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Abstract

Opinion leaders play an important role in influenc-
ing people’s beliefs, actions and behaviors. Al-
though a number of methods have been proposed
for identifying influentials using secondary sources
of information, the use of primary sources, such
as surveys, is still favored in many domains. In
this work we present a new surveying method
which combines secondary data with partial knowl-
edge from primary sources to guide the information
gathering process. We apply our proposed active
surveying method to the problem of identifying key
opinion leaders in the medical field, and show how
we are able to accurately identify the opinion lead-
ers while minimizing the amount of primary data
required, which results in significant cost reduction
in data acquisition without sacrificing its integrity.

1 Introduction

Studying influence in social networks is an important topic
that has attracted the attention of a variety of researchers in
different domains [Raven, 1965; Kempe et al., 2003]. People
often seek the opinion and advice of their peers regarding var-
ious decisions, whether it is to try a new restaurant, buy a cer-
tain product or even to support a particular politician [Keller
and Berry, 2003]. This behavior gives rise to a certain set of
individuals in the social network, referred to as influentials or
opinion leaders, who have a huge impact on other people’s
opinions, actions and behavior.

In the commercial space, the question of how to identify
opinion leaders within a given population of purchasers or
decision makers is of great importance [Myers and Robert-
son, 1972; Krackhardt, 1996]. Identifying these individuals
properly leads to more effective and efficient sales and mar-
keting initiatives [Valente and Davis, 1999]. This is true in
multiple industries; here we begin our exploration in the med-
ical domain, studying the influence networks of local physi-
cians relative to the treatment of specific disease states. Key
opinion leader identification has been the focus of multiple
studies in the health care literature [Soumerai et al., 1998;
Doumit et al., 2007].

Secondary data describing suggested influence, is often
easy to obtain; whereas primary data, representing surveys

that measure trust and advice-seeking, is harder and much
more expensive to acquire. For instance, citations are often
used as an indirect indicator of influence in an academic set-
tings, where influential authors’ publications tend to receive
higher citations than average. Obtaining a citation network
between a set of authors in a certain field (e.g. infectious dis-
ease) can be easily constructed by looking at the publication
record of each author. However, measuring the influence of
each author directly requires more work, and often involves a
labor-intensive process of interviewing subjects and extract-
ing their “network of influence”, e.g., who they turn to for
advice and recommendations.

Methods for identifying opinion leaders can be classified
into two categories according to the type of data they use for
drawing their conclusions. Primary methods rely on man-
ually collecting information about peer-influence in a given
population from the individuals themselves. One of the most
commonly used primary methods is surveys, where the re-
spondents are asked to report their opinion about who they
perceive as opinion leaders. Although primary methods are
considered to be the most informative about actual peer-
influence, their main drawback is the high associated costs
due to the time-intensive nature of the process: in many cases
surveys are obtained through one-on-one interviews with the
respondents, sometimes over the phone, but often in person.

On the other hand, secondary methods rely mainly on using
an underlying interaction network as a “proxy” for influence,
thus avoiding the manual aspect of primary methods. One
of the most widely used techniques in this setting is relying
on network centrality measures of these secondary networks
(e.g., citation, co-authorship, etc.) to identify the opinion
leaders. However, the major drawback of these methods is
the fact that the correlation between peer-influence in the ac-
tual social network and the interactions occurring in the proxy
networks cannot be verified. In a recent study on public opin-
ion formation [Watts and Dodds, 2007], the authors showed
through a series of experiments that the customers who are
critical in accelerating the speed of diffusion need not be the
most connected in their corresponding social network.

In this work, we show how to combine the use of primary
and secondary methods for leadership identification in the
medical domain. We use primary data describing a physi-
cian nomination network in which physicians are surveyed to
nominate other physicians whom they turn to for professional



advice. We augment this network with secondary data de-
scribing publication history (citation and co-authorship), as
well as hospital affiliation information. We use ideas from
the active learning literature to build a model that can use
partial knowledge of primary data, together with secondary
data, to guide the survey process. By targeting the most in-
formative physicians for additional primary data collection,
we minimize the amount of primary data needed for accurate
leadership identification. As this type of primary data collec-
tion requires significant investment, this technique empowers
organizations to tackle the task of accurate leadership identi-
fication in a much more cost effective and efficient manner.

The rest of the paper is organized as follows. Section 2 pro-
vides a brief overview of the related work and background for
both opinion leader identification and active learning. In Sec-
tion 3, we give a detailed description of the problem and an
outline of the proposed method. Section 4 describes the de-
tails of the active surveying algorithm. Section 5 discusses the
experimental settings, the dataset and the results of using our
proposed method compared to different baselines. Finally,
Section 6 concludes our work and proposes future directions.

2 Background

2.1 Opinion Leader Identification

In the diffusion of innovation literature, there are two
main methods for identifying opinion leaders from primary
sources: self-designation and surveys [Rogers and Cartano,
1962]. In the self-designation method, respondents are asked
to report to what extent they perceive themselves to be in-
fluential. However, as can be expected, such methods are
usually biased, and often reflect self-confidence rather than
actual influence. On the other hand, surveys are based on
having selected individuals, referred to as respondents, report
who they perceive as opinion leaders in a given domain [Dorf-
man and Maynor, 2006]. Peer-identified opinion leaders are
believed to be better sources of true influence compared to
self-identified ones.

Due to the high costs associated with primary methods for
leadership identification, there has also been a great deal of
attention to methods that make use of secondary data sources.
These methods rely mainly on using different structural mea-
sures for determining the importance of nodes in a proxy in-
teraction network. In the sociology literature, various central-
ity measures [Wasserman and Faust, 1995] have been used to
determine the most important individuals in a given social
network. Among the most commonly used measures are de-
gree centrality, indicating the most connected individuals in
the network, and betweenness centrality, distinguishing the
“brokers” in the network.

2.2 Active Learning

In this work, we build on ideas from the field of active learn-
ing, where the learner is able to acquire labels of additional
examples to construct an accurate classifier or ranker while
minimizing the number of labeled examples acquired. This is
achieved by providing an intelligent, adaptive querying tech-
nique for obtaining new labels to attain a certain level of accu-
racy with minimal training instances. A generic algorithm for

active learning is described in [Saar-Tsechansky and Provost,
2004], where a learner is applied to an initial sample L of
labeled examples, then each example in the remaining un-
labeled pool is assigned an “effectiveness score,” based on
which the subsequent set of examples to be labeled is chosen
until some predefined condition is met. The main difference
between various active learning methods is how the effective-
ness score of each example is computed; the score usually
corresponds to the expected utility that the newly acquired
example can add to the learning process.

One widely used method for active learning is uncertainty
sampling [Lewis and Gale, 1994], where the learner chooses
the most uncertain data point to query, given the current
model and parameters. Measuring the uncertainty depends
on the underlying model used, but it usually translates to how
close the data point is to the decision boundary. For instance,
if a probabilistic classifier is used, the posterior probability
can be used directly to guide the selection process. By acquir-
ing the labels for the data points closer to the decision bound-
ary, the model can be improved by better defining the existing
margin. A variety of active learning methods have been pro-
posed [Settles, 2009], with various ways to reduce the gener-
alization error of the underlying model during learning. Ac-
tive learning has proved to be useful in settings where acquir-
ing labeled data is expensive. It has been applied success-
fully in numerous domains, such as image processing [Tong
and Chang, 2001], speech recognition [Tür et al., 2005], and
information extraction [Thompson et al., 1999].

3 Problem Description

Our problem can be formulated as determining the minimal
set of respondents needed to correctly identify at least k% of
the set of opinion leaders present in a given population. In or-
der to achieve this goal, we need a method that can guide the
surveying process for selecting the next respondent, such that
the expected set of identified opinion leaders is maximized at
each step. We apply a simple threshold model on the survey
responses to identify opinion leaders; if a candidate receives
more than α nominations, she is considered an opinion leader.

A key difference between this problem setting and the tra-
ditional active learning setting is that the acquisition of a sur-
vey response is more complex than that of a single label. A
survey response is a structured object that includes a set of
nominations {nominate(v, u) : u ∈ population} made by
a given respondent v; all of which should be accounted for in
both the learning and inference phases. In some cases there
may be weights associated with each nomination; although
here we are assuming uniform weights, it is straightforward
to extend the model to cases where weights vary.

We propose an active surveying approach that combines
partial knowledge from primary sources along with sec-
ondary information to provide a dynamic framework for intel-
ligently gathering additional primary data for opinion leader
identification. In our approach, the next survey respondent is
chosen to maximize the likelihood of identifying new opin-
ion leaders. After the proposed respondent is surveyed, the
survey results are incorporated back into the model to update
future predictions.



Figure 1: Example candidates and leaders sets

First, we need to define the conditions upon which the
next respondent should be selected in order to maximize the
set of identified opinion leaders. Suppose we are given an
initial set of survey responses, and a threshold α that de-
termines the minimum number of nominations an individ-
ual should obtain to be declared an opinion leader. Let the
set of nominations received by a given nominee u be de-
noted as nominations(u) = {v : nominate(v, u) ∧ v ∈
respondents}. From the initial set of responses, we can gen-
erate the following two sets of individuals:

leaders = {l : |nominations(l)| ≥ α}

candidates = {c : 0 <|nominations(c)| < α}

where the leaders set represents the individuals who have re-
ceived at least α nominations and are already identified as
opinion leaders, while candidates is the set of individuals
who have been nominated by at least one person, but have
not yet received enough nominations to be declared opinion
leaders. Figure 1 shows a toy example of how the candidates
and leaders sets are generated.

Ideally, the best respondent to survey should be more likely
to nominate new leaders, either from the ones already in the
candidates set or introduce new individuals to expand it. In
survey settings, there’s typically a bound on the number of
opinion leaders each respondent can nominate. Thus, we add
a requirement that the respondent is also less likely to nomi-
nate individuals in the already identified leaders set, in order
to minimize the “non-informative” nominations to already
identified opinion leaders. In order to estimate the likely nom-
inations of a given respondent, we model the expected survey
responses based on existing secondary sources, along with
primary information from the current available surveys. By
using this model to predict the nominations of the yet-to-be-
surveyed respondents, we can then follow a greedy approach
based on the above criterion to pick the respondent who is
likely to expand the set of identified opinion leaders at each
step.

The set of possible nominations in a given population can
be viewed as a directed graph G(V,E), where each node
v ∈ V in the network corresponds to an individual in the
population, and a directed edge e(u, v) ∈ E indicates that v

is a possible nominee for respondent u. Generally, the set of
potential edges in the network can be as large as |V | × |V |,
yielding a fully connected graph. However, in real scenar-
ios, the number of potential edges can often be limited by
using appropriate filters on the incident nodes, such as evi-
dence from secondary sources, local proximity, similarity, or
any other constraint imposed by the problem. We refer to the
subset of potential edges that correspond to actual respondent
nominations as “positive” edges, and the ones that are not re-
alized through the survey as “negative” edges. We refer to the
set of edges corresponding to the initial set of surveys as the
“observed” edges.

The secondary sources of information are represented
in our model as: a) a set of features Fv associated
with the nodes V in G, and b) a set of secondary

networks G(1)(V (1), E(1)) . . . G(n)(V (n), E(n)) represent-
ing other types of interactions between the set of individuals
in the target population (e.g. communication, co-authorship,
co-affiliation, etc.). As these secondary networks may not
necessarily align with the main graph G, we only consider
the sub-networks comprising the nodes that overlap with our
network of concern. Another set of edge features Fe is gener-
ated for the set of edges E in G, each representing a vector of
the corresponding edge weights in each of the associated sec-
ondary networks. During this step, the set of node featuresFv

are also enriched by additional features from the secondary
networks.

In Figure 2, the input graph G represents a partially ob-
served author nomination network, where the shaded authors
A1 and A7 are the ones who have already been surveyed. In
this example, all of the potential nominations for author A1

were realized (positive, denoted by solid edges), while for au-
thor A7, although the nomination for A2 was a potential edge,
it was not realized (negative, denoted by a dashed outgoing
edge). Each author in the primary nomination network G has
a set of associated features, such as the geographical location,
h-index, current academic position, etc. These features con-
stitute the set of node features Fv in our model. In addition
to the nomination network, we have two secondary sources

of information in our example: a co-authorship network G(1)

and a co-affiliation network G(2).

After aligning the secondary networks with the primary
nomination network, the edge features we generate are in-
dicators of the edge existence in the corresponding secondary
network. For instance, the edge in G corresponding to author
A1 nominating author A2 does not have corresponding coau-

thorship evidence in network G(1), but the two authors do

share the same affiliation as indicated in network G(2). Thus,
the resulting feature vector for edge e(A1, A2) in this simple
example would be Fe(A1,A2) = (0, 1), as shown on the re-
sulting annotated input graph Ga in Figure 2. In addition to
the generated edge features, extra node features are derived
from these secondary networks, such as the number of publi-
cations from the co-authorship network, or the prestige of the
affiliated organization from the co-affiliation network. These
additional node features are then used to enrich the original
set of author features obtained from the primary data.



Figure 2: Feature generation for an example author network

4 Method

The proposed active surveying method uses a greedy proba-
bilistic approach for solving the optimization problem. We
use the current set of observed nominations as evidence for
training a probabilistic classifier. The classifier is then used
to infer how likely the potential nominations for each un-
surveyed respondent are to be realized. Given the input
graph G and the sets of node features Fv and edge features
Fe, a probabilistic classifier C is trained using the initial
set of observed edges. For each un-observed, potential edge
e(u, v) ∈ E, the classifier outputs the posterior probability of
that edge being positive, denoted as p(+|e(u, v)), or negative,
denoted as p(−|e(u, v)).

Given the output probabilities from the classifier along
with the initial sets of leaders and candidates determined by
the observed edges in G, we define a score function S(v) for
each node v ∈ V as:

S(v) =
∑

c∈candidates

p(+|e(v, c))−
∑

l∈leaders

p(+|e(v, l))

The score function S(u) represents the difference between
the expected number of nominated candidates and the ex-
pected number of nominated leaders for a given respondent
u. Thus, following a greedy approach for finding the mini-
mal set of respondents, the individual corresponding to node
vS : argmaxv S(v) is then surveyed, and the resulting nom-
inations are added to the training set and incorporated back
into the model. Although there is an underlying indepen-
dence assumption in predicting the respondents’ choices of
influential peers, we show in the experimental section that
this approximation works well in practice.

One caveat with the above approach is the dependence be-
tween the quality of the decision of who to survey next with
the accuracy of the underlying classifier. Therefore, a com-
peting requirement is to choose respondents based on a cri-
terion that will enhance the overall accuracy of the classifier.
We rely on active learning to provide the necessary criterion
for choosing the most informative respondents from the per-
spective of enhancing the overall accuracy of the underlying
classifier.

In order to reduce the class probability estimation error,
we use uncertainty sampling to select the respondents with

the most uncertain responses, measured as the expected con-
ditional classification error over their corresponding poten-
tial nominations. To choose the next respondent to survey,
each nomination of a given respondent v is assigned a weight
w(e(v, u)) = (0.5− |0.5− p(+|e(v, u))|) indicating the dis-
tance of the class probability estimate from 0.5, which is used
to quantify the amount of uncertainty in the class prediction.
Then, the weight of each respondent W (v) is computed as
the average of all the weights on her outgoing nominations.
The respondents’ weights are then used to make a probabilis-
tic choice of the next respondent. This weighted uncertainty
sampling approach (WUS) has been shown to outperform tra-
ditional methods that pick the most uncertain sample [Saar-
Tsechansky and Provost, 2004].

To provide a robust mechanism, we incorporate the two
objectives of maximizing the likelihood to identify a new
opinion leader and minimizing the expected classification er-
ror for choosing the next respondent. For that, we quantify
the amount of uncertainty in the classifier output over all un-
observed edges Eu as:

Havg =
1

Hmax × |Eu|

∑

e(u,v)∈Eu

H(e(u, v))

where the entropy of the classifier output with respect to a
given edge e(u, v) is defined as:

H(e(u, v)) = −
∑

l∈{+,−}

p(l|e(u, v))log(p(l|e(u, v)))

and Hmax is a normalization factor, representing the maxi-
mum entropy of the classifier output, so that Havg is a valid
probability value between [0, 1]

The next respondent to be surveyed v∗ is then chosen via
a probabilistic decision based on the current accuracy of the
underlying classifier as follows:

v∗ =

{

v ∼WUS with probability p = Havg

argmaxv S(v) with probability p = (1−Havg)

Thus, the probability of choosing a respondent based on
uncertainty sampling to enhance the classifier accuracy in-
creases with higher uncertainty in the classifier output, while
being more confident in the predictions yields a higher prob-
ability of choosing a respondent that optimizes the objective
function S(v). The full details are presented in Algorithm 1.



Algorithm 1 Active Survey Algorithm

repeat
Train classifier C using observed nominations
for each un-surveyed respondent v do

Compute the objective function S(v)
Compute the weight W (v) using uncertainty sam-
pling

end for
Normalize uncertainty sampling weights W (v)
Set vS ← argmaxv S(v)
Set vWUS ∼W (v)
With probability p = Havg , set v∗ ← vWUS , otherwise
set v∗ ← vS
Survey respondent v∗, update leaders and candidates
sets according to the resulting nominations
Remove v∗ from the un-surveyed respondents and add
her survey results to the set of observed nominations.

until required number of opinion leaders is obtained

5 Experimental Evaluation

To test our proposed method, we use a health care dataset
generously provided by Community Analytics, a social mar-
keting research organization which specializes in analyzing
influence networks and identifying opinion leaders through
conducting surveys of their clients’ target audiences. The data
represents survey information for nominating influential local
physicians, provided by their peers.

The dataset consists of 2004 physicians, with 899 actual
survey respondents generating 1598 nominations. As the sur-
veys are based on identifying locally influential physicians,
we limit the potential edges for each respondent to the physi-
cians whose locations are within a 150 mile radius, yielding
a set of 127,420 potential edges. By setting the nomination
threshold (α = 2), we identified 260 opinion leaders.

By using the physicians’ lists of publications from
PubMed1, we constructed both a citation and a co-authorship
network among the physicians in the primary network. We
also used the physicians’ affiliation information to construct
a co-affiliation network as a third supplementary source to
leverage our data. Finally, using these three secondary net-
works, we generated a set of 20 edge features on the primary
physician network and enriched the node features with addi-
tional attributes from these networks. A sample of the fea-
tures included in the augmented network as the input to our
model are illustrated in Table 1.

To conduct our experiments, we use a logistic regression
classifier and vary the target percentage k of opinion lead-
ers to be identified, showing the corresponding percentage of
respondents required to reach this target using our proposed
active survey method. We compare active surveying with a
random baseline and a set of other baselines based on vari-
ous centrality measures for determining the most informative
physicians. We use three widely used centrality measures
for the structural baselines: degree centrality, betweenness
centrality, and page rank. In order to understand the relative
contribution of the classifier versus active learning, we com-

1http://www.ncbi.nlm.nih.gov/pubmed
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Figure 3: The percentage of respondents (y-axis) needed to
identify k% of the opinion leaders (x-axis) at (α = 2)

pare our proposed approach to a “passive” surveying method,
which follows the same procedure of active surveying for op-
timizing the score function S(v) based solely on the classi-
fier’s output, but does not incorporate uncertainty sampling.
Finally, we show the performance of a method we refer to
as perfect information (PI). PI uses the fully observed net-
work and, at each step, greedily selects the survey respondent
which identifies the maximum number of new opinion lead-
ers. Note that the PI method represents a pseudo-optimal so-
lution at each point, and hence the lower bound for the num-
ber of required respondents at each step.

As can be seen in Figure 3, while the performance of
the centrality-based methods is indistinguishable from the
random baseline, both the passive and the active surveying
methods perform significantly better than the baselines. Fur-
thermore, our proposed active surveying method outperforms
passive surveying, showing that our intelligent acquisition
strategy helps to improve the quality of the learned classifier.
Figure 4 shows the actual percentage of reduction in the size
of the respondent set of both the active survey method and the
perfect information method, with respect to the minimum set
obtained by the best performing baselines at the correspond-
ing value of k. As can be noted from the figure, our proposed
approach yields a 30% average reduction in the number of re-
spondents required, as compared to a 19% average reduction
by the passive approach. The reduction attained by the ac-
tive surveying method is reflected directly in surveying costs,
thus helping survey conductors achieve their required goal at

Feature Name Source Network

-Geographical Distance Gnomination

-Respondent’s current position Gnomination

(academic/non-academic)
-Nominee’s current position Gnomination

-Number of co-authored publications Gco-authorship

-Nominee’s publications count Gco-authorship

-Number of respondent’s citations of Gcitation

the nominee’s publications
-Nominee’s h-index Gcitation

-Number of common affiliations Gco-affiliation

Table 1: Sample features in the annotated physician nomina-
tion network
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Figure 4: The percentage reduction in required respondents
to identify k% of the opinion leaders at (α = 2)

minimum cost. For instance, if a survey costs $500 per per-
son, then in order to identify 50% of the opinion leaders in
the used physician network, the active survey method needs
only 270 surveys rather than 375 surveys required by the best
performing baseline; this leads to a savings of $52,500.

6 Conclusion and Future Work

In this work, we presented a novel, dynamic framework for
prioritizing the acquisition of survey information, for the pur-
pose of leadership identification. The approach enables in-
telligent integration of both primary and secondary data to
identify which respondents to survey, based on both the like-
lihood of them expanding the set of identified opinion leaders
and also the utility of the information for improving future
predictions. We then validated our results on a real-world
dataset describing a physician nomination network.

Although our algorithm is focused on opinion leadership
identification, we believe the idea of exploration vs. ex-
ploitation behind active surveying can generally be applied
in different settings for guiding the survey process to reduce
the associated costs. Future directions include introducing
a weighting mechanism to account for varying acquisition
costs, as well as dropping the independence assumption and
utilizing a full joint approach for predicting nominations.
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