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Abstract

In this work we explore the application of higher-order Markov Random Fields
(MRF) to classification in social and affiliation networks. We consider both friend-
ship links and group membership for inferring hidden attributes in a collective
inference framework. We explore different ways of using the social groups as ei-
ther node features or to construct the graphical model structure. The bottleneck in
applying higher-order MRFs to a domain with many overlapping large cliques is
the complexity of inference which is exponential in the size of the largest clique.
To circumvent the slow inference problem, we borrow recent advancements in
the computer vision community to achieve fast approximate inference results. We
provide preliminary results using a dataset from Facebook which suggest that our
higher-order MRF models are capturing the structural dependencies in the net-
works and they yield higher accuracy than linear classifiers.

1 Introduction

A common assumption in social network analysis is that one can infer a lot about people from
their social environment. A useful task in this type of analysis is collective classification where
the goal is to infer hidden attributes of the nodes, and the classification algorithm considers not
only the local features of each node in the network but also the features and the class labels of its
network neighbors [6]. In a social network, where nodes represent actors, the actor-actor links are
used to boost the accuracy of local classifiers or even provide classification labels in the absence
of local features. While most collective classification algorithms take advantage of the statistical
dependencies induced by the actor-actor links, very little work has been on using actor groups of
size larger than two.

Online affiliation networks contain information about groups that actors have formed over time.
Unlike the clusters resulting from automatic graph clustering of the social network which make
certain assumptions about what constututes a cluster, online groups are observed affiliations in which
the actors have participated. They provide a clustering of the actors that is completely data driven
and perhaps more informative than inferring groups based on actor-actor links. Affiliation networks
have been shown to have a strong signal for predicting actor attributes [9].

The goal of our work is to provide a principled approach to classification using the available data
in a model which overlays information from the social network and the affiliation network. We
investigate the use of higher-order Markov Random Field models which exploit the structure of both
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social and affiliation networks to perform better classification. Our contributions include identifying
an approach for defining higher-order MRFs based on multi-modal social networks and proposing a
model selection method informed by the existing structure in the network.

Relational data, such as social networks, can be modeled as a pairwise Markov Random Field [7].
In particular, each actor’s attribute in the social network is a random variable in the MRF, and each
actor-actor link is considered as a pairwise dependency between two random variables. Inference
on the MRF can be used for classification of the missing attributes in the data. To the best of our
knowledge, MRFs which use not only the dependencies coming from the observed friendship links
but also from the observed affiliations have not been applied to classification tasks in social networks.
Yet, the affiliation network structure provides rich dependencies which go beyond pairwise.

One way of including information from the affiliation network is to introduce a clique for each
group. This approach has a number of challenges. First, in online social networks both the number
and the size of groups can be very large, and inference on a dense network can be prohibitively slow.
Therefore, it becomes extremely important to learn which groups should participate in the MRF
structure. Second, many MRFs rely on approximate inference algorithms which have to be tailored
to the domain of interest in order to perform well.

Within the computer vision community, there has been a growing body of work on higher-order
MRFs [3]. For example, in image analysis, segmentation is an important task in which given pixel
information, such as color and location, an algorithm aims to classify each pixel to one of a num-
ber of classes, e.g., tree, sky, ground. Rather than taking the picture as a vector of pixels, pairwise
MRFs encode structural information by considering the dependencies between neighbouring pix-
els. This has been shown to improve classification because classes of neighboring pixels are often
dependent on each other. However, pairwise MRFs tend to make mistakes on pixels that are on
the edges of image segments, e.g., the border pixels separating tree and sky. Incorporating longer-
range dependencies between the pixels leads to better solutions. Higher-order MRFs take care of
such dependencies by considering overlapping segments from different segmentation algorithms as
cliques [3]. Recently, the computer vision community has developed inference algorithms that are
extremely efficient and can find optimal solutions for a class of models in polynomial time. We
discuss them in Section 4.

2 Preliminaries

Online social networks, such as Facebook, Flickr, LinkedIn, etc, allow individuals to create a profile
and link, e.g. ”friend” each other, or ”affiliate” by joining groups of interest. They include on-
line services which allow users to set their preferences to online content, such as tagging articles,
commenting on photos and rating movies, to mention a few.

2.1 Data model and graphical model

We distinguish between two types of graphs: 1) the data graph, which we refer as the network
G, and 2) the graph of random variables which represents the graphical model. The social and
affiliation network data G = (V,Ev,H,Eh) consists of n actors V with attributes V.A, and two
types of commonly occurring links - actor-actor links, Ev, and actor-group links, Eh. The groups
can be overlapping and of various sizes. The graphical model consists of a vector of discrete random
variables X = {X1, X2, ..., Xn} for the actor attribute we aim to classify. Each variable Xi can take
on a number of class labels. A Markov Random Field model is an undirected graphical model which
represents a family of probability distributions for a random variable vector X given by

Pr(x) =
1
Z

exp(−
∑
c∈C

φc(xc))

where C is a set of cliques, φc is the potential function for clique c, and Z is the normalizing
constant, known as the partition function. E(x) =

∑
c∈C φc(xc) corresponds to the Gibbs energy

of a possible variable assignment. Each clique consists of a fully connected set of variables which
are statistically dependent. A potential function is a function which assigns a positive real number to
each possible variable vector assignment in the clique, and we discuss specific potential functions in
Section 3.3. In pairwise MRFs, the clique potentials are over pairs of variables whereas higher-order
MRFs can have cliques of arbitrary size.
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Figure 1: A toy social and affiliation network and its corresponding higher-order MRF.

2.2 Problem description

Given a network G in which the values of attribute a are given for some observed nodes Vo, we
would like to find the hidden attribute for the rest of the nodes in the network, Vh. We concentrate
on the case where the group memberships and friendship links are given for all nodes, and there are
no other node attributes. The incentive for this is to evaluate the worth of the dependencies expressed
in the network structure alone.

To make this problem more concrete, we construct the graphical model. First, we partition the
random variables into Xo and Xh, corresponding to the nodes Vo and Vh. We would like to find
the most probable assignment of Xh, given the assignment of Xo. This corresponds to the maximum
a posteriori (MAP) estimation of Xh:

X̂h = argmax
xh

Pr(Xh|xo) = argmin
xh

E(xh,xo)

Next we discuss how to construct the cliques in the graphical model.

3 Graph structure and potentials

Our solution first selects the MRF structure as discussed in Section 3.1, then it bootstraps the MRF
model by computing informative node potentials described in Section 3.2. Then, using the node
and clique potentials (in Section 3.3), it performs efficient MRF inference which we overview in
Section 4.

3.1 MRF structure

There are different ways in which one can construct the graphical model by incorporating the struc-
ture of the network data. Here, we propose four different constructions. The most naı̈ve way is to
include all the friendship links as pairwise dependencies in the MRF. Each link ev(vi, vj) in the data
corresponds to a clique of size two, c(xi, xj). This incorporates the idea of homophily in social
networks, or the tendency of individuals to associate with similar others, by making class labels of
friends dependent on each other. This creates the pairwise Markov Random Field model, pMRF.

Another possibility is to include the affiliation network by treating each social group h(V∗) as a
clique in the MRF c(X∗), where the random variables in the clique, X∗, correspond to the group
members h(V∗). This leads to our second model, the higher-order MRF with all groups, hoMRF-
AG.

While including all groups may be an enticing idea, some of the social groups are more informative
about certain actor attributes than others, e.g. women may be more likely to join a social group for
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breastfeeding advice than men. Following this idea, we look at group properties and select informa-
tive groups, which leads to our third model, higher-order MRF with selected groups (hoMRF-SG).
We select the set of informative groups in the network based on their observed properties, such as
size and entropy of the nodes with observed class labels. Our last model constructs the MRF by
using both the pairwise dependencies from the friendship links and the higher-order cliques from
selected social groups (hoMRF-SG-AL).

Figure 1 shows an example social and affiliation network, together with its corresponding graphical
model. The graphical model is presented as a factor graph to make the cliques (grey rectangles)
over which the potentials are defined explicit. There are 7 actors with 9 friendship links and 2
social groups. The two social groups correspond to the two cliques of size 3 and 5 in the graphical
model. Each link has a potential associated with it as well. The class labels of some of the actors are
observed (shaded circles in the graphical model), while the labels of others are unknown (unshaded
circles).

3.2 Node potentials

Each node in the MRF is a clique of size one, and it has a unary node potential. For each X ∈ Xh,
we compute the potential for each class value to be the negative log likelihood of the class value
according to a linear classifier. The classifier, such as logistic regression or Naı̈ve Bayes, uses the
friendship links and group memberships as node features. Besides computing the node potentials,
this classifier provides the baseline method in our experiments.

3.3 Clique potentials

Possible potentials for cliques of size larger than one are functions of the counts of class labels, such
as majority and sum, negative/reciprocal entropy. We adopt the Robust Pn Potts clique potential of
Kohli et al.[3] because it is intuitive and it allows efficient inference. This potential is defined as:

φc(xc) =
{

γk + Ni(xc)
Q (γmax − γk) if Ni(xc) ≤ Q

γmax else

where γk is the minimum possible potential value if all labels in the clique are the same, and γmax

is the maximum possible potential value if the number of node labels that are different from the
majority class label, Ni(xc), is larger than a pre-specified threshold, called truncation ratio Q. For
pairwise MRFs, this potential simplifies to the Potts potential. The intuition behind the Robust Pn

Potts potential is that it allows disagreement between class labels inside each clique to a certain
extent. Besides being intuitive, this potential is important for efficient inference using graph-cut
based methods which we discuss next.

4 Inference and energy minimization

Exact inference in higher-order MRF models is exponential in the size of the largest clique. There
are a number of approximate inference algorithms, e.g., belief propagation, variational inference,
MCMC-based techniques, which aim to alleviate the complexity burden [2]. In the computer vision
community, graph cut based methods have gained popularity because they have a polynomial com-
plexity when assuming certain potential functions, such as Robust Pn Potts potential, and they work
efficiently in practice [3]. Kohli et al. [3] compare the running time and accuracy of tree-reweighted
message passing (TRW-S) [4] with move-making inference algorithms which use graph cuts for
models with large cliques. They find that the move-making algorithms are faster and yield better
solutions.

A move-making algorithm starts from an initial solution and it makes a series of moves leading to
lower energy solutions. At each step, it searches for the best possible move within its allowed range
and then makes that move. The algorithm converges when it reaches a state from which it cannot
find a lower energy solution.

Two move-making inference algorithms are α-expansion and α-β swap [1]. A move can be encoded
as a vector of binary variables t, one for each unobserved random variable in the hoMRF, Xi ∈ Xh.
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In an α-expansion move, each random variable Xi either retains its current label if ti = 1, or changes
it to α if ti = 0. In an α-β swap move, each random variable Xi ∈ Xh with a current label of α or
β can either retain/change to a label of α if ti = 0, or retain/change to a label of β if ti = 1. One
iteration of the algorithm searches through the space of possible move vectors to find the one that
would lead to the lowest energy solution and then it makes that move.

Finding the optimal move vector for both the expansion and swap algorithms can be computed in
polynomial time using graph cuts. For details, we refer the reader to Kohli et al. [3]. According to
the same authors, the best ordering of moves is an ongoing research topic.

5 Experiments

5.1 Data description

For our evaluation, we studied a dataset from the social network Facebook1, available for research
purposes [5]. Facebook allows users to communicate with each other, to form undirected friendship
links and participate in groups and events. The dataset contains all 1, 225 profiles of first-year
students in a small college who share at least one interest group with another first-year student
according to their Facebook profiles. The interest groups are the favorite books, music and movies
of the users. There are 2, 932 groups, and the largest one has 290 members. There are 51, 389
friendship links in the data. The attribute we are trying to predict is the gender of each student. Half
of the students are female, so a random guess would achieve an accuracy of 50%.

5.2 Experimental setup

We provide results for two-fold cross validation. The node potentials are computed using the java
version of the liblinear logistic regression classifier [8]. For the move-making inference, we adapt the
implementation of Kohli et al. [3]. For selecting the groups to be included as cliques in the MRF, we
vary the allowed size, entropy and percent of observed nodes per group. First we performed a coarse-
grained search through the space of parameters by setting the minimum group size to {2, 4, 6, 10},
maximim group size to {10, 50, 290}, maximum entropy of the nodes with observed class labels to
{0, 0.5, 0.7, 0.9, 1}, and the minimum percentage of nodes with observed class labels in the group to
{0, 0.5}. This yields a space of 120 experiment points, e.g. point (10, 290, 0, 0.5) means all groups
of size between 10 and 290 with entropy of 0 and at least 50% of node labels observed. To obtain
further improvement, we performed a fine-grained search around the parameters that yielded the
best accuracy in the coarse-grained search.

We set γmax to 10, γk to 0 for all possible labels, and the truncation ratio Q to 0.3 after some limited
exploration of the parameter space. We set the node potentials to the negative log probabilities of
the class labels coming out of the linear classifier. In the case of probability of 0, we set it to 10
(which is close to the negative log of the smoothed out probability). We report on three types of
node features: friendship link vector, group membership vector and a vector which includes both.
We compare the results for the linear classifier (LR), the pairwise MRF (pMRF) and the variants of
the higher-order MRF: hoMRF-AG, hoMRF-SG and hoMRF-SG-AL.

5.3 Results

Table 1 summarizes the results from our experiments. The baseline linear classifier which uses the
friendship link vector as features to classify nodes yielded an accuracy of 64.06%. Using the group
memberships, this accuracy increases to 71.67%. Using both types of features, the accuracy is the
highest, 75.75%. Our observations on the comparison between the linear classifier and our proposed
models can be summarized as follows:

1) Using all groups naı̈vely as the cliques in the hoMRF (hoMRF-AG) improves performance only
when the node potentials are bootstrapped with the friendship links as features alone. In the other
two cases, where the node potentials use the group memberships as features, hoMRF-AG is not able
to exploit the affiliation network structure further and it even hurts performance.

1At http://www.facebook.com.
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Table 1: Accuracy of the logistic regression baseline (LR), the pairwise MRF (pMRF), the higher-
order MRF with all groups as cliques (hoMRF-AG), with selected groups as cliques (hoMRF-SG)
and with selected groups and all friendship links as cliques (hoMRF-SG-AL).

FEATURES LR PMRF HOMRF-AG HOMRF-SG HOMRF-SG-AL
Friendship links 64.06% 64.31% 69.13% 69.22% 69.22%
Group memberships 71.67% 71.83% 69.80% 74.12% 74.53%
Both 75.75% 75.84% 69.63% 77.39% 78.37%

2) pMRF improves accuracy only marginally (0.09− 0.25%) compared to the baseline.

3) Adding selected groups as cliques in the MRF increases the prediction accuracy in all cases
(1.64 − 5.16%). Moreover hoMRF-SG consistently outperforms LR for the different folds of the
cross validation. This means that the higher-order MRF is able to exploit the affiliation structure
twice, once as features in the node potentials, and a second time by using informative groups as
cliques. We report on the group selection experiment with the highest average accuracy in the
hoMRF-SG column of Table 1.

4) hoMRF-SG-AL which adds the friendship links as pairwise cliques to hoMRF-SG did not improve
the accuracy of hoMRF-SG when using friendship links as features. However, when the node po-
tentials were using group memberships or both types of features, the accuracy of hoMRF-SG-AL is
higher than hoMRF-SG, by 0.41% and 0.98%, respectively.

The common theme in the parameter values for the best performing hoMRF-SG is that the selection
criteria based on entropy are irrelevant to accuracy and that very small groups are uninformative.
More concretely, for the friendship link features, the experiment points of group selection which
yielded the highest accuracy were (5, {30, 40, 50}, any, 0). In the strictest case (one with smallest
number of groups as cliques), (5, 30, 0, 0), with only 290 cliques out of the 2, 932 groups, it is
possible to achieve 5.16% improvement from the baseline. Similarly, the experiment points with the
highest accuracy (74.12%) for the group membership features is (6, {40, 50}, any, 0). In its strictest
case, (6, 40, 0, 0), this includes an average of 201 cliques out of the 2, 932 groups. Lastly, the highest
accuracy using both types of features in the hoMRF-SG was at experiment points (8, 30, any, 0).
In its strictest case, (8, 30, 0, 0), this includes an average of only 100 cliques. Learning the best
parameters from data is left for future work.

We also experimented with setting weights for the clique potentials based on the feature weights
of the linear classifier since the node features and the graphical model cliques have a one-to-one
correspondence. However, this did not provide any increase in accuracy.

The approximate inference in the hoMRF is very fast, and it takes less than 2 seconds to run on our
dataset using a machine with 3.2 GHz processor and 3 Gb of RAM.

6 Conclusion

This is a preliminary study on the application of higher-order MRFs to classification in social and
affiliation networks. We used recent advances in the computer vision community to ensure fast and
accurate approximate inference results. In this study, we were relying on the given, noisy structure
of the data to find the graphical model structure using feature selection criteria based on the group
properties. In our future work, we would like to explore principled structure learning algorithms
which incorporate the knowledge of the existing structure in the network data in various ways. In
addition, we would like to apply this method to other real-world and synthetic datasets, in order to
understand its properties better.
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