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Abstract

Viral marketing mechanisms use the existing social network
between customers to spread information about products and
encourage product adoption. Existing viral marketing models
focus on the dynamics of the diffusion process, however they
typically: (a) only consider a single product campaign and (b)
fail to model the evolution of the social network, as the trust
between individuals changes over time, during the course of
multiple campaigns. In this work, we propose an adaptive vi-
ral marketing model which captures: (1) multiple different
product campaigns, (2) the diversity in customer preferences
among different product categories, and (3) changing con-
fidence in peers’ recommendations over time. By applying
our model to a real-world network extracted from the Digg
social news website, we provide insights into the effects of
network dynamics on the different products’ adoption. Our
experiments show that our proposed model outperforms ear-
lier non-adaptive diffusion models in predicting future prod-
uct adoptions. We also show how this model can be used to
explore new viral marketing strategies that are more success-
ful than classic strategies which ignore the dynamic nature of
social networks.

Introduction

How information diffuses through social networks is a ques-
tion that has attracted scholars from a wide variety of re-
search disciplines. A richer understanding of the mechanism
governing the spread of new ideas or trends in social me-
dia has implications for marketing, sociology, journalism,
computer science and many other research areas. Models of
network diffusion have been used to study phenomena as
widespread as product recommendation systems (Leskovec,
Singh, and Kleinberg 2006), viral marketing (Domingos
2005; Leskovec, Adamic, and Huberman 2007), disease
transmission (Dodds and Watts 2005), herding behavior in
financial markets (Drehmann, Oechssler, and Roider 2005),
and even the contagion properties of obesity (Christakis and
Fowler 2007). This is in part because the widespread growth
and use of online social networks has created a new oppor-
tunity to observe diffusion processes on a very large scale,
and across different types of interactions from email to mi-
croblogging to the sharing of photos.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Viral marketing builds upon these network-based diffu-
sion processes. The main goal of viral marketing is to ex-
ploit existing social networks among customers by encour-
age those customers to share product information with their
friends. This goal is based on the premise that consumers’
purchasing decisions are heavily influenced by recommen-
dations and referrals from their family, friends, and col-
leagues; an assumption that has been supported by research
since some of the earliest studies of diffusion (Ryan and
Gross 1943). Recently, viral marketing has become more ap-
pealing to marketers as consumers have started to show an
increasing resistance to traditional forms of advertising such
as TV or newspaper ads.

One of the major early success stories of viral market-
ing was the introduction of “Hotmail”, which was able to
gain twelve million subscribers in just eighteen months by
adding a simple promotional message with each outgoing
email (Jurvetson 2000). Similarly, cell phone companies are
another industry where providers take advantage of social
network-based diffusion by offering highly discounted rates
for customers talking to other customers within the same
network. Thus, if a customer’s social circle (family, friends,
colleagues) is using a certain provider, there’s an added in-
centive for her to use the same provider.

However, social networks are not static. In addition, as
consumers continue to listen to their friends and family, they
learn that some of their social connections have recommen-
dations that are more appropriate for them and that other
members of their social network simply do not have the
same interests as they do. This is in part because different
individuals are interested in different topics. For someone
who is primarily interested in science, if their friend con-
stantly talks to them about new sports developments, send-
ing them emails, and links to promotions for sporting events,
that friend is essentially acting as a spammer and the focal
individual will eventually decrease their trust in her.

However, if another friend makes a recommendation and
the focal individual adopts the product that they recommend
then the trust of the focal individual in that friend will in-
crease. As a result of these processes, the social network
of confidence changes in time due to the recommendation
and adoption process. Although the dynamics of social trust
has attracted the attention of multiple researchers (Golbeck
2009), most current viral marketing models do not fully ad-



dress either the fact that social networks change in time, or
the heterogeneity of preferences that individuals have for
different topics.

In this paper, we present an adaptive model that addresses
this shortcoming by allowing individuals to have different
preferences for product categories, while adapting their con-
fidence in other individuals’ recommendations on the basis
of history. This model is novel in that previous models as-
sume the confidence that a user has in other individuals re-
mains constant over time, and that preference for adoption
is not dependent on product categories. By incorporating
network-level dynamics into a standard diffusion model and
allowing for heterogeneous preferences, our model provides
a better prediction of expected users’ adoption of a given
product. We then build upon this model to examine whom
to target using viral marketing.

Background
One of the first and most influential diffusion models was
proposed by Bass (1969). This model of product diffusion
predicts the number of people who will adopt an innova-
tion over time, and though it does not explicitly account for
the social network, it does assume that the rate of adoption
is dependent on other members of the population, specifi-
cally the current proportion who have already adopted. The
diffusion equation used by this model describes the cumu-
lative proportion of adopters in the population at any time
as a function of the intrinsic adoption rate, and a measure of
social contagion. The model describes an S-shaped curve,
where adoption is slow at first, takes off exponentially and
flattens at the end. The Bass model has been shown to effec-
tively model word-of-mouth product diffusion at the aggre-
gate level (Mahajan, Muller, and Bass 1990), but does not
explicitly model the decision of an individual consumer.

Though the Bass model can easily be generalized to
address individual-level decisions (Stonedahl, Rand, and
Wilensky 2010), most diffusion models that capture the pro-
cess of adoption of an idea or a product at an individual level
use a different mechanism and can generally be divided into
two groups: threshold models and cascade models. Thresh-
old models are based on the work performed by Granovetter
(1978) and Schelling (1978) in the late 70’s. Basically, each
individual, v, in the network has a personal adoption thresh-
old θv ∈ [0, 1], typically drawn from some probability dis-
tribution. A given individual v in the network adopts a new
product if the sum of the connection weights of its neigh-
boring peers that have already adopted the product N(v) is
greater than her personal threshold:

∑

u∈N(v)

w(u, v) ≥ θv.

Although the above model represents a linear threshold
model, it can be easily generalized further with replacing
the summation with an arbitrary function on the set of ac-
tive neighbors of individual v. Dodds and Watts (2005) have
also shown that a more general model than this can be used
to describe both the Bass model and the threshold model.

Cascade models (Goldenberg, Libai, and Muller 2001)
were originally inspired by research on interacting particle

systems. In these type of models, whenever a peer u of an
individual v adopts a given product, then individual v also
adopts with probability pu,v . In other words, each individ-
ual has a single, probabilistic chance to activate each one of
her currently inactive peers, after becoming active herself.
A very common example is the independent cascade model,
in which the probability that an individual is activated by a
newly active peer is independent of the set of peers who have
attempted to activate her in the past. Kempe et al. (2003) pro-
posed a broader framework that simultaneously generalizes
the linear threshold and independent cascade models, having
equivalent formulations in both cases.

Regardless of the adoption model, one of the key aspects
that affects information diffusion is the interaction structure.
For instance, a model for product adoption in small-world
networks was proposed by Centola et al. (2005), where
an individual’s probability of adopting a product is depen-
dent on having more than one neighbor who has previously
adopted the product. Wu et al. (2004) modeled opinion for-
mation on different network topologies, and found that if
highly connected nodes were seeded with a particular opin-
ion, this would proportionally affect the long term distribu-
tion of opinions in the network. The work of Holme et al.
(2006) focuses on coupling the evolution of both the social
network and opinion formation, where both aspects adapt to
each other during the evolution process.

Once a diffusion model and a network topology are spec-
ified, the next question is which set of individuals should be
targeted to maximize the spread of information throughout
the network. The problem of influence maximization was
formalized by Domingos et al. (2001), who noticed that or-
dinary data mining techniques that reason about consumer
behavior in independent settings, do not utilize network in-
formation. They proposed a probabilistic model of user-
interaction to study influence propagation in networks, and
then explored how to identify a group of individuals, who
if they adopted a product, would maximize the speed and
amount of adoption throughout the network. Even before
Domingos et al. formalized this problem, one hypothesis as
to how to maximize diffusion centered around the concept of
influentials, who are individuals that have a disproportionate
effect, compared to average individuals, on the amount and
rate of information diffusion. In many information diffusion
models, it has been shown that the most influential individ-
uals in a network are the most central, where centrality is
measured in a variety of different ways, including the most
highly connected nodes, i.e. degree centrality (Wasserman
and Faust 1994; Albert, Jeong, and Barabasi 2000). Other
solutions have also been proposed, for instance, Stonedahl
et al. (2010) show that not only is degree centrality impor-
tant in maximizing diffusion, but in real social networks it
is important to consider the clustering of a node’s neighbors
since tight clustering slows the diffusion process.

Case Study: Digg
Many popular online social network platforms allow for
individuals to recommend items of interest and exchange
knowledge. One such example is Digg.com, which is a pop-
ular social news website, where users can share and vote on
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Figure 1: Topic distribution of stories in Digg dataset

different stories, referred to as “digging”, to elevate the rank-
ing of the story on the website. Digg’s users form a social
network by “following” other users in the network, which
enables automatic tracking of their future diggs and sub-
missions. Each news story on Digg belongs to one of ten
topics; Business, Entertainment, Gaming, Lifestyle, Offbeat,
Politics, Science, Sports, Technology, and World News. We
constructed a sample from the Digg network which included
both the diggs and follows for 11,942 users and the stories
they submitted over a 6 months period (Jul - Dec 2010). The
sample include 1.3 million follows relationships among the
users, with over 1.9 million diggs, on 48,554 news stories.

The network alone is not enough to describe the diffusion
process in a network, it is also important to understand the
mechanism by which a user provides recommendations to
their peers. These mechanisms differ by platform and mar-
keting strategy. For example, some mechanisms are based
on broadcast techniques, where all the peers of a given user
are informed when she adopts a product. In other settings,
the user has to explicitly select peers to send her product
recommendations to after adoption. Digg.com uses a broad-
cast mechanism, where connected users are able to see all
the activities of their peers as soon as it is performed.

Analysis

We begin by analyzing the topic distribution of the news sto-
ries in the collected data. As shown in Figure 1, though there
are differences, all ten topics are represented at comparable
levels in our dataset, without a single topic dominating the
others. Technology, Entertainment, and Lifestyle are among
the topics with higher frequency, while Gaming, Science,
and Sports are the ones with lowest number of submissions.

We use the topic distribution of individual user submis-
sions (the actual stories / links they submitted), as opposed
to their diggs, as an influence-independent source for de-
termining a user’s topic preferences. Given this topic distri-
bution, we then measure the correlation between the users’
topic preferences and their actual adoptions, i.e., their diggs.
Figure 2 shows the Kullback-Leibler divergence between
the topic distribution of the users’ submissions versus their
diggs. For most users, there is very little divergence be-
tween their adoption behavior and their inferred preferences
according to their submissions. However, in approximately

10% of the users, there is a quite significant difference be-
tween the topic distribution of the stories they digg and the
ones they submit. One possible explanation is that while
most people adopt only stories of interest to them, there
are a smaller percentage of “imitators” who are easily influ-
enced by their peers and do not weight their own preferences
as highly. Similar results were obtained using normalized
mutual information (NMI) between the topic distribution of
users’ preferences and adoptions, with imitators appearing
to be even more prominent (˜16% of the users).
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Figure 2: KL-divergence between the topic distribution of
users’ submissions and diggs.

In order to characterize users’ topic preferences, we mea-
sure the KL-divergence between the topic distribution of
each user’s submissions and a uniform distribution of topics.
Lower values indicates that the user’s submission pattern is
closer to uniform, while higher values indicate that the user
is more interested in certain topics but not in others. From
Figure 3, we can distinguish three different groups of users
in the network: Focused users (˜53% of the users) who are
characterized by having highly skewed preferences towards
one or two topics, Biased users ( ˜32% of the users) who
have less skewed preferences towards a larger set of topics,
and Balanced users (˜15% of the users) who have almost-
uniform topic preferences in their submissions.

Finally, we analyze the dynamics of change in the na-
ture of the social relationships between users, and how it af-
fects peer influence over time. We hypothesize that as time
passes, peers with similar preferences in topics start gain-
ing confidence in each other’s recommendations, yielding
higher levels of adoptions, while on the other hand, peers
whose preferences are farther apart from each other become
less confident in each other’s recommendations, resulting in
lower adoption levels. To test our hypothesis, we measured,
at different time points, the average number of diggs on the
same story by different peers for different values of KL-
divergence between their topic preferences. Figure 4 shows
that peers with lower KL-divergence in their topic prefer-
ences increase their number of shared diggs over time, while
the ones with higher levels of divergence have a decreasing
pattern of adoptions over time.
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Figure 3: KL-divergence between uniform topic distribution
and users’ submissions

Differential Adaptive Diffusion

We view our input social network as a directed weighted
graph G(V,E), where V represents the network users, and
E represents the social relationships among them. Each edge
e(u, v) ∈ E is associated with a confidence value wi(u, v) ∈
[0, 1] representing the confidence user v has in the recom-
mendations of her peer u during campaign i. This confidence
value wi(u, v) is updated only once per campaign, and in
general this update could take place either immediately after
a recommendation or at the end of a campaign. In the model
results presented here, we only update at the end of a cam-
paign. Given a preference function F(v, c) : V ×C → [0, 1]
that quantifies user preferences for different product cate-
gories c ∈ C for a given user v, we then define the probabil-
ity of node v adopting a product of category c ∈ C within
campaign i as a result of node u adopting it as:

p(u, v) , wi(u, v)×F(v, c)

To start a new campaign for a certain product xc of cat-
egory c, a marketing incentive is provided to a chosen set
of seed nodes in the network to initiate the diffusion. As the
diffusion process unfolds, the set of nodes who adopt the
product at each time step, t, referred to as the “active” nodes,
influence their peers through recommendations. These rec-
ommendations cause their neighbors to consider whether or
not to adopt the product. The adoption function can take any
form including any of the functions described in the back-
ground section, but throughout the following discussion we
will assume an independent cascade process. Thus each ac-
tive node u in time step t has a single chance of activating a
peer v that has not already adopted the product where it suc-
ceeds with probability p(u, v), which will result in v adopt-
ing the product. Once node u attempts to activate an inactive
node v, it can never attempt to activate node v, in any future
time step, i.e., node u will return to an inactive but adopted
state after this time step. Given the set of active neighbors
Nt(v) of a given inactive node v at time t, the posterior prob-
ability of v adopting the product at time t+1 can be defined
as pt+1(v, xc|Nt(v)) = 1 −

∏

u∈Nt(v)
(1 − p(u, v)). When

a node adopts the product, it becomes active, and starts acti-
vating its currently inactive neighbors at future time points.

Figure 4: Heat map of the average number of diggs for dif-
ferent values of topic divergence between peers across time.

The diffusion process continues until no further adoptions
occur for the current product.

At the end of each campaign, the confidence values
among peers are updated according to the outcome of the
product recommendation across the corresponding edge. We
denote by t∗i (v) the time step within campaign i at which a
node v adopts the product. If a given node u ends up not
adopting the product by the end of campaign i, t∗i (u) is set
to ∞. Using a kernel function K, the change in confidence
values at the end of campaign i for product xc can be calcu-
lated as ∆Wi+1 = K(Wi; θ), where θ ∈ [0, 1] is a kernel
parameter specifying the rate of change. For instance, a lin-
ear kernel can be defined as:

KL(Wi; θ) =
{

θ × 1−wi(u,v)
t∗
i
(v)−t∗

i
(u)+1 , t∗i (u) < ∞∧ t∗i (v) < ∞

θ × −wi(u,v)
tmax

i
(v)−t∗

i
(u)+1 , t∗i (u) < ∞∧ t∗i (v) = ∞

where tmax
i (v) = maxt∗

i
{t∗i (u) : (u, v) ∈ E ∧ t∗i (u) < ∞}

represents the time of the last adoption by any of v’s peers.

This linear kernel assigns credit to each peer u of a node v
proportional to the elapsed time between that peer’s recom-
mendation and node v adopting the product. The intuition is
that the node u, that last recommended the product, has the
highest impact for influencing node v to adopt the product,
and thus should be assigned higher confidence in her future
recommendations to v. If node v ends up not adopting the
product by the end of the campaign, each peer u who rec-
ommended the product to node v is penalized relative to the
time of the last recommendation. In this case, the last per-
son to recommend the product, even though v still has not
adopted it and will not adopt it, gets the maximum penalty
for their recommendation.

We can use different types of kernels to control the dy-
namics of the confidence levels in the network. For instance,
this kernel could be exchanged with a kernel where only the
last node to provide a recommendation is penalized or re-
warded, as opposed to all nodes, or one where all nodes are
punished or rewarded equally. Regardless, as a new cam-
paign is initiated for a different product, the new, updated



confidence values are used to compute the influence proba-
bilities, thus enabling the model to capture the dynamics of
the diffusion process across different product types.

Experimental Evaluation

To test our proposed model, we used the first four months
of interactions, i.e., diggs and submissions, on the Digg net-
work as training data to learn the confidence values between
different users, and we used the last two months for eval-
uation. We use the action of “digging” a story as a proxy
for product adoption, and the topic distribution of users’
submissions to estimate their preferences. Starting from a
uniform assignment of confidence values across all peers,
we track the propagation of user diggs, and update the
corresponding confidence values according to the proposed
model. We use the learned values along with the user pref-
erences to predict adoptions for new stories.

We compare our approach with two proposed approaches
in (Goval, Bonchi, and Lakshmanan 2010) for learning the
influence probabilities from training data. In the first ap-
proach (Bernoulli), they consider each recommendation a
separate Bernoulli trial, and then estimate the confidence be-
tween two users as the maximum likelihood estimate (MLE)
of the ratio of successful recommendations over the total
number within a given contagion time. In the second pro-
posed approach (Bernoulli-PC), they use the same Bernoulli
representation but in this approach they give partial credit
for each product adoption based to the set of peers who rec-
ommended the product within a given time frame. Although
both approaches have comparable performance, Goval et al.
show that introducing the notion of “contagion time” as a
factor in estimating the influence probability outperforms
static methods and yields more accurate results.

The above method utilizes a threshold adoption rule as op-
posed to the cascade rule that we utilize in our model (Adap-
tive). We can convert between these two models; as shown
by Kempe et al. (Kempe, Kleinberg, and Tardos 2003),
the independent cascade model is equivalent to a threshold
model where the adoption threshold is set to the posterior
probability of adoption; i.e. for a given user v, if we set
θv = 1 −

∏

u∈N(v)(1 − p(u, v)), the threshold model is

equivalent to the independent cascade model. We use this
conversion to facilitate in-depth evaluation of our model.
We compare the different models by means of ROC curves,
which are more appropriate than precision-recall curves in
this setting (Provost, Fawcett, and Kohavi 1998). The ROC
curve shows the relative trade-offs between the true positives
(correctly identified adoptions) and the false positives (unre-
alized predicted adoptions) as the discrimination threshold
is varied. Each point in the ROC curve corresponds to one
possible value of activation threshold for the users.

Figure 5 illustrates the performance of all three models
using ROC curves where the x-axis is the false positive
rate (FPR) and the y-axis is the true positive rate (TPR).
Our proposed model (Adaptive) outperforms both baselines
(Bernoulli and Bernoulli-PC), yielding higher true positive
rates at low values of false positives. We also experimented
with using a predictor that ignores the peer-influence alto-
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Figure 5: ROC performance of two comparison mod-
els (Bernoulli and Bernoulli-PC) and the proposed model
(Adaptive) on the basis of the False Positive Rate (FPR) and
True Positive Rate (TPR) for each model.

gether and relies only on the stories that were promoted to
the “top stories” section in Digg.com. This popularity-based
predictor yielded an accuracy of 45.7%, which is lower
than random prediction This indicates that individuals’ con-
nections and interactions with their content preferences are
more important factors than the overall popularity. Similar
results were also confirmed by (Lerman 2007)

These results show that by modeling the dynamics of the
diffusion process at a finer-grained level, taking into account
the heterogeneity of users and the dynamics of the social
network, it is possible to create a model which outperforms
a more naı̈ve model. This in turn leads to a better under-
standing of the whole diffusion process. In the next section
we discuss the implications of our model for existing viral
marketing strategies, and suggest a new strategy that better
captures our findings.

Adaptive Viral Marketing

One of the main implications of our model is a better un-
derstanding of the effects of existing viral marketing strate-
gies on social networks in the long term. Our model suggests
that user recommendations are most effective when recom-
mended to the right subset of friends. If a user is very selec-
tive and makes each recommendation to only a few friends,
then the chances of success are slim due to limited network
exposure. On the other hand, recommending a product to
everyone may have limited returns as well, due to the ef-
fect of irrelevant recommendations on the confidence levels
between peers. From the perspective of a brand manager in-
terested in maximizing the diffusion of recommendations, it
is important to provide incentives to encourage the right bal-
ance between reaching as many users as possible and at the
same time targeting the most appropriate consumers.

Given this dilemma, a natural question to ask is: what
is the appropriate mechanism to maximize both spread and
adoption of recommendations? We propose an “adaptive re-
wards” solution, where instead of rewarding an individual
based only on successful recommendations, the reward is
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(b) Confidence Level

Figure 6: Effect of varying the conservation parameter α

based on successful and unsuccessful recommendations.

Suppose a user v, with pv peers in the social network, is
chosen to start the campaign for a certain product. Assume
only mv of her peers have high preference for that specific
product category. Then, whenever a recommendation is suc-
cessful (a purchase based on a recommendation is carried
out), user v gets rewarded (α × r), whereas if the recom-
mendation is unsuccessful, v gets penalized ((1 − α) × r),
where α is a conservation parameter, varying from 0 to 1,
with 0 representing fully conservative behavior and 1 repre-
senting fully nonconservative behavior.

According to the classic viral marketing mechanism,
where users only receive rewards for adoptions and no
penalties for the lack of adoptions, there is no reason for
a user v to be selective in the choice of whom to recom-
mend the product to. In many cases a user will know which
subset of her peers are the most probable ones to purchase a
given product, based on their knowledge of their peers’ pref-
erences. However, there still exists a slight chance for any of
v’s peers to purchase the product, including those that do not
have a preference for the product, and there is no punishment
for failed recommendations. Thus, the expected reward that
user v will acquire through sending recommendations to all
her peers is greater than or equal to the reward she would re-
ceive if she uses a more selective strategy under the classic
viral marketing reward mechanism.

However, by utilizing the proposed adaptive rewards
mechanism, there is an explicit penalty for unsuccessful rec-
ommendations. Following the same setup, if individual v
chooses to be selective in recommending the product, thus
sending the recommendations only to the interested mv con-
nections, her expected reward will be (r × α ×mv). How-
ever, if v chooses to follow a nonconservative strategy, the
expected reward is decreased by a penalty relative to her un-
successful recommendations and becomes (r × (α ×mv −
(1−α)×(pv−mv))). Tuning the conservation parameter α
allows us to experiment with different mechanisms and their
effect on product success and overall confidence levels.

Despite the fact that the main benefits of our proposed
strategy appears on the network level through reducing the
spamming behavior within the social network, it also car-
ries an advantage for individuals by maximizing their re-

wards over time. While the users have different preferences
for different product categories, their judgment in the confi-
dence of their peers is evaluated on an aggregate level. So, if
an individual chooses to engage in spamming behavior, this
will lead to increased resistance by her peers to any future
recommendation they receive from her, regardless of their
preference for the product category, thus decreasing that in-
dividual’s future rewards significantly. As a result, by using
our proposed method, individuals must face the penalty of
spamming behavior explicitly, and as a result they will be
more likely to follow a strategy which will maintain their
peers’ confidences in them in the long run, and therefore in-
crease their long term reward.

To test the proposed viral marketing strategy, we use an
agent-based model to simulate the behavior of users in dif-
ferent settings. First, we generate a synthetic network using
preferential attachment (Barabasi and Albert 1999). We use
two modes of experiment where we allow the agents to ei-
ther observe the preference values of their peers before mak-
ing a recommendation, or learning these preference accord-
ing to the peer’s response to the recommended products. The
main objective of each agent is to maximize its expected re-
wards according to the utilized strategy. Using our proposed
adaptive diffusion model, we simulate the diffusion of 500
product campaigns for 5 different categories. We use a linear
kernel for adjusting the confidence levels between peers.

Figure 6 shows that by decreasing the value of α, encour-
aging users to be more conservative in their decisions, the
rate of decline in the average confidence level between peers
decreases. However, as a side effect of being more conser-
vative, the spread of the products decreases as well. This is
illustrated by the fact that the adoption rate is always lower
for lower levels of α in the early campaigns, and for very
low values of α the adoption rate is always low, but for
higher values of α, the adoption rate declines substantially in
later campaigns due to the rapid decrease in confidence lev-
els between peers. In fact, utilizing intermediate values for
α (e.g. α = 0.5, corresponding to equal chances of reward
and penalty) consistently maintains high adoption rates and
high overall confidence even over a large number of mar-
keting campaigns. We tested the robustness of this result by
varying the number of product categories and the size of the
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Figure 7: Effect of allowing individuals to learn the preferences of their peers

initial seeding set. The same conclusion holds across all of
these changes in the parameters of the systems.

In real settings, users do not necessarily know the prefer-
ences of their peers in advance, but rather learn them through
peers’ responses to different recommendations. To account
for this more realistic situation, we give agents the ability
to learn the preferences of their peers instead of directly ob-
serving them. At each time step, if the agent decides to rec-
ommend a product to one of its peers, it stores whether or not
that peer adopted the product. Then, when deciding whether
or not to make a recommendation in the future, the agent
uses the stored outcomes to estimate that peer’s preference
toward different product categories.

The basic hypothesis is that the adoption rate will gener-
ally rise over the direct observation case, due to the fact that
the agents inference of their peers’ preferences also takes
into account the confidence levels, since the peers’ response
to recommendations account for both factors. This informa-
tion is not contained in the direct observation of peer prefer-
ences’ and since it is the composite of confidence and pref-
erence that determines actual adoption, the agents are bet-
ter able to predict their peers’ adoptions. This indicates that
the adaptive rewards mechanism may work even better in
contexts when individuals do not have perfect knowledge of
their peers’ preference but must instead learn both the pref-
erence and confidence levels from observing past behavior.
Moreover, as shown in Figure 7, for moderate values of α,
the performance of the proposed strategy is remarkably bet-
ter than low and high levels of α, in terms of both product
adoption and maintaining confidence levels in the network,
which indicates that encouraging agents to target a small
subset of their peers is the optimal strategy.

In order to analyze our model, we carried out another ex-
periment where we manually inserted a set of spammers into
the network. A spammer in our model forwards recommen-
dations for any product it adopts to all its peers, regardless of
their preferences. We set (α = 0.5) for the rest of the users,
and examined various numbers of seeded spammers.

As illustrated in Figure 8, the agents in the network were
able to identify the spamming agents after a relatively small
number of campaigns, dropping their confidence in them.
The effect of spamming behavior is obvious in this figure
through the decreased adoption rate as the percentage of

spammers present in the network is increased, but the col-
lective behavior of the non-spammer agents maintains the
confidence level among trusted peers, while removing any
confidence in spammers. This minimizes the effect of the
spamming behavior on the adoption rates over time.

Conclusion and Future Work

In this work, we provided insight into the effect of network-
level dynamics and individual heterogeneity on the diffusion
process in real-world networks. Utilizing a sample of users’
interactions on the Digg.com social news website, we ana-
lyzed the effect of peers’ confidence in each other’s recom-
mendations on the adoption of different products over time.
We presented an adaptive diffusion model that is able to cap-
ture the observed properties, and showed that it outperforms
earlier non-adaptive models in predicting future adoptions.

By analyzing the implications of our proposed model for
existing viral marketing strategies, we illustrated that most
existing strategies focus on maximizing the product spread
within each campaign, but fail to account for the long-term
effects that spamming behavior can have on the underlying
social network across campaigns. We then introduced a new
viral marketing strategy based on our proposed adaptive dif-
fusion model, that accounts for the social network dynamics
across different product campaigns. Our experiments have
shown that the proposed adaptive viral marketing strategy is
able to account for the changes in peers’ confidence across
multiple campaigns, maintaining higher levels of product
adoptions than those attained by classic strategies in the long
term. We also showed that the proposed adaptive strategy is
less prone to spamming behavior.

We believe one major application of our work is in iden-
tifying influentials. Our model suggests that using only
structural-based measures for determining influentials ig-
nore individual behavior, and may lead to decreased efficacy
of these strategies in the long run if the chosen individual
turn out to be engaged in spamming behavior. One direc-
tion for future work is incorporating peer-confidence, by an-
alyzing past interactions, into the process of identifying in-
fluentials. Other directions for future work include analyz-
ing the dynamics of change in individual-level preferences,
and whether these changes result from peer influence (con-
tagion) or other external factors.
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