PSPs, which results in the broadening of
output pulse.

2.1 PMD as a SIMO Channel

Derived from (5), the PMD-limited single-mode optical
channel can be formulated as the SIMO channel (single
input two output) shown in Fig. 1. The SIMO channel is rep-
resented with discrete-time baseband notation hereafter.
The single input signal s(k) is first split into two orthogonal
components m1(k) and m2(k) and then launched on two
polarisation modes of the transmission fibre. It is well-
known that for single-mode fibres, there always exist an
orthogonal pairs of polarisation at the output of the fibre
called the PSPs. On the fibre output, we denote the output
signals on the two PSPs as p1(k) and p2(k), respectively.
The signal paths between the mi(k) (i ¼ 1, 2) and pj(k)
( j ¼ 1, 2) form four subchannels which are denoted by
h(i, j) in Fig. 1, where h(i, j) will be represented using
a discrete-time filter with an impulse response (h1

i,j, . . . ,
hw
i,j). All four subchannels are linear, dispersive and noisy
in the optical domain. n1(k) and n2(k) represent the noises
on each PSP, which are assumed to be white and
Gaussian distributed.
Using the complex baseband equivalent signal model,

this SIMO-PMD channel can be expressed as

p j(k) ¼
X2
i¼1

Xw
l¼1

h
i,j
l m

i
k�lþ1 þ n

j
k (6)

where pj(k) is the jth component of the polarisation vector
which is the discrete time representation of Pj(v), mk21

i is
the ith input and hl

i,j is the channel impulse response
between ih input and jth output for i, j ¼ 1 and 2. The
memory of the channel between ith input and jth output is
assumed to be less than or equal to w and nk

j is the noise
in the jth component of the polarisation vector with a var-
iance of s2

j . Using vector notation, (6) can be rewritten as

p(k) ¼
Xw
l¼1

hlmk�lþ1 þ nk (7)

where hl is a 2 � 2 channel matrix and mk2l is the 2 � 1
input vector at time k2 l.

Fig. 1 PMD complex baseband system model
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From (3), (4) and (6), the transfer function of the
PMD-limited channel T(v) can be simplified as

T(v) ¼
H(1, 1)(v) H(1, 2)(v)

H(2, 1)(v) H(2, 2)(v)

� �

¼
T1(v) T2(v)

�T2(v)� T1(v)�

� � (8)

where H(i, j)(v) is the Fourier transform of (h1
i,j, . . . , hw

i,j).
At the receiver, a PIN detector converts the optical elec-

tric field into electrical current. The detected electrical
signal is proportional to the power of the received optical
signal

R(k) ¼ jp
1(k)j2 þ jp

2(k)j2 (9)

After this square-law detector, the polarisation phase
information between the two polarisation modes is lost.
That phase information is important to mitigate the high-
order PMD in electrical domain.

2.2 PMD-SIMO model validation

The PMD-SIMO model in (6) can be validated against two
well-known PMD characteristics, that is, DGD’s
Maxwellian distribution and the proportional relationship
between average DGD and square root of the fibre distance.
It is generally well accepted that DGD is not deterministic

and thus we must resort to a statistical description. The prob-
ability density function (pdf) of DGD is Maxwellian distribu-
ted over an ensemble of fibre realisations at any fixed optical
frequency. As shown in Fig. 2, the probability density function
of the simulated fibre with 15 birefringent elements agrees
reasonably well with the analytic Maxwellian prediction.
The pdf of the DGD is generated by 10 000 fibre realisations
with the same intrinsic PMD. The mismatch from the
Maxwellian distribution appears to decrease if the number
of the birefringence elements is increased.
The second important characteristic of PMD is that for a

long fibre, the average DGD is proportional to the square
root of fibre length, instead of the fibre length itself. In
Fig. 3, 10 000 fibre realisations were generated. It can be
seen that the average DGD along the fibre distance match
very well with the analytic square root curve.
From these two results, it is clear that the SIMO channel

model matches very well with the statistical characteristics
of the real optical fibres. The analysis and the simulations in
the following sections are based on this statistical PMD
model.

Fig. 2 Maxwellian DGD pdf
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3 SIMO-PMD decision feedback equaliser

The SIMO-PMD model indicates that the end-to-end
PMD-limited optical channel is a dispersive and nonlinear
channel in the electrical domain. The conventional equalisa-
tion methods, such as the MMSE linear equaliser or the
MMSE-DFE are based on assuming linear ISI channels
and therefore are not suitable for this kind of nonlinear
channel. As an alternative, we propose a new SIMO DFE
architecture to equalise the PMD channel as shown in
Fig. 4. In a conventional DFE, a slicer is used as a decision
element and the assumption is that the decision after the
slicer is correct. By comparing the receiver structure of
the PMD receiver with the structure of the conventional
SISO DFE, we found that the PMD square-law detector
combined with the decision element (the big grey box in
Fig. 4) can be treated as a generalised slicer (the lower
small grey box in Fig. 4), which is equivalent to the decision
element in a conventional DFE. Prior to this generalised
slicer, the PMD channel is linear and a new SIMO DFE
can deal with it effectively.
In the proposed SIMO DFE, the output of a PMD channel

is first split into two orthogonal SOP qj(k) ( j ¼ 1, 2) by a
polarisation beam splitter (PBS). The input polarisation
state of the PBS is assumed to be optimal. The optimal
polarisation states are derived based on the characteristics
of the fibres and the input polarisation state of the transmit-
ter. The PBS has to be adjusted to align with the main axis
of fibre during the training stage with low-rate data
sequences. As shown in Fig. 4, two feedforward filters
FF1 and FF2 are applied to pj(k) ( j ¼ 1, 2) in order to

Fig. 3 Mean DGD increases with the square root of distance

Fig. 4 PMD SIMO DFE
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remove the post-cursor ISI and shape the channel output
signal so that it is a causal signal. The feedback filters
FB1, FB2 operate on the decision made by the slicer
which follows the square-law detector. The square-law
detector sums the squares of y1(k) and y2(k). In this
system, the inputs to the detector are represented as y(k)
which is described as

y(k) ¼
y1(k)

y2(k)

� �

¼

FF1

p
1(k)

p1(k � 1)

� � �

p1(k � lf þ 1)

2
6664

3
7775� (E�FB1)

x(k)

x(k � 1)

� � �

x(k � lb þ 1)

2
6664

3
7775

FF2

p2(k)

p
2(k � 1)

� � �

p
2(k � lf þ 1)

2
6664

3
7775� (E�FB2)

x(k)

x(k � 1)

� � �

x(k � lb þ 1)

2
6664

3
7775

2
66666666666664

3
77777777777775

(10)

where FF1, FF2, FB1, FB2 and E are all row vectors. FF1

and FF2 are the impulse responses of the two feedforward
filters and their lengths are lf. FB1 and FB2 are the
impulse responses of the two feedback filters and their
lengths are lb. E ¼ [1 0 0 � � � 0] is a row vector of
length lb.
These feedforward filters are finite-length impulse

response (FIR) filters, which can be implemented with high-
bandwidth optical lattice FIR filters, as described in [8, 9].
The feedback filters can be implemented using electrical
transversal FIR filters. The outputs of the feedforward
filters are converted into electrical signals before being
combined with the corresponding feedback filters outputs.
The scheme provides a general framework to analyse and
design equalisation schemes for PMD limited channels.
The implementation complexity may not be optimal. This
article only describes the new approach knowing that the
complexity of this system should be reduced further in
order to make this approach more practical. Future areas
of improvement on this SIMO PMD compensation
scheme include how to further reduce the implementation
complexity without significantly impacting the
performance.

3.1 SIMO DFE Coefficients Optimisation

In the following, we derive the optimal filter coefficients for
the equalisers in Fig. 4 using some results from [10]. Both
the minimum mean square error (MMSE) and the zero-
forcing (ZF) solutions are formulated in [10]. The zero-
forcing solution is a special case of the MMSE solution
for the case when the SNR approaches infinity. In this
section, the MMSE solution is derived, which subsumes
the zero-forcing solution. The MMSE-LE (Linear
Equaliser) and ZF-LE are also the special cases when
only the feedforward filters are used and optimised while
the feedback filters are removed (i.e. FBj ¼ 1).
Since the SNR of optical channels are normally high, the

error propagation of DFE can be ignored as in other high
SNR applications. Assuming that the previous decisions
are always correct (y1(k)true ¼ y2(k)true ¼ x(k)), the vector
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error signal at the input to the square law is

e(k) ¼

FF1

p1(k)

p
1(k � 1)

� � �

p
1(k � lf þ 1)

2
666664

3
777775� FB1

x(k)

x(k � 1)

� � �

x(k � lb þ 1)

2
666664

3
777775

FF2

p2(k)

p2(k � 1)

� � �

p2(k � lf þ 1)

2
666664

3
777775� FB2

x(k)

x(k � 1)

� � �

x(k � lb þ 1)

2
666664

3
777775

2
66666666666666664

3
77777777777777775

¼ FFP � FBX

(11)

where FF ¼
FF1 EF

EF FF2

� �
; FB ¼

FB1

FB2

� �

P ¼ [p1(k)p1(k � 1) � � � p1(k � lf þ 1)p2(k)p2(k � 1) � � �

p2(k � lf þ 1)]T

X ¼ [x(k)x(k � 1) � � � x(k � lb þ 1)]T

(12)

where EF is a zero-row vector [0 0 � � � 0] of length lf.
The MMSE measure of this multi-dimensional error

random process is equal to the trace of the error auto-
correlation matrix Ree which is

Ree ¼ E[e(k)e(k)�]

¼ FF
�
RppFF � FF

�
RpxFB

� FB�RxpFF þ FB�RxxFB (13)

where Rpp is the auto-correlation matrix of feedforward
output vector Q, Rpx is the cross-correlation matrix of p
and input x, and Rxx is the auto-correlation matrix of input
vector x. FF� is the Hermitian transpose of FF. In the fol-
lowing derivation, the channel responses h(i, j) and the
noise auto-correlation matrix, Rnn are assumed known.
By applying the Orthogonality Principle, it can be shown

that the optimum feedforward and feedback filters are
related by

E[e(k)P�(k)] ¼ 0 (Orthogonality Principle)

FF
�
opt ¼ FB

�
optRxpR

�1
pp

(14)

From (13) and (14) we arrive at

Ree ¼ FB�(R�1
xx þH � R�1

nn H)FB (15)

The MMSE solution can be found as

min
FB

trace(Ree)

¼ min
FB

trace(FB�(R�1
xx þH � R

�1
nn H)FB) (16)

FBopt ¼ RF(F�
RF)�1

C (17)

where R ¼ (R�1
xx þH � R�1

nn H) and

F ¼
ID�(Dþ1)

01�(Dþ1)

" #
C ¼

01�D

1

� �
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Note that D, the decision delay of the DFE, is defined as
the delay between the sample currently detected and the
source symbol being generated. It is reasonable to assume
that the input and noise processes are uncorrelated at differ-
ent times. Then Rxx and Rnn can be represented by diagonal
matrices.

3.2 PMD SIMO DFE performance analysis

The performance of the PMD SIMO DFE can be evaluated
with the decision-point SNR, which is the signal-to-noise
ratio measured at the symbol detector input. The SIMO
decision point SNR is defined as an extension of the SISO
receiver SNR [11] and is calculated as

SNRD ¼
trace(E[x(k)x(k)�]=(lf þ w))

trace(E[e(k)e(k)�])

¼
trace(Rxx)

(lf þ w)trace(Ree)

(18)

The trace operation is equal to the arithmetic average of
the eigenvalues of the corresponding auto-correlation
matrix. The defined decision point SNR represents the
average SNR of the two inputs to the detector (y1(k) and
y2(k)) on the two polarisation modes.
When the DFE filter coefficients are optimised based on

the MMSE criteria as derived in (15) and (16), the

Fig. 5 Performance comparison of PMD SIMO DFE based
channel vs. uncompensated channel

a Decision-point SNR of PMD SIMO DFE
b Decision-point SNR of unequalised PMD channels
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optimal SNR is given by

SNRD,opt ¼
trace(Rxx)

(lf þ w)trace(Ree, min)

¼
trace(Rxx)

(lf þ w)trace(C�(F�RF)�1C)

(19)

Fig. 6 Performance of the PMC SIMO DFE at different channel
conditions

a Performance vs. DGD at high SNR
b Performance vs. DGD at low SNR
c Performance vs. SNR of channels with no PMD
d Performance vs. SNR at high DGD (160 ps) channels
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Hence, the performance of the SIMO DFE depends on
several factors, including (1) the PMD SIMO channel
impulse response, (2) the Gaussian noise on each polaris-
ation mode level relative to the source signal power, and
(3) the decision delay D. The SNR defined here is a base-
band criteria which assumes the resulting optical channel
is an Additive White Gaussian Noise (AWGN) channel
after the equalisation.
The optimal decision-point SNR of the PMD SIMO DFE

is shown in Fig. 5a with varied levels of DGD and different
levels of Gaussian noise. It can be seen that the performance
of the SIMO DFE is insensitive to the level of DGD for a
fixed level of Gaussian noise.
Fig. 5b shows the decision-point SNR of unequalised

PMD channels. Compared with the SIMO DFE, it is appar-
ent that the SNR of unequalised PMD channels degrade dra-
matically when the DGD increases. When DGD exceeds
60 ps, the SNR of the unequalised PMD channel decreases
to 0 dB.
Besides the distortion induced by PMD, the optical signal

is corrupted by noise during transmission. In this article, the
level of the optical noise is represented using optical SNR,
which is defined as the ratio of transmit signal power over
optical noise power in optical channels.
Fig. 6a depicts the performance of the SIMO DFE and

unequalised PMD channel with different DGD values in a
high optical SNR (optical SNR ¼30 dB) environment.
The improvement of the SIMO DFE over the unequalised
case is significant, especially for high DGD channels. The
performance of the SIMO DFE is again relatively

Fig. 7 Finite length FIR’s effect on PMD SIMO DFE’s
performance
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insensitive to the variation of the DGD. Fig. 6b shows the
performance of the SIMO DFE and unequalised PMD
channel in a low SNR (5 dB) environment. In this case,
the equaliser provides little improvement because the
noise dominates the SNR as opposed to the ISI introduced
by PMD.
Fig. 6c demonstrates the performance of the SIMO DFE

and the unequalised PMD channel in a zero PMD channel.
The equaliser performs the same as the un-equalised case,
which is expected. However in a high DGD (160 ps) case
as depicted in Fig. 6d, the performance degradation is
apparent for un-equalised channels. The SIMO DFE’s
SNR increases proportionally with the improved Gaussian
SNR in both high and low DGD cases.

3.3 Effect of finite length in SIMO DFE

The proposed PMD SIMO DFE can be implemented with
finite impulse response (FIR) filters. Fig. 7 shows the vari-
ation of the receiver SNR with the number of feed-forward
filter taps for several realisations of fibres with different
DGDs. The number of feedback filter taps is fixed. Fig. 7
shows that the receiver SNR is relatively insensitive to the
filter lengths. For the high DGD channels, receiver SNR
varies more significantly with FIR length than for the low
DGD channels.

4 Comparison with other PMD compensators

The proposed scheme is compared to the two other most-
frequently used types of PMD compensators, that is, PSP
transmission, which is an optical method, and a
Non-linear Canceller, which is an electrical method. For
the simulated PMD channel model, 15 sections of birefrin-
gent elements are used with fixed, but different lengths to
avoid DGD spectrum periodicity. The angles of the coup-
ling modes are randomly generated with uniform distri-
butions. The channels used in analysis and the simulations
are generated randomly based on the statistical PMD
model described in Section 2. However, they are not the
average results from hundreds of fibre realisations. We
believe the performance presented in this article accurately
presents the general behaviour of our algorithm since the
equaliser is designed to eliminate all PMD caused ISI,
therefore it is not sensitive to the PMD channel response.
A typical long-haul optical transmission system is simu-

lated similar to [1]. 10 Gb/s, 215-1 PRBS signals are used as
inputs to the model, which are Gaussian pulse shaped with
pulse width of 50 ps and then RZ modulated before being
Fig. 8 Receive signal eye diagrams

a Channel without PMD
b Uncompensated PMD channel
c PMD channel w/PSP transmission
d PMD SIMO DFE
IET Optoelectron., Vol. 1, No. 5, October 2007



launched by the laser. The simulated laser carrier wave-
length is 1550 nm. The signals are modulated with a
random input SOP. A 10 km PMD-limited optical channel
is simulated with DGD ranging from 20 to 120 ps. No polar-
isation dependent loss or Chromatic Dispersion (CD) is con-
sidered in the model. A direct-detection receiver with an
integrate-and-dump detector is used.
Fig. 8 shows the eye diagrams of the received signals

from different schemes when DGD is 107 ps. The signal
eye is almost closed in the uncompensated systems
(Fig. 8b). PSP transmission method helps to open the eye
a little but not significantly (Fig. 8c). The SIMO DFE
opens the eye completely with only a small amount of
SNR loss (Fig. 8d).
For the performance comparison, a PSP transmission

technique is also simulated as a typical optical first-order
compensator. The basic idea of PSP transmission is adjust-
ing the input SOP to align with the PSP based on the feed-
back from the receiver. The results are based on perfect
knowledge of PSP at the transmitter.
Fig. 9 shows the performance improvement of the pro-

posed SIMO DFE and the PSP transmission method over
uncompensated PMD channels. The vertical axis represents
the amount of performance improvement the SIMO DFE
and PSP can provide compared to uncompensated PMD
channel with the same amount of noise. The performance
improvements are measured using the difference between
the received SNR of the compensated system and the
same quantity for the uncompensated system. It is shown
that for a wide range of DGDs (28 ps to 107 ps), the
SIMO DFE provides improvement over the PSP compensa-
tor with perfect knowledge of PSP at the transmitter. It is
also noticed that when DGD is higher, the SIMO DFE pro-
vides larger gain whereas the PSP compensator’s improve-
ment is reduced. This is because of the fact that high-order
PMD has a larger impact on channel performance when
DGD is high. PSP cannot compensate it since PSP is only
a first-order compensator. On the other hand, the SIMO
DFE can handle PMD of all orders and therefore provides
larger gain when high-order PMD is significant.
The performance of the proposed PMD SIMO DFE (solid

curve) is also compared to that of a nonlinear canceller
(NLC) [5] (dashed curve) implemented in electrical
domain (see Fig. 10). The NLC is effectively a DFE
which assumes the PMD channel without considering the
effects of square-law detector. The performance is

Fig. 9 Performance improvements w.r.t. uncompensated PMD
channel
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measured in terms of the SNR penalty of the received
signal. It can be found from the figure that the performance
of the proposed SIMO DFE is significantly better than that
of a NLC. The major reason for the improvement is that the
proposed SIMO DFE is based on a more appropriate
channel model. The conventional DFE assumes the PMD
ISI is linearly added to the received signal after direct detec-
tion, which is not accurate. The results also show the SIMO
DFE’s performance is relatively insensitive to the DGD
level because it is able to cancel ISI more effectively so
that the PMD-induced ISI becomes a less-dominant factor
compared to the noise.

5 Conclusions

In this article, we proposed and statistically validated a new
SIMO PMD channel model. Motivated by this more accu-
rate model, we propose an SIMO DFE scheme that provides
excellent performance for SIMO PMD channels. The pro-
posed SIMO DFE can effectively mitigate the ISI caused
by all orders of PMD. It provides performance improvement
over first-order PMD compensator such as PSP and conven-
tional DFE. The article has provided a new framework.
Further research is required to find more practical solutions
under the proposed SIMO DFE framework for PMD
compensation.
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