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Abstract

Scale is often an issue with understanding and making
sense of large social networks. Here we investigate meth-
ods for pruning social networks by determining the most
relevant relationships. We measure importance in terms of
predictive accuracy on a set of target attributes of the so-
cial network. Our goal is to create a pruned network that
models only the most informative affiliations and relation-
ships. We present methods for pruning networks based on
both structural properties and descriptive attributes demon-
strate it on a network of NASDAQ and NYSE businesses and
on a bibliographic network.

1 Introduction

Social networks abound; examples include online com-
munity networks, disease transmission networks, corporate
executive networks, and criminal/terrorist networks. Scale
is often an issue with understanding and making use of large
social networks. As the size of the network increases, it
is harder to make sense of the network, and it is computa-
tionally costly to manipulate and maintain. Here we inves-
tigate methods for pruning social networks by determining
the most relevant relationships in a social network. We mea-
sure importance in terms of predictive accuracy on a set of
target attributes of social network groups. Our goal is to cre-
ate a pruned network that models only the most informative
affiliations and relationships. We present methods for prun-
ing affiliation networks based on both structural properties
and descriptive attributes.
An affiliation network is described by a set of actors A,

a set of events E, and a set of membership relations R. The
most common graph representation for affiliation networks
is as a bipartite graph with two node types representing ac-
tors and events, and a single edge type representing mem-
bership relationships between actors and the events in which
they participate.

Structural properties are determined by the graph struc-
ture of the network. Examples include the density of the
graph, the average degree of nodes in the graph, the number
of cliques in the graph, etc. Recent research has focused on
understanding the structural properties of social networks.
For a recent survey, see Newman [6]. Much of the work
has been descriptive in nature, but recently there has been
more work which uses structural properties for prediction.
Within this category, there is work that focus on the spread
of influence through the network (e.g., [2, 3]), prediction of
future interactions between actors using network topology
[5], methods for approximating the connectivity properties
of a graph, and classification and clustering [1, 8].
In addition to the nodes and edges themselves, the nodes

and edges in the affiliation network can have descriptive at-
tributes or features associated with them. The descriptive
attributes provide specific social context to the network. A
corporate board social network may contain descriptive at-
tributes representing the job function and age of a board
member. A disease transmission social network may con-
tain descriptive attributes representing the location of per-
son’s home and date of disease discovery.

2 Prediction in Social Networks

Our goal is to develop principled approaches to com-
pressing and pruning social networks determining which
portions of the network can be removed while minimizing
information loss. Let N = (A, E, R) be our original net-
work andN ′ = (A′, E′, R′) be our pruned network.
We will focus on maximizing our predictive accuracy on

the event attributes. For ease of exposition, we will assume
we are attempting to maximize the predictive accuracy for a
single event attributeE.Ci, based on attributes of related ac-
tors found using the co-membership information and based
on attributes of related events found using the event overlap
information. The idea is to construct a classifier, using local
neighborhood information, to predict E.C i. Now it is easy
to see the difficulty with this setup. Each event may have



a different number of related actors and a different number
of related events, so how can we construct features to use
in our classifier? We solve this problem by computing an
aggregate over the set of related actors and over the set of
events. Aggregation is a common technique used to con-
struct feature vectors in relational domains [4, 7]. Here we
assume some set of aggregates is associated with each at-
tribute.
We compare the classifier FN constructed from the

original social network N = {A, E, R} with the classi-
fier FN ′ constructed from a pruned social network N ′ =
{A′, E′, R′}. We compare both accuracy on the training
sets and accuracy on test sets. Our goal is to find pruned
networks that are both compact and accurate.

3 Pruning Techniques

We consider two categories of techniques for pruning the
network. The first involves removing edges from the affil-
iation network. The second involves removing actors (and
incident edges) from the affiliation network. We can use
different techniques for pruning a network. The three tech-
niques of interest to us are: 1) pruning based on structural
properties, 2) pruning based on descriptive attribute values,
and 3) pruning based on random sampling.
Structural Pruning Structural network properties or

measurements involve evaluating the location of actors in
a social network. Two well known structural measures are
degree and betweenness. The degree of a node is defined as
the number of direct connections a node has to other nodes
in the network. The nodes with the most connections are
considered the most active nodes in the network and are re-
ferred to as hubs. Betweenness of a node corresponds to
the number of cliques to which a node belongs. Nodes with
high betweenness are considered to have great influence in
the network and are referred to as brokers. Therefore, when
pruning based on structure, we will be interested in remov-
ing actors that are not hubs and/or brokers from the network.
Descriptive Attribute-based Pruning Another pruning

technique of interest involves pruning based on descriptive
attributes. We prune edges by selecting on attribute values.
We look at both the case where we keep only edges or nodes
with a particular attribute value and also the case where we
keep all edges except edges or nodes with value.
Random Sampling As a baseline, we compare pruning

based on random sampling. This involves maintaining only
a random sample of the actor population for analysis.
It is important to quantify the compression achieved by

pruning. We use a relatively generic measure, the descrip-
tion length of the graph, DL(N) = log(|A|) + log(|E|) +
|R|(log(|A|) log(|E|)).

4 Experimental Results

We analyzed two affiliation networks. The first data set,
the Executive Corporation Network (ECN), contains infor-
mation about executives of companies that are traded on
the NASDAQ and the NYSE. The executives serve on the
Board of Directors for one or more of the companies in the
data set. This data was collected from the Reuter’s market
data website (yahoo.mulexinvestor.com) in January 2004.
There are 66,134 executives and 5384 companies (3284
NASDAQ and 2100 NYSE). The relational schema describ-
ing the ECN is:
• A = Executive(exec id, exec name, age, educa-
tion level)

• E = Company(co id, co name, stock exchange, sector,
stock price)

• R = BoardMembership(exec id, co id, offi-
cer position, join date)

The average board size is 14, the average number of boards
an officer is on is 1.14, the number of officers serving on
multiple boards is 6544, and the number of boards these of-
ficer are on is 2.4. We predict two attributes, stock exchange
and sector. A sector is a coarse grouping of industries, e.g.,
health care. We prune on descriptive attributes such as offi-
cer position, e.g., CEO, President, etc.
The second data set, the Author Publication Network

(APN), contains information about publications and their
authors from the ACM SIGMOD anthology. There are
13,070 authors and 16,287 publications. The schema APN
is:
• A = Author(author id, author name, affiliation, num-
ber of publications)

• E = Publication(pub id, pub type, pub date, num-
ber of references, number of citations)

• R = PaperAuthorship(author id, pub id)
The average number of authors per publication is 2.4 and
the average number of publications per author is 2.9. For
APN, we predicted the two event attributes pub type and
number of references (to publication).
Our goal is to find small networks that can accurately

predict event attributes. We compare the following affilia-
tion networks:
• no pruning (full)
• descriptive attribute pruning (descriptive)
• pruning based on hubs and brokers (structural)
• random sampling (random)

We built event-attribute classifiers from the networks as de-
scribed in Section 2. For categorical aggregate attributes,
we calculated the mode of the neighboring event values,
and for numeric aggregate attributes, we calculated the min-
imum, maximum and average of the neighboring event val-
ues. The classifiers were created using WEKA. We tested a
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APN - Publication Type Attribute

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00
Predictive Accuracy

Co
m

pr
es

si
on

 R
at

io

Full
Descriptive
Structural
Random

APN - Number of References Attribute

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00
Predictive Accuracy

Co
m

pr
es

si
on

 R
at

io

Full
Descriptive
Structural
Random

(c) (d)

Figure 1. Comparisons of compression vs. accuracy for a variety of network pruning strategies for
a) ECN exchange b) ECN sector c) APN pulbication type and d) APN number of references.

range of classification algorithms including decision trees,
naive Bayes, and support vector machines (SVMs). The
results were relatively consistent across classifiers; due to
space constraints, here we present results only for SVMs
using five-fold cross validation.
When constructing our feature vector, we constructed

aggregates for the following ECN actor and event at-
tributes: stock exchange, industry, sector, number of offi-
cers on a board, number of advanced degrees on a board
and officer age of a board. We evaluated three descrip-
tive prunings. The first two descriptive prunings, position
and tenure, involve removing edges from our affiliation
graph for executives based on the attributes BoardMember-
ship.officer position and BoardMembership.join date. For
example, one pruning of BoardMembership.officer position
keeps only edges of CEOs and removes all other member-
ship edges from the network. The third descriptive pruning

involves removing actors based on age.
To group attribute values, we binned numeric attributes

and we abstracted categorical attributes. For both our
networks, the binnings resulted in four to five bins for
each attribute. For APN, we used the attribute Au-
thor.number of publications for descriptive pruning.
As mentioned earlier, descriptive attribute pruning has

one of two interpretations for an attribute B with attribute
value c: 1) maintain only actors with B = c (only) and
2) maintain all actors except where B = c (except). We
evaluated pruning on every descriptive attribute value for
each descriptive pruning category.
For structural pruning, we tested the following four

cases: maintaining only actors who are hubs, maintaining
only actors who are brokers, maintaining only actors who
are both hubs and brokers, and maintaining only actors who
are hubs or brokers. Finally, for random pruning, we com-

3



ECN - Structural Properties for Actors in Descriptive Attribute Networks
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APN - Structural Properties for Actors in Descriptive Attribute Networks
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Figure 2. The structural characteristics of actors in different prunings for a) ECN and b) APN.

pared results on random samples for 9 different sample sizes
(between 10% and 90% of the actors in the network).
Figure 1 shows compression versus predictive accuracy

for different attributes in each of the networks. The right
upper corner represents the ’best’ networks in terms of com-
pression and predictive accuracy. Figure 1(a) shows results
for the ECN exchange. The classifier built using the full net-
work achieves accuracy of 72.4%. The best accuracy and
compressions are for the following networks: pruning on
position, we achieve an accuracy of 72.3% with a compres-
sion of 94% (in this case, we kept only the chairs); pruning
on tenure, we achieve an accuracy of 70.29% with a com-
pression of 95%, and pruning on age, we achieve an ac-
curacy of 69.2% with a compression of 99% (in this case,
we kept only the older executives). These accuracies are
all significantly better than the baseline prediction accu-
racy of 61% achieved by simply choosing the most com-
mon exchange. For predicting the ECN sector, shown in
Figure 1(b), the full network achieves accuracy of 40.4%
and the the best networks are the ones that prune on age
(we achieve accuracy of 40.2% with compression of 34%,
in this case we kept the younger executives rather than the
older ones) and structure (we achieve accuracy of 39.7%
and compression of 97% by keeping only the brokers). Fig-
ure 1(c) and (d) show similar results for the pruned APN
networks, with many of the pruned networks achieving sig-
nificantly higher accuracies than classifiers built from the
full network. For both APN attributes, the network pruned
on structure that achieved the best accuracy-compression
tradeoff was the one that kept only the actors that were both
hubs and brokers. In all cases, pruning on descriptive at-
tributes and structure properties significantly outperformed
random pruning.
To better understand how the two relate, in Figure 2 we

show the percentage of structural actor types (hubs, bro-
kers (BRK), hubs and brokers (HBR), and other) preserved
under various descriptive pruning strategies. These graphs
show that for two different datasets, the networks created

using descriptive pruning contain a different mix of actors
than those created using structural pruning. This supports
our claim that structural pruning and descriptive pruning are
two distinct methods for compressing networks.
We believe that exploring descriptive and structural com-

pression techniques together, beyond allowing compact and
accurate compression of networks, is also important for
identifying actors that are the most useful for network un-
derstanding. In this paper we showed how to use struc-
tural properties and descriptive attributes to prune social
networks. world data sets. While the networks resulting
from structural pruning and descriptive pruning are quite
distinct, both are viable approaches for reducing the size of
a social network while still maintaining predictive accuracy
on a set of target event attributes.
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