
The VLDB Journal (2009) 18:1065–1090
DOI 10.1007/s00778-009-0153-2

SPECIAL ISSUE PAPER

PrDB: managing and exploiting rich correlations in probabilistic
databases

Prithviraj Sen · Amol Deshpande · Lise Getoor

Received: 15 September 2008 / Revised: 7 June 2009 / Accepted: 10 June 2009 / Published online: 15 July 2009
© Springer-Verlag 2009

Abstract Due to numerous applications producing noisy
data, e.g., sensor data, experimental data, data from uncu-
rated sources, information extraction, etc., there has been
a surge of interest in the development of probabilistic dat-
abases. Most probabilistic database models proposed to date,
however, fail to meet the challenges of real-world appli-
cations on two counts: (1) they often restrict the kinds of
uncertainty that the user can represent; and (2) the query
processing algorithms often cannot scale up to the needs of
the application. In this work, we define a probabilistic data-
base model, PrDB, that uses graphical models, a state-of-
the-art probabilistic modeling technique developed within
the statistics and machine learning community, to model
uncertain data. We show how this results in a rich, com-
plex yet compact probabilistic database model, which can
capture the commonly occurring uncertainty models (tuple
uncertainty, attribute uncertainty), more complex models
(correlated tuples and attributes) and allows compact repre-
sentation (shared and schema-level correlations). In addition,
we show how query evaluation in PrDB translates into infer-
ence in an appropriately augmented graphical model. This
allows us to easily use any of a myriad of exact and approx-
imate inference algorithms developed within the graphical
modeling community. While probabilistic inference provides
a generic approach to solving queries, we show how the use
of shared correlations, together with a novel inference algo-
rithm that we developed based on bisimulation, can speed
query processing significantly. We present a comprehensive
experimental evaluation of the proposed techniques and show
that even with a few shared correlations, significant speedups
are possible.

P. Sen · A. Deshpande (B) · L. Getoor
Computer Science Department, University of Maryland,
College Park, MD 20742, USA
e-mail: amol@cs.umd.edu

Keywords Probabilistic databases · Uncertain databases ·
Graphical models · Query processing · Lifted inference ·
Bisimulation

1 Introduction

Many real-world applications produce large amounts of
uncertain data. Traditional database systems are geared
toward storing exact data and harbor fundamental limita-
tions when it comes to storing uncertain data. This has led
to renewed interest in designing databases that can store
and query uncertain data. To date, numerous approaches
have been proposed including fuzzy-logic based approaches
[3,6], logic based approaches [27], approaches based on
Dempster–Shafer theory [8] and approaches based on prob-
ability theory [11,13,21,28,31,40,46]. We refer to the last
category, collectively, as probabilistic databases. Probabilis-
tic databases have been used in various applications includ-
ing information retrieval [11,40], recommendation systems
[36], mobile object data management [7], information extrac-
tion [24], data integration [1] and sensor network data man-
agement [17].

Even though a number of probabilistic database models
have been proposed, most of them limit the kinds of uncer-
tainty they allow the user to represent. Some require complete
tuple independence or permit only simplistic correlations—
restrictive assumptions that are rarely true in practice. Most
others have no way to represent or benefit from the com-
monality in the probabilistic information. Such commonal-
ities are observed quite frequently in practice, and arise for
two reasons: (1) uncertainty and correlations usually come
from general statistics derived from probability distributions
defined at the attribute or schema level, and rarely vary on a
tuple-to-tuple basis; (2) the query evaluation process tends to

123

1066 P. Sen et al.

Ad SellerID Date Type Model mpg Price probe

101 201 1/1 Sedan Civic(EX) ? $6000 0.5
102 201 1/10 Sedan Civic(DX) ? $4000 0.45

103
- prob

201 0.6
202 0.4

1/15
- prob

Sedan 0.3
Hybrid 0.7

Civic ? $12000 0.8

104 202 1/1 Hybrid Civic ? $20000 0.2
105 202 1/1 Hybrid ? ? $20000 0.2

(a) Advertisements

SellerID Reputation
201 Shady
202 Good

(b) Sellers

Ad 101 Ad 102 prob
valid valid 0.4
valid invalid 0.1

invalid valid 0.05
invalid invalid 0.45

(c)

Model prob
Civic 0.02

Civic(EX) 0.01
Camry 0.01

... ...

(d)

Type Model mpg prob

Sedan

Civic(EX)
26 0.2
28 0.6
30 0.2

Civic(DX)
32 0.1
35 0.7
37 0.2

Civic
28 0.4
35 0.6

Hybrid Civic
45 0.4
50 0.6

(e)

Fig. 1 a, b A simple car advertisement database with two relations,
one containing uncertain data, c a joint probability function (factor)
that represents the correlation between the validity of two of the ads
(probe for the corresponding tuples in the Advertisements table can be

computed from this), d a shared factor over Model, e a shared factor
that captures the correlations between several attributes in Advertise-
ments—this can be used to obtain a probability distribution over missing
attribute values for any tuple

re-introduce the same correlations between base tuples and
intermediate tuples generated during execution.

Example 1 We illustrate the need for modeling correlations
at various levels of abstraction through a motivating
application scenario. Consider a simple car advertisement
database (Fig. 1) containing information regarding pre-
owned cars for sale, culled from various sources on the Inter-
net. By its very nature, the data in such a database contains
various types of uncertainties that interact in complex ways.
First off, we may have uncertainty about the validity of a
tuple, for example, older ads are likely to correspond to cars
that have already been sold, and thus are perhaps less likely to
be valid. We may represent such uncertainty by associating an
existence probability (denoted probe) with each tuple. Sec-
ond, many of the attribute values may not be known precisely.
In some cases, we may have an explicit probability distribu-
tion over an attribute value (e.g., the SellerID attribute for
Ad 103 in Fig. 1a). The data may also exhibit complex attri-
bute-level or tuple-level correlations. For instance, since the
ads 101 and 102 are both by the same seller, their validity is
expected to be highly correlated; such a correlation may be
represented using a joint probability distribution (Fig. 1c).

Many of the uncertainties in this database, however, are
derived from general statistics defined at the schema level.
For instance, if the model information for a car is missing
(Ad 105), we may use a probability distribution as shown
in Fig. 1d to derive the uncertainty for that attribute value.
Similarly, we may have a joint probability distribution over
the attributes of a relation, and the uncertainty in the attribute
values for a specific tuple may be computed using the known
attribute values for that tuple. Figure 1e shows such a joint
probability distribution over the attributes type, model and
mpg; this can then be used to compute a distribution over

the mpg attribute for a specific tuple (given the tuple’s type
and/or model information). We refer to these schema level
probabilities as shared correlations.

Our goal is to design a probabilistic database model that
can capture the uncertainties and complex correlations that
appear in such real-world application domains, yet at the
same time allows the flexibility to capture probabilistic reg-
ularities. To achieve our goal, we base our approach on work
done by the machine learning community, a community that
has spent a considerable amount of effort to develop expres-
sive yet compact uncertainty modeling techniques.

One of the most popular uncertainty modeling techniques
developed by the statistics and machine learning communi-
ties, known for its compactness and generality, is the family
of techniques referred to as probabilistic graphical models
(PGM). In the first part of this article, we show how PGMs can
be used as a base model of uncertainty in PrDB. We define the
semantics of PrDB and show how it, like other probabilistic
database models, defines a distribution over possible
databases. We also show how PrDB has none of the represen-
tational limitations thatusuallyaccompanyotherprobabilistic
database models. More precisely, we can represent the pres-
ence/absence of tuples (tuple-level uncertainty), uncertainty
associated with the values of unknown attributes (attribute-
level uncertainty) and rich correlations including intra-tuple
attribute value correlations, inter-tuple attribute value corre-
lations and even inter-relation attribute value correlations. In
addition to the added flexibility, PrDB allows explicit repre-
sentation of shared and schema-level probabilistic informa-
tion(shared correlations); thisallowsforcompactness inspite
of such a rich modeling framework.

Having defined our probabilistic database in terms of a
flexible uncertainty modeling technique, the next question we

123

Managing and exploiting rich correlations 1067

address is query evaluation. To this end, in the second part
of this article, we show that query evaluation in our prob-
abilistic database is no harder than probabilistic inference
in an appropriately constructed (augmented) PGM. Further,
we show that augmenting the base PGM to answer a query
is almost as easy as query evaluation in traditional database
management systems where one takes each operator from the
user-submitted query and creates intermediate tuples until all
operators from the query are exhausted. Perhaps the biggest
advantage of making this connection to probabilistic infer-
ence is that it lets us utilize any of the probabilistic inference
algorithms (exact or approximate) developed in prior litera-
ture by the artificial intelligence, machine learning and theory
communities.

While probabilistic inference provides a viable option for
solving queries in many cases, the hardness of the problem
necessitates that we look for further avenues to reduce the
complexity of query evaluation. To this end, in the third part
of this article, we show how to leverage the existence of
shared correlations for efficient query evaluation, by devel-
oping a novel inference algorithm based on bisimulation.
Most probabilistic database formulations require probabilis-
tic inference at some level of abstraction. Several query eval-
uation approaches construct Boolean formulas (sometimes
called lineage) that can be seen as special cases of PGMs
that we construct [13,21,36]. The techniques we develop in
this paper should be of use to the above mentioned works, by
enabling us to go beyond the currently known set of queries
that can be efficiently evaluated (e.g., safe plans [11]).

We make the following contributions in this paper:

– We show how state-of-the-art uncertainty models can
be used in conjunction with probabilistic databases. We
define the semantics of such a probabilistic database.

– We introduce the concept of shared correlations using
simple motivating examples and enrich our probabilistic
database model to explicitly represent them.

– We show how query evaluation in a probabilistic database
reduces to probabilistic inference in an augmented PGM
for which any inference algorithm previously developed
in the literature can be utilized.

– We introduce a novel graph-based data structure, called
the rv-elim graph, that helps identify regularities during
query evaluation, and we show how it can be used to
exploit shared correlations to speed up query evaluation.

– We present a novel algorithm for choosing an elimination
order that attempts to maximize the regularities exploited
by our inference algorithm.

– We show how to efficiently store the uncertainty model
with shared correlations in a relational database system.

– We validate our approach empirically and show that sig-
nificant speedups are possible, even in the presence of
just a few shared correlations.

The rest of the article is organized as follows. In the next
section (Sect. 2), we review models for uncertainty from the
machine learning literature. In Sect. 3, we present our proba-
bilistic database based on PGMs and define its semantics. In
Sect. 4, we show how probabilistic inference relates to query
evaluation in probabilistic databases. In Sect. 5, we show
how shared correlations can be used to speed up query eval-
uation. In Sect. 6, we develop novel approaches to generate
elimination orders that maintain symmetry and help speed
up query evaluation. In Sect. 7, we present a comprehensive
experimental study comparing the different inference algo-
rithms. In Sect. 8, we survey related work and we conclude
with Sect. 9.

Preliminary portions of this article have been presented
in various conferences [40–42]. In contrast to the previous
papers, in this article, we present our approach in full gener-
ality and in greater detail. Also, we present a new approach to
determining the elimination order that preserves symmetry
in the rv-elim graph (Sect. 6.2) and present a more compre-
hensive set of experiments evaluating our approach.

2 Background: graphical models overview

Our proposed PrDB model builds upon research on graphical
models from the statistics and machine learning communities
[9,33]. Graphical models provide a flexible and yet compact
representation for complex probability distributions. There
is also a wide literature on effective computation of various
marginal and a posteriori probabilities (referred to as prob-
abilistic inference in the graphical models literature), and
learning (learning the structure and estimating the probabil-
ities from observational data). In addition, there has been
work on first-order models, which allow even more compact
modeling of the probability distributions [20,37].

In this section, we provide a quick primer on graphical
models. We begin by introducing the concepts of random
variables and factors, the basic building blocks for most
uncertainty modeling techniques. Let X denote a random
variable that can be assigned any value from a predefined
domain of assignments denoted by dom(X).

Definition 2.1 (Factor) A factor f (X) is a function over a
(small) set of random variables X = {X1, . . . , Xn} such that
f (x) ≥ 0, ∀x ∈ dom(X1)× · · · × dom(Xn).

One simple and intuitive uncertainty modeling technique
is to directly model a joint probability distribution (pdf) in the
obvious manner. Let X = (X1, . . . Xn) denote a list of ran-
dom variables whose values are unknown and let dom(X)

denote dom(X1)× · · · × dom(Xn). Then the joint probabil-
ity, Pr : dom(X)→ �≥0 such that

∑
x∈dom(X) Pr(x) = 1,

can be explicitly represented by using a factor that takes
X as argument providing for each joint assignment x the

123

1068 P. Sen et al.

corresponding probability Pr(x). One can then use this fac-
tor to perform various computations such as:

– compute the most probable joint assignment or most prob-
able explanation (MPE), argmaxx Pr(x),

– given assignments to a subset of random variables X ⊂
X , compute the most probable assignment to the rest
(also called maximum a posteriori or MAP estimation),

– compute the distribution for a single random variable X
summed over the rest of the random variables (a marginal
probability computation).

Unfortunately, since the space required to store a factor with n
arguments is proportional to the product of the corresponding
domain sizes, the approach of representing the joint distri-
bution with a single explicit factor is rarely feasible. Even
if the random variables are all binary, the space required for
storing the joint distribution would be 2n (the probabilities
of the 2n different joint assignments to the variables).

This has led to various approaches for compactly model-
ing uncertainty for large collections of random variables. We
review two of the most common and most widely applicable
approaches, Bayesian networks and Markov networks. The
intuition behind both approaches is to break the joint distribu-
tion into a product of many smaller distributions over smaller
sets of random variables. The basis for such a breakup lies
in exploiting conditional independences:

Definition 2.2 (Conditional independence) Let X, Y, and Z
be disjoint sets of random variables such that X = X ∪
Y∪Z. X is conditionally independent of Y given Z (denoted
X⊥Y|Z) in distribution Pr if:

Pr(x, y|z) = Pr(x|z) Pr(y|z)
for all values x ∈ dom(X), y ∈ dom(Y) and z ∈ dom(Z),
where Pr(x|z) = Pr(x, z)/Pr(z).

The utility of exploiting conditional independence lies in
the fact that, usually, storing Pr(x|z) and Pr(y|z) is much
cheaper than storing Pr(x, y|z). Assuming all random vari-
ables have domain size d, storing Pr(x|z) and Pr(y|z) req-
uires d |X|+|Z| + d |Y|+|Z| units of space whereas storing
Pr(x, y|z) requires d |X|+|Y|+|Z| units of space. It is easy to
see that, barring a few degenerate cases (|X| = 0 or |Y| = 0
or |X| = |Y| = 1 and d = 2), the former is strictly smaller
than the latter, often by a large amount.

2.1 Directed graphical models

Directed graphical models, popularly called Bayesian net-
works [33], are typically used to represent causal or asym-
metric interactions amongst a set of random variables. In
Bayesian networks, a special type of factor is used to break
up the joint pdf into numerous small distributions:

Definition 2.3 (Conditional probability factor) Let f (X |Π)

denote a factor that takes as arguments X ∪ Π where Π

denotes a set of random variables such that:
∑

x∈dom(X)

f (x |π) = 1, ∀π ∈ dom(Π)

X is referred to as the child and Π , as its parents.

Note that Π can be the empty set. Intuitively, a conditional
probability factor defines a conditional probability distribu-
tion over the child given an assignment to its parents. Often
the conditional probability factor is represented as a table,
and the factor is often referred to as a conditional probability
table, but this is not a requirement; any function which per-
forms the mapping is possible. For example, decision trees
or special functional forms such as noisy-or and noisy-max
are often used in practice.

Moreover, conditional probability factors can be used to
enforce deterministic constraints:

Definition 2.4 (Deterministic conditional probability
factor) A conditional probability factor f (X |Π) is a deter-
ministic factor if ∃x ∈ dom(X) s.t. f (x |π) = 1, ∀π ∈
dom(Π).

We make extensive use of such deterministic factors dur-
ing query evaluation over probabilistic databases. Figure 5d
shows an example of such a factor that enforces X ⇔ Y .

Having defined a set of such conditional probability fac-
tors, the complete joint distribution of the Bayesian network
is then given by the product of all the factors:

Pr(x1, . . . , xn) =
n∏

i=1

f (xi |πi)

It is easy to show that the Pr(x1, . . . , xn), as defined above,
sums to 1 and is a normalized (legal) distribution.

Traditionally, a Bayesian network is represented as a dir-
ected acyclic graph (DAG) in which vertices denote random
variables and a directed edge from random variable Xi to ran-
dom variable X j in the graph indicates that Xi directly influ-
ences (i.e., is a parent of) X j . Figure 2 shows a simple example
Bayesian network, showing both the graph structure and the
conditional probability factors, that models the model, type,
m.p.g. and color of a car. The graph also compactly represents
the collection of conditional independences that hold in the
distribution. Denote a random variable X j as non-descendant
of Xi if there does not exist a directed path from Xi to X j .
Then, Xi is conditionally independent of non-descendant X j

given parents of Xi . For instance, in Fig. 2, m.p.g. ⊥ color |
model. The complete details of computing all of the condi-
tional independences are beyond the scope of our quick intro-
duction; we refer the interested reader to Pearl [33].

123

Managing and exploiting rich correlations 1069

......
Hybrid 0.1

Coupe 0.2
0.4Sedan

pr(T)T

f1(T) = Pr(T)

......
Camry 0.01

Civic(EX) 0.01
0.02Civic
pr(M)M

f2(M) = Pr(M)

Color (C)

Model (M)Type (T)

M.P.G. (G)

...

G

...

M

SedanCivic(EX) 0.2

pr(G | M, T)T

f4(G | M, T) = Pr(G | M, T)

26

...
Red
Red

C

... ...
Civic(EX) 0.2

0.1Civic
pr(C | M)M

f3(C | M) = Pr(C | M)

Pr(M, T, G, C) ∝ f1(T) f2(M) f3(C | M) f4(G | M, T)

 = Pr(T) Pr(M) Pr(C | M) Pr(G | M, T)

Examples of conditional independences captured:
 Model ⊥ Type

MPG ⊥ Color | Model

Fig. 2 Example of a directed model with four random variables

2.2 Undirected graphical models

Undirected graphical models, or Markov networks [9], are
useful for representing distributions over variables where
there is no natural directionality to the influence of one vari-
able over another and where the interactions are more sym-
metric. In their most general form, Markov networks are
defined as a product of a set of factors or clique potentials (as
they are more popularly known) with a normalizing constant:

Pr(x) = 1

Z

n∏

i=1

fi (xi)

where xi denotes the assignments to arguments of fi .
As opposed to a Bayesian network where each conditional

probability factor denotes the distribution over a child condi-
tioned on some (joint) assignment to its parents, in a Markov
network each factor or clique potential denotes a compatibil-
ity function over all its arguments. The compatibility func-
tion values must be non-negative, but other than that they
can be arbitrary, i.e., the entries are not required to sum to 1.
Also, whereas Bayesian networks are represented by directed
graphs, Markov networks are represented graphically using
undirected edges denoting that the dependencies are sym-
metric in nature. More precisely, given a Markov network,
its corresponding graphical representation contains an edge
between random variables Xi and X j if there exists a factor
fk with arguments X such that Xi , X j ∈ X. Again, just as
in Bayesian networks, the conditional independences can be
read off the graphical representation. Essentially, Xi and X j

are conditionally independent given a set of random variables
X if every undirected path from Xi to X j contains at least
one variable from X. Note that unlike Bayesian networks a
Markov network can contain cycles. We refer the interested
reader to Cowell et al. [9] for further details.

2.3 Probabilistic graphical models: general formulation

Besides Bayesian networks and Markov networks, there have
been attempts to combine the two approaches such as chain
graph models [9] and directed factor graphs [19]. The
directed factor graph formalism is sometimes preferred over
chain graphs because their representation can express arbi-
trary factorization of the joint probabilistic model; the
graphical representation of directed factor graphs contains
vertices explicitly representing the factors in addition to ver-
tices representing random variables and is thus more detailed.
Both chain graphs and directed factor graphs allow a mix
of directed and undirected dependencies but neither allows
probabilistic models whose underlying uncertainty structure
contains directed cycles (although generalizations that allow
such structures have also been studied [38]).

In the rest of this article, we adopt a fairly general uncer-
tainty model that makes no assumptions about the underlying
uncertainty structure. We will refer to this model as a PGM.
A PGM is completely described by providing a list of random
variables X and a set of factors F = { f1, . . . fm}:
Definition 2.5 A PGM P = 〈F ,X 〉 defines a joint distri-
bution over the list of random variables X = (X1, . . . Xn)

via a set of factors F , each defined over a subset of X .
Given a complete joint assignment x ∈ dom(X) to the vari-
ables in X , the joint distribution is defined by: Pr(x) =
1
Z

∏
f ∈F f (x f), where x f denotes the assignments restri-

cted to the arguments of f and Z =∑
x′

∏
f ∈F f (x′f) is a

normalization constant referred to as the partition function1.

Note that, as opposed to the previous definitions for joint
probability distributions that we described for Bayesian net-
works and Markov networks, the above definition allows the
use of both conditional probability factors (directed depen-
dencies) and clique potentials (undirected dependencies), and
so is completely general.

We next move on to our discussion of probabilistic dat-
abases, and how the above general formulation of a PGM can
be used to model data uncertainty.

3 PrDB model

We begin with some notation. Let R denote a probabilistic
relation or simply, relation, and let attr(R) denote the set
of attributes of R. A relation R consists of a set of proba-
bilistic tuples or simply, tuples, each of which is a mapping
from attr(R) to random variables. Let t.a denote the random
variable corresponding to t ∈ R and a ∈ attr(R). Besides

1 Note that since we allow f (x) = 0, there is a possibility that Z = 0
but this only happens when Pr(x) = 0, ∀x. As long as there is at least
one x such that Pr(x) > 0, this is not an issue.

123

1070 P. Sen et al.

S A B Pr
s1 a1 2 0.8
s2 a2 2 0.8

T B C
t1 {2: 0.6, 3: 0.4} c

possible world probability

d1 = {s1.e / , s2.e / , t1.B / 2} 0.384
d2 = {s1.e / , s2.e / , t1.B / 3} 0.256
d3 = {s1.e / , s2.e / , t1.B / 2} 0.096
d4 = {s1.e / , s2.e / , t1.B / 3} 0.064
d5 = {s1.e / , s2.e / , t1.B / 2} 0.096
d6 = {s1.e / , s2.e / , t1.B / 3} 0.064
d7 = {s1.e / , s2.e / , t1.B / 2} 0.024
d8 = {s1.e / , s2.e / , t1.B / 3} 0.016

S A B
s1 a1 2

T B C
t1 2 c

world probability

d1 0.576
d2 0.064
d3 0.144
d4 0.016
d5 0.032
d6 0.128
d7 0.008
d8 0.032

(d)(c)(b)(a)

Fig. 3 a, b A small probabilistic database and its possible worlds (t denotes true, f denotes false). c Possible world d3. d Distribution with
the implies dependency

mapping each attribute to a random variable, every tuple t
is also associated with a Boolean-valued random variable
which captures the existence uncertainty of t and we denote
this by t.e.

Definition 3.1 A probabilistic database PrDB D=〈R,P〉
is a pair, where R is a set of relations and P denotes a PGM
over the random variables associated with the tuples in R.

Semantics Let X denote the random variables associated
with the relations in PrDB D . Note that a complete joint
assignment to X where we assign each X ∈X with a value
from the corresponding domain dom(X) produces a “tra-
ditional” deterministic database devoid of any uncertainty.
Thus the PGM P defines a distribution over numerous deter-
ministic databases, and gives us the familiar possible worlds
semantics [11,25] for our PrDB model. Each possible world
is a complete joint assignment to X , we denote a specific
assignment by x, where x ∈ ×X∈X dom(X). The probabil-
ity associated with the possible world corresponding to x is
given by the distribution defined by the PGM P (Defini-
tion 2.5), i.e., by multiplying the numbers returned by the
factors in P for x and dividing by the partition function.

Let us now consider a simple running example that will
help ground these definitions.

Example 2 (Running example) Consider the small two-rela-
tion database shown in Fig. 3a where the first relation S con-
tains uncertain tuples and the second relation, T , contains a
tuple with an uncertain attribute. Each tuple in S can exist
with a certain (existence) probability, shown next to the tuples
in the figure. We denote an uncertain attribute value by its
domain where each entry in the domain is followed by the
probability with which the attribute value can take the assign-
ment. For instance, t1.B can be assigned the value 2 with
probability 0.6 and the value 3 with probability 0.4. We rep-
resent uncertain tuples and uncertain attributes using random
variables. We represent the probability distributions associ-
ated with the random variables (which may be involved in
correlations) using factors (Definition 2.1). For our exam-
ple, we will also assume complete independence among all
random variables. For the three random variables in Fig. 3a,
we would define factors fs1(s1.e), fs2(s2.e) and ft1(t1.B):

s1.e fs1

false 0.2
true 0.8

s2.e fs2

false 0.2
true 0.8

t1.B ft1
2 0.6
3 0.4

where in fs1(s1.e) and fs2(s2.e) we use the assignmenttrue
to denote that the tuple exists and false to denote that the
tuple is absent. The PGM defining the full joint distribution
is then given by the product of these three factors:

Pr(xs1.e, xs2.e, xt1.B) = fs1(xs1.e) fs2(xs2.e) ft1(xt1.B)

Each possible world is then obtained by assigning all three
random variables s1.e, s2.e and t1.B assignments from their
respective domains. Since each of them can take 2 values,
there are 23 = 8 possible worlds. Figure 3b shows all eight
possible worlds with their corresponding probabilities. In
Fig. 3b, x/c denotes that random variable x is substituted
with c ∈ dom(X). Thus, for d1, s1.e/t denotes that s1 is
present in possible world d1 and so on. The probability asso-
ciated with each possible world is obtained by multiplying the
appropriate numbers returned by the factors and normalizing
if necessary. For instance, for the possible world obtained by
the assignment d1 = {s1.e/t, s2.e/t, t1.B/2}, the probabil-
ity is 0.8 × 0.8 × 0.6 = 0.384. Figure 3c shows one of the
possible worlds, d3.

3.1 Representing correlations

As mentioned earlier, in the running example, we assumed
complete independence which is why we could express our
uncertainty using single argument factors. Let us now see
how to represent correlations. This is where the flexibility of
defining a probabilistic database in terms of PGMs becomes
apparent. For instance, consider the previous example, but on
this occasion we will try to represent an implies dependency
between random variables s1.e and t1.B. More precisely, we
would like to enforce that when s1 exists t1.B is assigned 2
with probability 0.9, otherwise t1.B is assigned 3 with prob-
ability 0.8. We can achieve this by defining a factor, fimplies,
that takes both s1.e and t1.B as arguments:

123

Managing and exploiting rich correlations 1071

s1.e t1.B fimplies

false 2 0.2
false 3 0.8
true 2 0.9
true 3 0.1

Note that fimplies, by its construction, is actually a conditional
probability factor. The PGM distribution is now given by:

Pr(xs1.e, xs2.e, xt1.B) = fs1(xs1.e) fs2(xs2.e)

fimplies(xs1.e, xt1.b)

Figure 3d shows the distribution over the possible worlds
using the new PGM. Notice how possible worlds with favor-
able assignments ({s1.e/t, t1.B/2} or {s1.e/f, t1.B/3}) map
to relatively higher probabilities. More precisely, the proba-
bility mass assigned to these favorable assignments is
Pr(d1) + Pr(d3) + Pr(d6) + Pr(d8) = 0.88. Also, note that
the two distributions depicted in Fig. 3b, d are very different.

The above example illustrates that including different cor-
relations into the uncertainty model can produce starkly dif-
fering distributions over the possible worlds. Presumably, the
results of evaluating a query on these databases will also pro-
vide differing results (in fact, we will demonstrate this in the
next section where we show the results of running a query
with and without the implies dependency on our example
database). Thus, it is imperative to model correlations accu-
rately, if and when the application demands it. Also, since we
do not impose any restrictions over which random variables
can appear in factors, our representation for modeling uncer-
tainty is completely general. Thus, if the user so wishes, she
may define a factor containing random variables from the
same tuple, different tuples, tuples from different relations
or tuple existence and attribute value random variables. Fur-
ther, it is not necessary to introduce random variables where
they are not needed. For instance in the above example, since
we knew t1 exists with certainty, we did not include t1.e in
any of the factors.

3.2 Storing uncertainty models

Most earlier work on probabilistic databases represents prob-
abilistic relations by storing uncertainty with each tuple in
isolation [11,13,35]. This is inadequate for our purposes
since the same tuple’s random variables can be involved
in multiple factors, and the same factor can be associated
with different random variables. Our approach to storing
PGMs in a database decouples the uncertainty model from the
data. Figure 4 shows how we store the factors and associate
them with the tuples in our current prototype implementation.
Essentially, the idea is to have relations that store factors in a
normalized fashion so that we minimize replication. Further,
recall that in Sect. 1 we discussed how shared correlations
lead to the same correlation showing up repeatedly in the

tid A B e
s1 a1 2 ⊥
s2 a2 2 ⊥

tid B C e
t1 ⊥ c

(a)

fid rv pos
fs1 s1.e 1
fs2 s2.e 1

fimplies s1.e 1
fimplies t1.B 2

fid funcid
fs1 φ1
fs2 φ1

fimplies φ2

(b)

funcid func
φ1 {[] : 0.2, [] : 0.8}
φ2 {[, 2] : 0.2, [, 3] : 0.8, [, 2] : 0.9, [, 3] : 0.1}

(c)

rv domid
s1.e δ1
s2.e δ1
t1.B δ2

domid dom
δ1 { , }
δ2 {2, 3}

(d)

Fig. 4 a The base tables for the running example. b f2args and
f2funcid. c funcid2func. d rv2domid and domid2dom. See
text for descriptions of the various relations

database. Since we represent correlations using factors, this
implies that the same factor may need to be represented mul-
tiple times. In what follows, we discuss our approach that
stores such shared factors in an intelligent fashion so that
such repetition is minimized.

We first formally define a shared factor. We begin by tak-
ing a closer look at a factor (Definition 2.1). A factor is com-
posed of two separate components: its argument, which is
an ordered list of random variables, and the function compo-
nent, which maps joint assignments to the arguments to cor-
responding outputs. For instance, fs1(s1.e) defined earlier,
consists of the argument s1.e and its function component is
simply the table that maps false to 0.2 and true to 0.8.

Definition 3.2 Two factors f1 and f2 are shared factors,
denoted f1 ∼= f2, if they both have the same function com-
ponent.

Thus, fs1(s1.e) and fs2(s2.e) defined for the running example
form a pair of shared factors since both map true to 0.8.

Since shared factors share their function components, we
store them such that the function component of each set of
shared factors is stored only once. We now describe how we
would store the database with the implies dependency intro-
duced earlier:

– With each base tuple we store a unique id (tid), so that
we can refer to the tuple’s random variables using the
id. To indicate that an attribute value is uncertain or a
tuple’s existence is uncertain, we use a special symbol⊥.
Figure 4a shows the base relations for our example.

123

1072 P. Sen et al.

– For each factor, we make an entry into a special relation
f2args that contains three attributes: the id of the factor
(fid), its argument (a random variable) and the position of
the argument. Figure 4b shows f2args for our example.
Thus, we have two rows for fimplies since it contains two
arguments: s1.e and t1.B.

– We store the factor functions by first mapping each fac-
tor to a function’s id in the relation f2funcid (Fig. 4b)
and then mapping the function id to the function itself
stored in a serialized form in the relationfuncid2func
(Fig. 4c). This way we avoid repeated storing of shared
factors’ functions. For instance, in Fig. 4b, both fs1 and
fs2 map to the same function id φ1 and φ1 is stored once
in Fig. 4c.

– We also store the domains of random variables in a
similar manner, avoiding repeated storing of random vari-
ables’ domains. This is achieved by utilizing two special
relations: rv2domid maps each random variable to a
domain id, and domid2dom maps each domain id to
the corresponding domain stored in a serialized form.
Thus, for our example in Fig. 4d, s1.e and s2.e both map
to domain id δ1. δ1 is then mapped to its corresponding
domain and stored exactly once.

4 Query evaluation in PrDB

We now move our discussion to query evaluation. A key
advantage of associating possible world semantics with a
probabilistic database is that it lends precise semantics to the
query evaluation problem. Given a user-submitted query q
(expressed in some standard query language such as rela-
tional algebra or SQL) and a probabilistic database D , the
result of evaluating q against D is defined to be the set of
results obtained by evaluating q against each possible world
ofD , augmented with the probabilities of the possible worlds.
Since every possible world looks exactly like a traditional
database, running q on a possible world is a well-defined
operation. Thus, the above definition of evaluating q on a
probabilistic database is both clear and precise. However,
since the number of possible worlds is typically exponential
in the number of tuples, it is not feasible to return the entire set
of results to the user. Instead it is traditional to combine the
results from the different possible worlds into a compressed
form before presenting it to the user. One way to do that is
to compute the marginal probability for each result tuple by
summing the probabilities of the possible worlds that return
that tuple:

µ(t) =
∑

x∈dom(X)

t∈q(D[X /x])

Pr(x),

where t denotes a result tuple and q(D[X /x]) denotes the
result obtained by evaluating q on the possible world obtained
by substituting X with x.

Relating back to our earlier examples, suppose we want
to run the query q =∏

C(S ��B T). The result consists of a

single tuple r = C
c

. Figure 5a shows the result of the query

when it is run against each possible world of the database
from Fig. 3b. The possible worlds which return r are d1, d3

and d5. Thus, the probability associated with the result tuple
will be the sum Pr(d1) + Pr(d3) + Pr(d5). More precisely,
the result tuple’s probability is 0.576 for the database with
independent random variables (Fig. 3b) and 0.752 for the
database with the implies dependency (Fig. 3d).

Next we make a connection between query evaluation and
probabilistic inference, more specifically, the marginal prob-
ability computation problem. Given a PGM P = 〈F ,X 〉
and a random variable X ∈ X , the marginal probability
distribution for X is defined as:

µ(X = x) = 1

Z

∑

X \X

∏

f ∈F
f (X f), ∀x ∈ dom(X) (1)

where X f denotes the arguments to factor f . Note that, from
Definition 2.5, Z = ∑

X

∏
f ∈F f (X f) = ∑

X
∑

X \X∏
f ∈F f (X f) which implies that any probabilistic inference

algorithm that computes
∑

X \X
∏

f ∈F f (X f) can be used
to compute Z by performing an extra summation.

We next illustrate this connection using our running exam-
ple, and then we discuss the steps required to evaluate gen-
eral relational algebra queries. As we shall see subsequently,
while evaluating queries we make extensive use of determin-
istic conditional probability factors (Definition 2.4).

Example 3 (Query evaluation) Our query evaluation approa-
ch is very similar to query evaluation in traditional database
systems and is depicted in Fig. 5b. Just as in traditional data-
base query processing, in Fig. 5b, we introduce intermediate
tuples produced by the join (i1 and i2) and produce the result
tuple (r) from the projection operation. What makes query
processing for probabilistic databases different from tradi-
tional database query processing is the fact that we need to
preserve the correlations among the random variables rep-
resenting the intermediate and result tuples and the random
variables representing the tuples they were produced from.
In our example, there are three such correlations:

– i1 (produced by the join between s1 and t1) exists or i1.e
is true only in those possible worlds where both s1.e is
true and t1.B is assigned the value 2.

– Similarly, i2.e istrue in possible worlds where both s2.e
is true and t1.B is assigned the value 2.

123

Managing and exploiting rich correlations 1073

world result

d1 {r}
d2
d3 {r}
d4 0
d5 {r}
d6
d7
d8

(a)

S A B
s1 a1 2 ?
s2 a2 2 ?

T B C
t1 {2,3}? c

S BT

−→

A B C
i1 a1 2 c ?
i2 a2 2 c ?

∏C(S BT)

↓
C

r c ?

(b)

i1.e

s2.es1.e

i2.e

t1.B

r.e

(c)

X Y f
true true 1
false true 0
true false 0
false false 1

(d)

/

0/
0/
0/

0/

Fig. 5 Evaluating
∏

C(S ��B T) on the example (Fig. 3a). a Results from possible worlds semantics. b Running the query on the database and
c the corresponding augmented PGM. d A deterministic conditional probability factor enforcing X ⇔ Y

– Finally, r (the result tuple produced by the projection)
exists in worlds that produce at least one of i1 or i2 or
both.

To enforce these correlations, we introduce deterministic
intermediate factors defined over appropriate random vari-
ables (Fig. 5c):

• For the correlation among i1.e, s1.B and t1.B, we intro-
duce the factor fi1 which is defined as:

fi1(i1.e|s1.e, t1.B) =
{

1 if i1.e⇔ (s1.e ∧ (t1.B == 2))

0 otherwise

• Similarly, for the correlation among i2.e, s2.e and t1.B,
we introduce the factor fi2 which is defined as:

fi2(i2.e|s2.e, t1.B) =
{

1 if i2.e⇔ (s2.e ∧ (t1.B == 2))

0 otherwise

• For the correlation among r.e, i1.e and i2.e, we introduce
a factor fr capturing the or semantics:

fr (r.e|i1.e, i2.e) =
{

1 if r.e⇔ (i1.e ∨ i2.e)
0 otherwise

Now, to compute the probability of existence of r , we simply
need to compute the marginal probability (Eq. 1) associated
with the assignment r.e = true from PGM formed by the
set of factors in the base data and the factors introduced dur-
ing query evaluation (the augmented PGM). For the example
where we assumed complete independence (Fig. 3a), our aug-
mented PGM is given by the collection fs1 , fs2 , ft1 , fi1 , fi2

and fr (Fig. 5c), and to compute the marginal probability we
can simply use any of the exact inference algorithms avail-
able in the literature [16,26,47].

For instance, the variable elimination algorithm [16,47] is
a particularly simple yet efficient inference algorithm that
computes the marginal probability by multiplying all factors
in the (augmented) PGM and summing over (eliminating) all

random variables except for the random variable of interest.
In the case of our example it would compute:

µ(r.e)=
∑

i1.e,i2.e,t1.B

ft1(t1.B)
∑

s1.e

fs1(s1.e) fi1(i1.e|s1.e, t1.B)

× fr (r.e|i1.e, i2.e)
∑

s2.e

fs2(s2.e) fi2(i2.e|s2.e, t1.B)

(2)

It is easy to check that the above computation produces the
same marginal probability we computed earlier via enumer-
ating over possible worlds.

4.1 Generating factors for general queries

Query evaluation for general relational algebra queries also
follows the same basic ideas. In what follows, we modify
the traditional relational algebra operators so that they not
only generate intermediate tuples but also introduce interme-
diate factors which, combined with the factors on the base
data, provide a PGM that can then be used to compute mar-
ginal probabilities of the random variables associated with
the result tuples of interest. We next describe the modified σ ,
×,

∏
, δ (duplicate elimination), ∪, − and γ (aggregation)

operators where we use ∅ to denote a special “null” symbol.

Select Let σc(R) denote the query we are interested in,
where c denotes the predicate of the select operation. Every
tuple t ∈ R can be jointly instantiated with values from
×a∈attr(R)dom(t.a). If none of these instantiations satisfy
c then t does not give rise to any result tuple. If even a sin-
gle instantiation satisfies c, then we generate an intermediate
tuple r that maps attributes from R to random variables and
is associated with a tuple existence random variable r.e. We
then introduce factors encoding the correlations among the
random variables for r and the random variables for t . The
first factor we introduce encodes the correlations for r.e:

f σ
r.e(r.e|t.e, {t.a}a∈attr(R))

=
{

1 if t.e ∧ c({t.a}a∈attr(R))⇔ r.e
0 otherwise

123

1074 P. Sen et al.

where c({t.a}a∈attr R) is true iff a joint assignment to the
attribute value random variables of t satisfies the predicate c.

We also introduce a factor for r.a, ∀a ∈ attr(R) (where
dom(r.A) = dom(t.A)), denoted by f σ

r.a . f σ
r.a takes t.a, r.e

and r.a as arguments and can be defined as:

f σ
r.a(r.a|r.e, t.a) =

⎧
⎨

⎩

1 if r.e ∧ (t.a == r.a)

1 if r.e ∧ (r.a == ∅)
0 otherwise

Cartesian product Suppose R1 and R2 are the two rela-
tions involved in the Cartesian product operation. Let r denote
the join result of two tuples t1 ∈ R1 and t2 ∈ R2. Thus r maps
every attribute from attr(R1) ∪ attr(R2) to a random vari-
able, and is associated with a tuple existence random variable
r.e. The factor for r.e, denoted by f ×r.e, takes t1.e, t2.e and r.e
as arguments, and is defined as:

f ×r.e(r.e|t1.e, t2.e) =
{

1 if t1.e ∧ t2.e⇔ r.e
0 otherwise

We also introduce a factor f ×r.a for each a ∈ attr(R1) ∪
attr(R2), and this is defined exactly in the same fashion as
f σ
r.a . Basically, for a ∈ attr(R1) (a ∈ attr(R2)), it returns

1 if r.e ∧ (t1.a == r.a) (r.e ∧ (t2.a == r.a)) holds or if
r.e ∧ (r.a == ∅) holds, and 0 otherwise.

Project (without duplicate elimination) Let
∏

a(R) denote
the operation we are interested in where a ⊆ attr(R) denotes
the set of attributes we want to project onto. Let r denote the
result of projecting t ∈ R. Thus r maps each attribute a ∈ a

to a random variable and is associated with r.e. f
∏

r.e , the fac-
tor for r.e, takes t.e and r.e as arguments and is defined as
follows:

f
∏

r.e (r.e|t.e) =
{

1 if t.e⇔ r.e
0 otherwise

Each factor f
∏

r.a , introduced forr.a, ∀a ∈ a, is defined exactly

as f σ
r.a , in other words, f

∏

r.a(r.a|r.e, t.a) = f σ
r.a(r.a|

r.e, t.a).

Duplicate elimination Duplicate elimination is a slightly
more complex operation because it can give rise to mul-
tiple intermediate tuples even if there was only one input
tuple to begin with. Let R denote the relation from which we
want to eliminate duplicates, then the resulting relation after
duplicate elimination will contain tuples whose existence is
uncertain, more precisely the resulting tuples’ attribute val-
ues are known. Any element from

⋃
t∈R ×a∈attr(R)dom(t.a)

may correspond to the values of a possible result tuple. Let
r denote any such result tuple whose attribute values are
known, only r.e is not true with certainty. Denote by ra

the value of attribute a in r . We only need to introduce the
factor f δ

r.e for r.e. To do this we compute the set of tuples

from R that may give rise to r . Any tuple t that satisfies
∧

a∈attr(R)(ra ∈ dom(t.a)) may give rise to r . Let yr
t be

an intermediate random variable with dom(yr
t) = {true,

false} such that yr
t is true iff t gives rise to r and false

otherwise. This is easily done by introducing a factor f δ
yr

t
that

takes {t.a}a∈attr(R), t.e and yr
t as arguments and is defined

as:

f δ
yr

t
(yr

t |{t.a}a∈attr(R), t.e)

=
{

1 if t.e ∧∧
a(t.a == ra)⇔ yr

t
0 otherwise

where {t.a}a∈attr(R) denotes all attribute value random vari-
ables of t . We can then define f δ

r.e in terms of yr
t . f δ

r.e takes as
arguments {yr

t }t∈Tr , where Tr denotes the set of tuples that
may give rise to r (contains the assignment {ra}a∈attr(R) in
its joint domain), and r.e, and is defined as:

f δ
r.e(r.e|{yr

t }t∈Tr) =
{

1 if
∨

t∈Tr
yr

t ⇔ r.e
0 otherwise

Union and set difference These operators require set sem-
antics. Let R1 and R2 denote the relations on which we want
to apply one of these two operators, either R1∪R2 or R1−R2.
We will assume that both R1 and R2 are sets of tuples such
that every tuple contained in them have their attribute values
fixed and the only uncertainty associated with these tuples
are with their existence (if not then we can apply a δ opera-
tion to convert them to this form). Now, consider result tuple
r and sets of tuples T 1

r , containing all tuples from R1 that
match r ’s attribute values, and T 2

r , containing all tuples from
R2 that match r ’s attribute values. The required factors for
r.e can now be defined as follows:

f ∪r.e(r.e|{t1.e}t1∈T 1
r
, {t2.e}t2∈T 2

r
)

=
{

1 if (
∨

t∈T 1
r ∪T 2

r
t.e)⇔ r.e

0 otherwise

f −r.e(r.e|{t1.e}t1∈T 1
r
, {t2.e}t2∈T 2

r
)

=
{

1 if
(
(
∨

t∈T 1
r

t.e) ∧ ¬(
∨

t∈T 2
r

t.e)
)
⇔ r.e

0 otherwise

Aggregation operators Aggregation operators are also
easily handled using factors. Suppose we want to compute
thesum aggregate on attribute a of relation R, then we simply
define a random variable r.a for the result and introduce a fac-
tor that takes as arguments {t.a}a∈attr(R) and r.a, and define
the factor so that it returns 1 if r.a == (

∑
t∈R t.a) and 0 oth-

erwise. Thus for any aggregate operator γ and result tuple
random variable r.a, we can define the following factor:

f γ
r.a(r.a|{t.a}t∈R) =

⎧
⎨

⎩

1 if r.a == γt∈Rt.a
1 if (r.a == ∅)⇔∧

t∈R(t.a == ∅)
0 otherwise

123

Managing and exploiting rich correlations 1075

J A B factors

j1 m 1 f1

j2 m 2 f1

K B C factors

k1 1 p f2

k2 1 q f2

k3 2 p f3

k4 2 q f3

L C D factors

l1 p α f4

l2 r α f5

l3 r β f6

l4 r α f7

l5 r γ f8

l6 r α f9

π D ((J K) L))

j1.e j2.e k1.e k2.e k3.e k4.e

i1.e i2.e i3.e i4.e l1.e

i5.e i6.e

r.e

f1 f2 f3

f × f ×
f ×

f ×

f × f ×

f π

f4

{m, 1, p} {m, 1, q} {m, 2, p} {m, 2, q}

{m, 1, p, α}

{α}

{m, 2, p, α}

{m, 1} {m, 2} {1, p} {1, q} {2, p} {2, q}

{p, α}

(ii) Evaluating count G (σD =α (L))

r1.count r2.count

r.count

l1.e

f4

{p, α}

l2.e

f5

{r, α}

l3.e

f6

{r, β}

l4.e

f7

{r, α}

l5.e

f8

{r, γ }

l6.e

f9

{r, α}

...

l4.e

...

false

l6.e

10

probr2.count

f(r2.count, l4.e, l6.e)

false
false 01false
false 02false
true 00false

(i) Evaluating

Fig. 6 (i) An example query evaluation over a three-relation database
with only tuple uncertainty but many correlations (tuples associated
with the same factor are correlated with each other, and the correspond-
ing vertices in the top layer of the PGM are connected to each other).
The intermediate tuples are shown alongside the corresponding ran-

dom variables. Tuples l2, . . . , l6 do not participate in the query. (ii)
PGM constructed during the evaluation of count G(σD=α(L)) over the
same probabilistic database. By exploiting decomposability of count,
we can limit the maximum size of the newly introduced factors to 3 (the
naive implementation would have constructed a 5-variable factor)

Figure 6(i) shows the PGM generated when evaluating
a multi-way join query over three relations; computing the
result tuple probability is equivalent to computing the mar-
ginal probability distribution over the random variable r.e.

4.2 Optimizations

For the above operator modifications, we have attempted to
be completely general and hence the factors introduced may
look more complicated than need be. For example, it is not
necessary that f σ

r.E take as arguments all random variables
{t.a}a∈attr(R) (as defined above); it only needs to take those
t.a random variables as arguments that are involved in the
predicate c of the σ operation. Also, given a theta-join we do
not need to implement this as a Cartesian product followed
by a select operation. It is straightforward to push the select
operation into the Cartesian product factors and implement
theta-join directly by modifying f ×r.E appropriately using c.

Another type of optimization that is extremely useful for
aggregate computation, duplicate elimination and the set-the-
oretic operations (∪ and−) is to exploit decomposable func-
tions. A decomposable function is one whose result does not
depend on the order in which the inputs are presented to it.
For instance, ∨ is a decomposable function, and so are most
of the aggregation operators including sum, count, max
and min. The problem with some of the redefined relational
algebra operators is that, if implemented naively, they may
lead to large intermediate factors. For instance, while run-
ning a δ operation, if Tr contains n tuples for some r , then
the factor f δ

r.e will be of size 2n+1. By exploiting decompos-

ability of ∨ we can implement the same factor using a linear
number of constant sized (three-argument) factors which may
lead to significant speedups. We refer the interested reader to
[39,48] for more details. The only aggregation operator that
is not decomposable is avg, but in this case we can exploit
the same ideas by implementing avg in terms of sum and
count both of which are decomposable. Figure 6(ii) shows
the PGM constructed for an aggregate query over a three-
relation database.

4.3 Limitations of standard probabilistic inference

The complexity of probabilistic inference is estimated in
terms of the treewidth [39] which is a natural parameter mea-
suring the connectivity of the graph underlying the PGM.
More precisely, the complexity of a probabilistic inference
problem is exponential in its (induced) treewidth. The infer-
ence problem is easy if the PGM is a tree or closely resem-
bles one, and the problem becomes progressively harder as
the PGM deviates more from being a tree. In many cases,
the treewidth of the PGM on which we need to run inference
turns out to be small. On the other hand, there are cases when
the treewidth is too large for us to run a standard inference
algorithm. Often in such cases, it may be possible to reduce
complexity of inference by exploiting other aspects of the
PGM. Let us first take a closer look at a standard inference
algorithm and then we will discuss how its performance can
be improved.

123

1076 P. Sen et al.

4.3.1 Variable elimination [16,47]

As indicated earlier in this section, VE is a simple and stan-
dard probabilistic inference algorithm that can be used to
compute marginal probability distributions. Perhaps the most
surprising aspect of VE, given its simplicity, is that it still
achieves the best known complexity bounds of the inference
problem. In a nutshell, VE takes a PGM P , a random vari-
able X and an elimination order O as input, and returns the
marginal probability distribution µ(X) computed from P
by summing over random variables in order of appearance
in O . The step where VE tries to improve complexity is by
pushing in summations so we sum over (eliminate) a random
variable by multiplying only those factors that involve it as
an argument.

Going back to our example (Eq. 2), recall that we needed to
eliminate five random variables by multiplying six factors.
Assume we chose the elimination order O = {s1.e, s2.e,
t1.B, i1.e, i2.e} (variables are eliminated left to right). To
eliminate s1.e, VE would first multiply factors fs1(s1.e) and
fi1(i1.e|s1.e, t1.B), and then sum out s1.e from the prod-
uct to produce the new factor ms1.e(i1.e, t1.B) (the subscript
denotes the variable being summed out). Similarly, to elimi-
nate s2.e (the next random variable in O), VE would multiply
fs2(s2.e) and fi2(i2.e|s2.e, t1.B), and then eliminate s2.e to
produce ms2.e(i2.e, t1.B).

4.3.2 Naive inference algorithms and shared factors

The main issue with VE (or any other standard probabilistic
inference algorithm) is that it does not exploit shared fac-
tors. Recall that two factors are shared if they share the same
function component (Definition 3.2). For instance, for our
running example (Eq. 2), in the process of eliminating s1.e
and s2.e we produced intermediate factors ms1.e(i1.e, t1.B)

and ms2.e(i2.e, t1.B). If we take a closer look at both of these
factors, we will notice that they both map exactly the same
inputs to the same outputs and thus form a pair of shared
factors:

i1.e t1.B ms1.e

true 2 0.8
true 3 0
false 2 0.2
false 3 1

i2.e t1.B ms2.e

true 2 0.8
true 3 0
false 2 0.2
false 3 1

In hindsight, it is not really surprising that ms1.e(i1.e, t1.B)
∼= ms2.e(i2.e, t1.B). Let us take a closer look at these factors:

– ms1.e(i1.e, t1.B) was computed by multiplying fs1(s1.e)
with fi1(i1.e|s1.e, t1.B) followed by eliminating s1.e,

– ms2.e(i2.e, t1.B) was computed by multiplying fs2(s2.e)
with fi2(i2.e|s2.e, t1.B) followed by eliminating s2.e.

Now, fs1(s1.e) and fs2(s2.e), and fi1(i1.e|s1.e, t1.B) and
fi2(i2.e|s2.e, t1.B) were themselves pairs of shared factors
thus it is not surprising that a pair of factors derived from
these also turn out to be shared.

5 Inference with shared factors

Shared factors provide opportunity to save computation.
While running an inference algorithm, if we generate a pair
of factors that share the same function component then that
indicates that we repeated the same multiplication and sum-
mation operations. We need to recognize and take advantage
of such symmetry before we actually compute shared fac-
tors during inference so that we avoid the repeated steps that
go into generating them. Ideally, we would like to generate
each shared factor once and reuse the result subsequently
during inference. In this section, we develop an approach to
do so. We assume that we are given a random variable X
whose marginal probabilities need to be computed from a
PGM P = 〈F ,X 〉 constructed by running a query on a
database. We also assume that every f ∈ F is associated
with an id denoted by id(f) such that id(f1) = id(f2) ⇔
f1 ∼= f2,∀ f1, f2.

The basic idea behind our approach is to represent a run of
the inference algorithm explicitly as a labeled graph. Once we
do that, we then show that it is possible to examine the graph
and identify the shared intermediate factors that are gener-
ated during the inference process. To explain our approach,
we first define the semantics associated with the edges of
the labeled graph by introducing an operator that forms the
basis of most exact probabilistic inference algorithms (e.g.,
variable elimination [47] and junction tree algorithm [26]).

For brevity, we will simplify the running example; instead
of running

∏
C(S ��B T), we will only consider the join

query S ��B T . This suffices for demonstrating our proposed
inference algorithm. We now only need to compute marginal
probabilities for i1 and i2 which are the results of the join
query. Figure 7 shows how VE would proceed to solve the
two marginal probability computations in detail.

5.1 The elimrv operator

The elimrv operator (which stands for ELIMinate a Ran-
dom Variable) is the basic operator that is used repeatedly
while running inference to compute marginal probabilities.
It essentially takes as input a random variable Y and a collec-
tion of factors F, each of which involves Y as an argument; it
then multiplies all factors in F, and sums Y out from the prod-
uct to generate a new factor. We denote the resulting (inter-
mediate) factor by mY followed by its list of arguments, if
they are not clear from the context. For instance, when

123

Managing and exploiting rich correlations 1077

Fig. 7 Variable elimination on the simplified running example

we were computing µi2(i2.e) for the example in Fig. 7, we
first had to multiply the collection of factors { fs2.e(s2.e),
fi2(i2.e|s2.e, t1.B)}, and then sum out s2.e from the prod-
uct to generate the new intermediate factor ms2.e(i2.e, t1.B).
Note that F may contain intermediate factors produced by
earlier applications of elimrv.

We first note a few properties of the elimrv operator.
The order in which the factors appear in F may be impor-
tant. For instance, suppose we want to sum over X2 from
the collection: { fa(X1, X2), fb(X2, X3)}. Then we would
generate the product fc(X1, X2, X3) and perform the sum-
mation to produce fd(X1, X3). In other words, there is an
implicit assumption of ordering the arguments in the prod-
uct by scanning the arguments of the input factors from
left to right and this affects the resulting factor produced
after the summation operation. If instead, we had multiplied
fb(X2, X3) and fa(X1, X2), then we would first produce a
factor f ′c(X2, X3, X1) and then produce f ′d(X3, X1) after the
summation. Although fd and f ′d are numerically equivalent,
they are not symbolically equivalent; as we will see later,
our algorithm looks for symbolic equivalence which makes
this a crucial point. In addition, the way the arguments over-
lap across the input factors (in the above case, the second
argument of fa overlaps with the first argument of fb) and
the position of the argument that is being summed over also
matter. To clarify these points about elimrv and to control its
behavior, we feed the operator an explicit label that specifies
the above described information.

Example 4 For the examples that follow we use the follow-
ing simple format for constructing labels that specify the
argument order, how the arguments overlap and which argu-
ment is being summed over. For each elimrv operation, we
go through the list of factors in F assigning each argument a
unique id if it has not been seen before. Then we construct the
label by traversing the list of factors again, writing the id of
the argument that appears, enclosing the lists of arguments
in square braces and finally, appending the label by the id
of the argument being summed over. For the above example

involving X2, fa(X1, X2) and fb(X2, X3), the label turns
out to be {[1, 2], [2, 3], 2} using this format.

We can now define the elimrv operator as follows:

Definition 5.1 The elimrv(Y, F, l) operator takes a random
variable Y , an ordered list of factors F and a label l, and
computes a new factor

∑
Y

∏
f ∈F f according to the label l.

Variable elimination The variable elimination inference
algorithm (VE) can now be seen as applying a sequence of
elimrv operations. Essentially, VE begins by collecting all
factors from F in a pool and repeatedly applying the elimrv
operator to sum over a random variable picked from an elimi-
nation order. Each time we pick a random variable Y to elim-
inate, we collect all factors that include Y as an argument
from the pool, perform the corresponding elimrv operation,
add the resulting intermediate factor mY back to the pool,
and continue in the same fashion until we have exhausted all
random variables. In this case, the labels do not affect the
operations performed, and can be chosen arbitrarily.

5.2 The rv- elim graph

For the purposes of introducing our graph-based data struc-
ture, we will assume that we are given, besides X and P =
〈F ,X 〉, an elimination order O that contains all random
variables involved in X except for X . In the next section
(Sect. 6), we discuss in detail how to construct such an elimi-
nation order that suits our purposes. The rv-elim graph essen-
tially encodes the sequence of elimrv operations encountered
during the run of inference using a labeled graph.

Definition 5.2 The rv-elim graph G = (V, E) is a directed
graph with vertex labels l(v),∀v ∈ V , and edge labels l(e),
∀e ∈ E , that represents a run of inference on a PGM P =
〈F ,X 〉 according to elimination order O such that:

– Every v ∈ V represents a factor. If v is a source vertex,
then it represents a factor from F and l(v) = id(f); if
v is not a source vertex then it represents an intermediate
factor mY =elimrv(Y, F, l) produced during the run of
inference and l(v) = l.

– For each mY = elimrv(Y, F, l) produced during infer-

ence, for the i th factor in F, we add an edge v f
i→ vmY ,

where v f denotes the vertex corresponding to f and vmY

denotes the vertex corresponding to mY , and i is the edge
label.

Figure 8a shows the rv-elim graph for our running exam-
ple using the same elimination order O = {s1.e, s2.e, t1.B}.
One point to note about the rv-elim graph is that, in general,
it can never contain a directed cycle (in other words, it has to
be a DAG).

123

1078 P. Sen et al.

fs1fs2 fi1

ms1.e

fi2

ms2.e ft1

µi2 µi1

1

11

2

2

1 2

2

aab b

c

{ [1],[2,1,3],1} { [1],[2,1,3],1}

{ [1,2],[2],2} { [1,2],[2],2}

(a)

A

C

B

E

D

2

2

1

1

[fs1 , fs2]
a

[fi1 , fi2]
b

[ft1]
c

[ms1.e, ms2.e]

{ [1],[2,1,3],1}

[µi1 , µi2]
{ [1,2],[2],2}

(b)

Fig. 8 a rv-elim graph for the example from Fig. 7, b its compressed
version obtained using bisimulation. The rv-elim graph shown in a is a
vertex-labeled, edge-labeled graph. The edges are labeled with integers
(in this case, 1 or 2) and denote the order in which the parent factors are
present in the elimrv operation. The vertices are labeled with strings and
these are shown alongside the vertex, if the vertex is a source vertex then
the label is a letter (e.g., a for the first source vertex in the top left cor-
ner), or a string if it is a vertex with parents denoting how the arguments
overlap for the elimrv operation that created the intermediate factor cor-
responding to this vertex (for instance, {[1, 2], [2], 2} for the sink vertex
in the rv-elim graph). The compressed rv-elim graph shown in b is also
an edge-labeled, vertex-labeled graph with the extent of every vertex
depicted next to it in square braces. Note that the compressed rv-elim
graph in this case consists of five vertices whereas the rv-elim graph
itself contains nine vertices, a significant reduction considering we have
such a small running example

5.3 Identifying shared factors

The advantage of representing a run of inference as a graph
is that we can now identify exactly when two vertices in the
graph represent shared factors. Denote by fv the factor rep-
resented by vertex v in an rv-elim graph.

Claim 5.3 For rv-elim graph G = (V, E), two verticesv1, v2

∈ V are shared factors fv1
∼= fv2 if:

– l(v1) = l(v2).

– ∀u1
i→ v1, ∃u2

i→ v2 and fu1
∼= fu2 .

– ∀u2
i→ v2, ∃u1

i→ v1 and fu1
∼= fu2 .

Essentially, what the claim says is that two intermediate fac-
tors fv1 and fv2 generated during inference (using elimrv
operations) are shared if:

– the argument orders, argument alignments and the argu-
ment being summed over, all match (the labels on v1 and
v2 are the same)

– they were produced by multiplying sets of factors con-
taining the same functions (the parents are shared)

Note that for a given internal vertex in the rv-elim graph
all incoming edges from parents are assigned distinct edge

labels; this is because we label the edges with the index indi-
cating the position of the factor represented by the parent
in F of the corresponding elimrv operation, and two factors
cannot be at the same position (Definition 5.2).

We can now use Claim 5.3 to determine the intermediate
shared factors that get generated during the inference pro-
cess. The important thing to realize is that we can do this
without actually computing these intermediate factors. For
instance, recall that in Fig. 7 we showed that during the run
of inference for our running example, ms1.e and ms2.e were
intermediate factors that turned out to be shared (shown with
vertical shading in Fig. 8a). By looking at the rv-elim graph
(Fig. 8a) this is now easy to see since:

– They have the same vertex label {[1], [2, 1, 3], 1}.
– Both ms1.e and ms2.e have parents fs1 and fs2 , resp., via

edges labeled 1, and fs1
∼= fs2 since they have the same

vertex label (viz., a) and are source vertices.
– Both ms1.e and ms2.e have parents fi1 and fi2 , resp., via

edges labeled 2, and fi1
∼= fi2 since they have the same

vertex label (viz., b) and are also source vertices.

Thus by Claim 5.3, ms1.e
∼= ms2.e.

Given a graph (like the rv-elim graph shown in Fig. 8a)
and a property (such as the one specified in Claim 5.3), there
exist reasonably fast algorithms that can partition the set of
vertices into disjoint sets such that every pair of vertices in
each set satisfies the property. These algorithms are generally
referred to as bisimulation [29]. Given the special case of the
graph being a DAG, there exist algorithms that run in time
linear in the size of the graph.

Dovier et al. [18], describe one such algorithm that runs
on an edge-labeled, vertex-labeled graph and not only par-
titions the set of vertices, but also returns another (smaller)
graph where each disjoint set in the partition is represented
by a vertex and the edges between vertices p1, representing
one disjoint set in the partition, and p2, representing another
disjoint set in the partition, are the result of taking the union
of all edges between all vertices from the input graph in p1

and all vertices in p2. We will refer to each resulting dis-
joint set of the vertices of the rv-elim graph as an extent and
the resulting graph returned as a result of running bisimula-
tion on the rv-elim graph as the compressed rv-elim graph.
Figure 8b shows the compressed rv-elim graph returned as
a result of running bisimulation on the rv-elim graph shown
in Fig. 8a. Notice how vertex A represents both factors fs1

and fs2 . We show this in Fig. 8b using shadings and by
indicating A’s extent in square braces next to it. More inter-
estingly, the pair of intermediate shared factors that we iden-
tified earlier have also been collapsed into one single vertex in
the compressed rv-elim graph: C represents ms1.e and ms2.e.
Finally, for our example, it turns out that the final marginal

123

Managing and exploiting rich correlations 1079

Fig. 9 A poor ordering of parent vertices

probability distributions for i1 and i2 are also identical and
these have also been collapsed to vertex E in Fig. 8b.

Unfortunately, we cannot apply the bisimulation algo-
rithm described in Dovier et al. directly to our problem.
Even though factor multiplication is a commutative oper-
ation and we usually have a number of choices regarding the
order in which to multiply the parent factors during an elimrv
operation, the particular order we choose affects the results.
Traditional exact inference algorithms simply choose an
order for multiplying the factors arbitrarily. However, in our
case, Claim 5.3 actually uses the order of the parents of
the vertices in the rv-elim graph to determine which ones
represent shared factors. Figure 9 illustrates what could hap-
pen if we ordered the parents in the rv-elim graph injudi-
ciously. In Fig. 9, fa ∼= f ′a and fb ∼= f ′b, thus if we compute
fc(X1, X3) =∑

X2
fa(X1, X2) fb(X2, X3) and f ′c(X ′1, X ′3)

=∑
X ′2 f ′a(X ′1, X ′2) f ′b(X ′2, X ′3) then fc and f ′c turn out to be

shared and we can detect this by using Claim 5.3. However,
if we instead chose to order the elimrv operation differently,
i.e., multiply f ′b first and f ′a second as shown in Fig. 9, then
the results turn out to have the arguments ordered differently,
with possibly different input-output mappings, meaning we
have just lost a pair of shared factors.

The problem is that even though factor multiplication is
a commutative operation, different orders lead to rv-elim
graphs with varying degrees of symmetry. We need to choose
those orders that lead to rv-elim graphs with more symme-
try (consisting of more shared factors). One approach is to
try all possible parent orderings, but this will likely be too
expensive. Instead, we introduce a novel heuristic for choos-
ing better orderings. Our bisimulation algorithm, based on
Dovier et al., requires a different interleaving of the steps, so
for completeness we first present our bisimulation algorithm,
and then the heuristic we developed for ordering parents.

5.4 Bisimulation for rv- elim graphs

We assume that we are given an rv-elim graph G = (V, E)

for computing marginal probabilities of random variable X
from PGM P using the elimination order O . Each source
vertex v ∈ V is labeled by the id(fv), where fv denotes the
factor from F represented by v, we will assign the remain-
ing vertex labels (for the internal vertices) and the edge

Algorithm 1: Bisimulation for rv-elim graphs
input: rv-elim graph G = (V, E) with source vertices labeled

rank(v) =
{

0 if v is a source
1+max{rank(v′)|v′ → v ∈ E} o.w.

ρ ← max{rank(v)|v ∈ V }
B0,l = {v ∈ V |v is a source ∧ l(v) = l} ∀l labels on sources in G
C = {B0,l }
Bi = {v ∈ V |rank(v) = i},∀i = 1 . . . ρ

for i = 1 . . . ρ do
foreach v ∈ Bi do

o← choose order on v’s parents
construct l(v) based on o
construct key kv using l(v) and all (j, b j) where b j is the
block-id of the j th parent

construct blocks Bi,k = {v ∈ Bi |kv = k}
add {Bi,k} thus constructed to C

return final partition C

labels in G dynamically through the bisimulation algorithm
we present.

A partition denotes a division of the set of vertices of the
rv-elim graph into disjoint sets; each disjoint set is denoted
a block. The full algorithm is described in Algorithm 1. The
bisimulation algorithm starts by computing ranks for each
vertex in the rv-elim graph (using a simple depth-first search).
Then the algorithm starts by assigning the source vertices in
the rv-elim graph to the blocks formed by their labels. After
this, it goes through the vertices at rank i , partitioning them
into blocks. Note that when we are dealing with vertices at
rank i , we only need the partitioning on the vertices at ranks
i ′ < i , since according to Claim 5.3, the partitioning of a
vertex only depends on its label and its parents’ partition-
ing. The nested for loops achieve this. They take all vertices
at rank i , choose orders for each vertices’ parents (we will
discuss how this is done shortly), form the label and the key
based on this ordering, and partition these vertices based on
the constructed key. See [18] for proof of correctness when
the vertex and edge labels can be statically allocated.

Parent ordering heuristic We now discuss the parent order-
ing heuristic we developed. Recall that Claim 5.3 requires
both the labels to match and the parent sets of both vertices
to be aligned before we decree vertices v and v′ to repre-
sent shared factors. Our heuristic simply orders the list of
parents by their block-ids before constructing the label for
the vertex. This helps align the parent vertices. We illustrate
this by revisiting the example in Fig. 9. Before partitioning
fc and f ′c , we first order their parents by their block-ids.
Assuming we follow the ordering a < b, we would order fa

followed by fb and f ′a followed by f ′b. The labels l(fc) and
l(f ′c) would then turn out to be {[1,2],[2,3],2}, in both cases.
Finally, we form the keys on fc and f ′c using their labels and
parents’ block-ids, and in this case, concatenating the j th
parent’s block-id (j, b j) along with the vertex label gives us

123

1080 P. Sen et al.

(1, a), (2, b), {[1, 2], [2, 3], 2} in both cases thus allowing us
to assign fc and f ′c to the same block of the partition.

Algorithm 1, by itself, is reasonably efficient. Its time
complexity, assuming we use the heuristic that orders based
on block-ids, is O(|V | + |E |) (to compute ranks in step 1)
+ ∑

v∈V dv log dv + dv (to order the parents and form the
key) where dv is the in-degree of v (ignoring the time spent
to construct l(v)) + O(|V |) to partition vertices at rank i
into blocks based on their key. Adding up, this gives us
O(

∑
v dv log dv+|V |) = O(|E | log D+|V |), where D is the

maximum in-degree of any vertex in the rv-elim graph.

5.5 Inference on the compressed rv- elim graph

Having computed the partitioning of the vertices using Algo-
rithm 1, we can now construct the compressed rv-elim graph
as described earlier in Sect. 5.3 by representing each block in
the partition using a vertex, copying the label on the vertices
to the label on the block, and introducing an edge with label i
between two blocks if there exists a pair of vertices that have
an edge with label i . These definitions are consistent because
the blocks of the partition correspond to keys constructed by
Algorithm 1 which contain the vertex and edge labels, and
all vertices within a block have the same key.

We can now perform inference on the compressed rv-elim
graph. To seed the inference, we simply copy the function
components of the factors corresponding to source vertices
of the rv-elim graph to the source vertices in the compressed
rv-elim graph. Then we call a depth-first search procedure
(dfs) from the sink vertex in the compressed rv-elim graph
that begins by looking at the parents, the labels on the edges
and the vertices and applies the elimrv operator to compute
the functions on the child. If a parents’ functions have not
been computed yet, then we make the dfs call on the parent
before applying elimrv on the child. Finally, we will have the
(unnormalized) marginal distribution computed at the sink
vertex of the compressed rv-elim graph. Figure 10 shows the
inference procedure for the running example.

The inference procedure presented in this section is fairly
flexible and a number of extensions are possible. We can
use our inference procedure to compute, besides single-node
marginal probabilities, multiple marginal probability distri-
butions at once; in that case the compressed rv-elim graph
may have multiple sink vertices. Another extension is to
use it to compute maximum-a-posteriori (MAP) assignments
instead of marginal probabilities, by switching from the sum-
product elimrv operator to the max-product operator.

6 Elimination order generation and optimizations

One of the important steps in performing probabilistic infer-
ence is to choose a good elimination order. The best

Fig. 10 Inference on the compressed rv-elim graph. Depicted against
each internal vertex is the entry and exit times for the dfs procedure. At
the bottom, we have shown the elimrv operations that need to be com-
puted where ‘−’ depicts the argument being summed over. t true,
f false

elimination order is defined to be the one that runs infer-
ence by minimizing the size of the largest factor (in terms of
the number of arguments) encountered during inference over
all elimination orders. This can make the difference between
inference being tractable or intractable since the size of a
factor is proportional to the product of the domain sizes of
its argument random variables. Finding the best elimination
order is known to be NP-Hard [2], even without consider-
ing how to optimize inference with shared factors. Thus, as
is often done while performing exact inference, to compute
practical elimination orders we resort to the use of heuris-
tics. In our case where we are interested in exploiting shared
factors, we note the following:

123

Managing and exploiting rich correlations 1081

Algorithm 2: Minimum size heuristic
input: PGM 〈F , X 〉, query random variables X ⊆ X
O ← empty list
// construct adjacency lists
Adj(X) = {X ′|∃ f ∈ F s.t. X, X ′ ∈ arg(f)},∀X ∈ X
while ∃Y ∈ X s.t. Y /∈ X do

// pick random variable with smallest
neighborhood

Y ← argminY∈X ,Y /∈X|Adj(X)|
add Y to O
// update Adj
for X ∈ Adj(Y) do

Adj(X)← Adj(X) \ {Y }
for X, X ′ ∈ Adj(Y) do

Adj(X)← Adj(X) ∪ {X ′}
Adj(X ′)← Adj(X ′) ∪ {X}

delete Adj(Y)

delete Y from X
return O

1. On one hand, the elimination order defines the rv-elim
graph.

2. On the other hand, given a set of factors, ideally, we
would like to eliminate arguments of shared factors ear-
lier since such an operation helps save computation. This,
in turn, means that the rv-elim graph affects the best
choice of random variables to be eliminated next, since
we determine shared factors through the rv-elim graph.

This tight coupling of the elimination order and the rv-elim
graph motivates the use of a unified approach that does both,
determines the sharing among factors and chooses which ran-
dom variables to eliminate next. In this section, we describe
such an approach. But first we review a popular elimination
order determination technique referred to as the minimum
size heuristic (MSH) [30] that is often used to construct elim-
ination orders for traditional exact inference algorithms.

6.1 Minimum size heuristic

Traditional MSH is a greedy heuristic that returns a list of
the random variables that need to be eliminated for inference.
The main goal of MSH is to pick the next random variable
such that the intermediate factor produced by eliminating
it produces the smallest factor (in terms of number of joint
assignments to its arguments). The manner in which MSH
operates is easily described by visualizing its operations on
the moral graph.

Definition 6.1 Given a collection of factors F, the moral
graph is defined to be an undirected graph where vertices
correspond to random variables and two random variables
X1 and X2 are connected by an edge if and only if there
exists f ∈ F which involves both X1, X2 as arguments.

Fig. 11 Minimum size heuristic run on our running example where we
would like to compute marginal probabilities for i1 and i2. The edges
between s1.e and t1.B, and between s2.e and t1.B are due to factors
fi1 (i1.e|s1.e, t1.B) and fi2 (i2.e|s2.e, t1.B), respectively. Note that in
the first iteration we could have also chosen s2.e. In each iteration, the
dotted node represents the random variable chosen for elimination. The
resulting elimination order is: {s1.e, s2.e, t1.B}

Consider eliminating X from F. Let { f1(X1), . . . fm(Xm)}
⊆ F denote the set of factors that involve X as an argument.
Then, after eliminating X , we will generate a new factor m X

whose argument set is X1 ∪ · · · ∪ Xm \ {X}. In terms of the
moral graph, the arguments of the new factor m X are exactly
the neighbors of X . Thus we can now implement MSH itera-
tively. In each iteration, we simply pick the random variable
with the smallest neighborhood, update the moral graph by
adding edges to represent the new factor m X introduced by
eliminating X , delete X from the moral graph and proceed
until we have eliminated all random variables other than the
ones whose marginals we are interested in. MSH can be made
to run efficiently by maintaining the moral graph in adjacency
list format. Algorithm 2 shows the complete algorithm where
X denotes the set of random variables whose marginals need
to be computed. Figure 11 shows what happens when we run
MSH on our running example where we want to compute
the marginal probabilities of i1 and i2. In the first iteration,
s1.e is chosen since this has the smallest neighborhood (note
that we could have also chosen s2.e), in the second iteration
s2.e is chosen and finally, t1.B is chosen providing the final
elimination order.

What we just described is the simplest version of MSH.
More advanced versions of MSH compute the size of a factor
by counting the number of rows in it (product of the domains
of the factors’ arguments). We refer the interested reader to
[26] for more details.

6.2 Augmented rv-elim graph: generation and coloring

Unfortunately, applying MSH naively is unlikely to work
well in our case. As we indicated earlier, ideally, we would
like to construct elimination orders that lead to rv-elim graphs
with symmetry and, in turn, eliminate random variables from
shared factors early on while keeping the sizes of the factors
in check. To this end, we will now describe an augmented
version of the rv-elim graph that not only helps determine
shared factors but also helps determine the elimination order
that preserves and exploits sharing. Once we have introduced

123

1082 P. Sen et al.

our new data structure then we will describe how to perform
inference on it.

Definition 6.2 The augmented rv-elim graph G = (V f , Vrv,

E f→ f , Erv→ f , Lv, Le) is an edge-labeled and vertex-lab-
eled graph such that:

– Every v ∈ V f represents a factor.
– Every v ∈ Vrv represents a random variable.

– Every (v1
i→ v2) ∈ E f→ f such that v1, v2 ∈ V f denotes

that the factor represented by v1 was the i th factor mul-
tiplied to produce the factor represented by v2 by the
corresponding elimrv operation.

– Every (v1
i→ v2) ∈ Erv→ f such that v1 ∈ Vrv and

v2 ∈ V f denotes that the random variable represented by
v1 is the i th argument of the factor represented by v2.

– Lv(v),∀v ∈ V f denotes the label such that:

– If v is not the head of any edge in E f→ f then Lv(v) =
id(f) where f is the factor represented by v.

– If v is the head of some edge in E f→ f then Lv(v) = l
where l is the label of the corresponding elimrv oper-
ation that produced the factor corresponding to v.

Essentially, the augmented rv-elim graph, as the name sug-
gests, is the rv-elim graph with extra vertices representing
random variables added to it. These random variable vertices
(or rv-vertices) are connected via edges in Erv→ f to the fac-
tors where they appear as arguments and the label on the edge
is simply the position of the argument in the factor. Figure 12
shows the complete aug. rv-elim graph for our running exam-
ple where the edges in Erv→ f are denoted via dotted lines to
differentiate them from edges in E f→ f , the original edges
in the rv-elim graph defined in the previous section. Thus,

Fig. 12 Augmented rv-elim graph for our running example and how
the coloring/generation algorithm works in this case. The dotted rv-ver-
tices depict which random variables are picked for elimination in each
iteration. The edges in Erv→ f are denoted by dotted lines. Note that
we have two vertices representing t1.B purely to maintain legibility

for example, s2.e connects to fi2 via a dotted edge labeled 2
since s2.e is the second argument in fi2(i2.e|s2.e, t1.B).

The advantage of using the aug. rv-elim graph to track
sharing is that not only does it help identify shared factors, but
it also helps identify random variables appearing as argu-
ments in the same positions in shared factors (which we will
refer to as shared random variables). In a moment we will
see why identifying shared random variables is important to
determine the elimination order, but first let us see how shared
random variables are identified. Going back to Fig. 12, recall
that we can easily identify shared pairs of factors fs2 and
fs1 (filled solid), and fi1 and fi2 (north-east stripes) using
Claim 5.3 (for the aug. rv-elim graph Claim 5.3 does not
change except that the edges used to find shared factors are
only edges from E f→ f). Having found these shared factors,
we can now define a different property that helps determine
shared random variables:

Property 6.3 For augmented rv-elim graph G = (V f , Vrv,

E f→ f , Erv→ f , Lv, Le), two vertices v1, v2 ∈ Vrv represent
shared random variables if:

– if v1 has k i-labeled edges then v2 has k i-labeled edges

– ∀(v1
i→ u1), (v2

i→ u2) ∈ Erv→ f : u1 ∼= u2

The property basically says that two rv-vertices are shared if
they appear as arguments in the same positions to shared fac-
tors. Using this property it is now easy to see that in Fig. 12,
rv-vertices s1.e and s2.e represent shared random variables
since they both appear as first arguments to fs1 and fs2 (which
are shared factors) and, as second arguments to fi1 and fi2

(shared factors). This implies that if we were to now construct
the compressed rv-elim graph, then both fs1 and fs2 , and fi1

and fi2 would collapse to the same vertices, and eliminating
s1.e and s2.e would be possible in one single operation, which
would lead to savings since we would eliminate 2 random
variables in one single operation. By using Property 6.3 on
the aug. rv-elim graph we have now managed to identify this
advantageous operation and we can now proceed by elimi-
nating s1.e and s2.e. The other option would have been to
eliminate t1.B, but this would not lead to much savings in
computation since this random variable is not shared with
any other random variable.

The basic strategy behind coloring (and constructing) the
aug. rv-elim graph is as follows:

– We first begin by collecting all factors from F and form-
ing the first layer of the aug. rv-elim graph. Note that
since we do not know which (shared) random variables
to eliminate we do not know what the intermediate fac-
tors generated during inference will be. Going back to
Fig. 12, this means all we have at this stage is the graph
until the first dashed vertical line.

123

Managing and exploiting rich correlations 1083

– Then we invoke Claim 5.3 to determine shared factors.
– We then invoke Property 6.3 to determine shared random

variables.
– Now we invoke MSH. We first collect all random vari-

ables with the minimum sized neighborhood in the moral
graph and then we organize them by their colors (assigned
in the previous step by invoking Property 6.3). We choose
the random variables of the color that has the greatest
extent size.

– We then proceed by eliminating the chosen random
variables, generating the next set of intermediate factors,
generating the next layer of the aug. rv-elim graph and
repeating the whole process.

Figure 12 shows the whole process for our running example.
In the first iteration, we eliminate s1.e and s2.e to generate
the first set of intermediate factors (ms1.e and ms2.e). In the
second iteration, we have no option but to eliminate t1.B thus
producing the next layer (µi1 and µi2). The whole process
ends in 3 iterations. Algorithm 3 describes the full algorithm
in detail.

Having generated and colored the aug. rv-elim graph, we
can simply extract the subgraph corresponding to the factors
comprising of V f and E f→ f and generate the compressed rv-
elim graph based on their colors. Then we can perform infer-
ence on the compressed rv-elim graph just as we described
in Sect. 5.

6.3 Further optimizations

Query evaluation in probabilistic databases, in general, allow
for a number of optimizations. One such optimization that
we describe here is possible because very often during query
evaluation, we are interested only in marginal probabilities of
individual random variables separately. For instance, in our
running example, we are interested in computing the mar-
ginal probabilities µi1(i1.e) and µi2(i2.e), not µ(i1.e, i2.e).
This is true in most other works in probabilistic data-
bases including [11,13,21,31] (the last reference considers
computing single random variable marginal probabilities
conditioned on some evidence). In such a case, one simple
optimization would be to make sure that at no point during
inference do we generate a factor with more than one query
random variable as its argument. Even though this does not
change the inherent hardness of the general problem of query
evaluation for probabilistic databases, it should, nevertheless,
help keep the sizes of factors small.

To see how this relates to the running example, let us go
back to Fig. 12. Recall that, in the second iteration, we need to
eliminate t1.B from the set of factors ft1(t1.B), ms1.e(i1.e, t1.
B) and ms2.e(i2.e, t1.B). If performed naively, this would give

Algorithm 3: Generate & Color Aug. RV-Elim Graphs
input: PGM 〈F , X 〉, query random variables X ⊆ X
Adj(X) = {X ′|∃ f ∈ F s.t. X, X ′ ∈ arg(f)},∀X ∈ X
Vrv ← X ; V f ← F ; E f→ f ← ∅
Erv→ f ← {(vr

i→ v f)|s.t. r is i th argument of f }
Lv(v)← id(f),∀v ∈ V f where f is the factor denoted by v

Le(vr
i→ v f)← i,∀(vr

i→ v f) ∈ Erv→ f
G ← (Vrv, V f , E f→ f , Erv→ f , Lv, Le)

B f
0,l ← {v ∈ V f |Lv(v) = l},∀l labels in G

C f ← {B f
0,l }

while ∃Y ∈ X s.t. Y /∈ X do
for v ∈ Vrv do

krv
v ← {(i, B f)|(v i→ v f) ∈ Erv→ f } where B f denotes

v f ’s color

// color rv-vertices
Brv

k ← {v ∈ Vrv |krv
v = k},∀k

/* pick blocks of rv-vertices with the
smallest neighborhood */

Crv ← {argminBrv
k ,∃Y∈Brv

k ∧Y /∈X|Ad j (Y)|}
Brv ← argmaxB∈Crv |B \ X|
Vnew ← ∅
for v ∈ Brv do // generate next layer of G

// collect factors for v

Fv ← {v f |(v i→ v f) ∈ Erv→ f }
o← order Fv based on their colors
construct Lv(v) (see Sect. 5)
Let vnew denote the new factor produced by
elimrv(v, Fv, Lv(v))

Vnew ← Vnew ∪ {vnew}
V f ← V f ∪ {vnew}
for v f ∈ Fv do

E f→ f ← E f→ f ∪ {(v f
i→ vnew)} where i denotes

the position of v f in o

Y← ∪ f ∈Fv Y f where Y f denotes arguments of f
Y← Y \ v

for Y ∈ Y do

Erv→ f ← Erv→ f ∪ {(Y i→ vnew)} where i denotes
the position of argument Y in factor denoted by vnew

// update Adj
for Y ∈ Adj(v) do

Adj(Y)← Adj(Y) \ v

for Y, Y ′ ∈ Adj(v) do
Adj(Y)← Adj(Y) ∪ {Y ′}
Adj(Y ′)← Adj(Y ′) ∪ {Y }

delete Adj(v); delete v from X

// color the constructed vertices

B f
k ← {v ∈ Vnew|k f

v = k}
C f ← C f ∪ {B f

k }∀k
return C f

rise to a single factor with both i1.e and i2.e as arguments; but
this is not necessary for our purposes of computing the mar-
ginal probabilities for i1.e and i2.e (even though it is possible
to retrieve the required marginal probabilities from that fac-
tor). Instead it would be more convenient if we simply gener-
ate two factors, one containing the marginals for i1.e and the

123

1084 P. Sen et al.

Algorithm 4: Eliminate a random variable
input: F, X to be eliminated, X query random variables, graph

G = (V, E) whose vertices denote random variables and
edges denote correlations

rv-tags(Y)←
{ {Y } if Y ∈ X
∪Y ′ s.t. (Y→Y)∈E rv-tags(Y ′) o.w.

factor-tags(f)←⋂
Y∈arg(f) rv-tags(Y)

for Y s.t. ∃ f ∈ F ∧ Y ∈ factor-tags(f) do
factors(Y)← { f ∈ F|Y ∈ factor-tags(f)}

/* partition query random variables based
on the factors they appear as tags for
*/

Bfactors ← {Y |factors(Y) = factors}
C ← {Bfactors}∀factors
Fnew ← {∑X

∏
f ∈B f }B∈C

return Fnew

other for i2.e (which is what we have shown in Fig. 12). To
achieve this, we first need to tag each random variable with
the query random variables for whose marginal probability
computation they are required. Let G denote the graphical
representation of the PGM where vertices denote random
variables and edges denote correlations (see Fig. 5c for an
example). Now define tags(Y) = {X ∈ X|Y � X in G},
where X denotes the query random variables whose mar-
ginals we require and Y � X denotes that there exists
a path from Y to X . The tags can be computed by run-
ning a simple depth-first search on G which begins at the
source vertices and collects tags from the children until we
reach the query random variables which appear as sink ver-
tices and whose tags are themselves. Having computed tags
for random variables, we will also need tags for factors:
tags(f) =⋂

X∈arg(f) tags(X). At this point, we could simply
collect all factors f that contain a particular query random
variable X in its tags and perform one elimination operation
over the collected factors. One such operation for each query
random variable should achieve our goal. But this may lead
to repeated computation when there is more than one query
random variable present in the tags for the same set of fac-
tors. To avoid such a situation, we first partition the query
random variables that appear in the factor tags into sets such
that two query random variables that appear in tags of the
same set of factors are partitioned together. After this, for
each partition, we collect the corresponding factors and per-
form one elimination operation each. Algorithm 4 provides
the full procedure. Note that instead of recomputing rv-tags
and factor-tags separately for each elimination operation as
suggested in Algorithm 4, it may be advantageous to maintain
these data structures globally to save computation.

Figure 13 shows how applying the procedure before elim-
inating t1.B helps produce two factors µi1(i1.e) and µi2(i2.e)
as opposed to constructing one single factor with both query
random variables as arguments.

Fig. 13 Optimizing random variable elimination for single random
variable marginal probability computation. Applying Algorithm 4 to
our running example while trying to eliminate t1.B from the set of fac-
tors ft1 (t1.B), ms1.e(i1.e, t1.B) and ms2.e(i2.e, t1.B)

7 Experimental evaluation

Our experiments were designed to answer the following ques-
tions:

– Does exploiting shared factors help achieve faster query
evaluation?

– When is it worthwhile to apply our bisimulation-based
approach to a query evaluation problem?

– What factors of speedup can we hope to gain by exploiting
shared factors?

– Does evaluating more complex queries, as opposed to
simple queries used in the previous sections, also lead to
shared factors?

– Is our approach equally effective on databases with both
attribute and tuple uncertainty?

We compared approaches on two different scenarios; one
based on our earlier car example, and another based on the
TPC-H benchmark.
Approaches We compare three inference techniques and
report their query evaluation times. For each approach, we
report wall clock times divided into two parts: time spent to
perform arithmetic operations (arith. ops.), which includes
the time spent to multiply factors and sum over random
variables; and time spent to perform all other remaining oper-
ations (rem.), which includes time spent to find the elimina-
tion order, time spent running bisimulation(s), if the inference
technique requires any, etc. The three inference approaches
we compare are:

– BatchVE variable elimination [47], a standard inference
algorithm, modified so that we can compute the marginal
probabilities of all random variables of interest in one
pass. This approach does not exploit shared factors.

– SharedInf (2P) an earlier approach we developed [42]
where we used a two phase approach for exploiting shared

123

Managing and exploiting rich correlations 1085

factors. In this approach, we first determine the elimi-
nation order by compressing the PGM using bisimula-
tion and by transferring the ids on the factors to their
corresponding random variables. This approach has its
limitations since it is not straightforward to extend the
approach to cases where there is not a one-to-one corre-
spondence between factors and random variables. More-
over, in this approach, we partition the random variables
once, as opposed to potentially doing it multiple times as
in the new approach we proposed in this article.

– SharedInf the approach proposed in this article.

For each experiment we also report the time required to
perform the relational algebra operations rel. alg. ops., which
includes the time to run the query and to introduce the factors
needed to run inference. All the reported parameters are also
explained in the legend at the top of Fig. 14.

All experiments were run on a dual processor Xeon 3 GHz
machine with 3 GB RAM. Our implementation is in JAVA
and the numbers we report were averaged over ten runs.

7.1 Car DB experiments

For our first set of experiments, we developed the pre-owned
car ads example further and randomly generated data and
factors to illustrate how the performance of the three infer-
ence algorithms varies with different characteristics of the
data. In addition to the relation containing the advertise-
ments (Ad) described in Fig. 1a, we added another relation
which denotes the source websites from which the ads were
extracted (S). Each tuple in S is an uncertain tuple with an
associated probability of existence which depends on the reli-
ability of the website’s information. We also added a Color
attribute to Ad. For these experiments, we ran the following
query:

∏
Ad((σColor=c Ad) ��SourceID S) where c denotes a

specific color and SourceID is a primary key in S and acts
as a foreign key in Ad. In addition to the uncertain tuples in
S, we set the Color attribute values to be uncertain and cor-
related with the Model attributes. A car of a certain Model
can have one of four distinct Colors. The parameters that we
varied for these experiments are d (domain size of Model,

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

%

Fig. 14 Plots for experiments on synthetic and TPC-H data. The legend is shown on top

123

1086 P. Sen et al.

default was 50), n (the number of attribute uncertainty tuples
in Ad, default value is 100) and fanout (the number of tuples
in Ad that each tuple from S joins with, default value is 100).

In Fig. 14a, we show how BatchVE, SharedInf (2P) and
SharedInf perform when we vary n from 100 to 800. Notice
that both SharedInf and SharedInf (2P) significantly reduce
the time spent performing arihtmetic operations (almost
invisible in the plot for both). Note that on the x-axis in
Fig. 14a, we report the size of Ad in terms of the number
of uncertain tuples to help the reader compare with previous
work on probabilistic databases. Since our formulation can
deal with both attribute uncertainty and tuple uncertainty,
we use an approach proposed by Dalvi and Suciu [10] to
convert data with attribute-level uncertainty to tuple-level
uncertainty. This approach computes all possible joint instan-
tiations of every tuple present in the attribute-level uncer-
tainty database. This transformation “flattens” out a relation
R with uncertain attributes into n × d1 × d2 × · · · d|attr(R)|
tuples, where n is the number of attribute uncertainty tuples
and di is the domain size of the i th uncertain attribute in
R (assuming all uncertain attribute values have the same
domain size). For our experiment, this gives us a size of
n × d × 4d for the Ad relation in tuple-uncertainty format.
To express the effects of this transformation (and the explo-
sion in size it leads to) in numbers, we ran the same queries on
MystiQ [4], which is a publicly available tuple-level uncer-
tainty probabilistic database. We ran MystiQ with its default
settings. In Table 1(a), we compare the times for SharedInf
against the times it took to run the same queries on MystiQ.
As should be clear, the sheer explosion in number of tuples
produced by the transformation causes a blowup in terms of
execution times. In this case, since we were experimenting
with a foreign-key primary-key join, MystiQ actually found
a safe plan, so this represents a best case scenario for MystiQ.

In Fig. 14, in some cases SharedInf required more time to
run operations other than arithmetic operations compared to
SharedInf (2P). For instance, at n = 800 SharedInf rem. is
about 1.7 s while SharedInf rem. (2-phase) is 1.33 s. This is
to be expected as we discussed earlier. However, it is unclear
if this extended preprocessing led to any gains in inference
since all the arith. ops. times (except BatchVE’s) are close

Table 1 Comparison with a tuple uncertain probabilistic database

#Tuples SharedInf (s) MystiQ (s)

1 million 0.332 6.54

8 million 1.956 94.623

Domain size SharedInf (s) MystiQ (s)

20 0.314 1.09

160 0.341 128.429

to zero. We compare SharedInf and SharedInf (2P) in more
detail in some of the experiments in the next section.

Figure 14b shows the performance of the three inference
algorithms with varying domain sizes. Notice how at d =
20, SharedInf (2P) actually performs worse (because small
domain sizes means small factors and therefore, less time
spent on arithmetic operations), but the difference between
its time and BatchVE’s time is not large. On the other hand,
SharedInf’s total inference time is almost the same as Batch-
VE’s. In Table 1b, we compare MystiQ’s execution times
against SharedInf’s for the same queries.

The third experiment we ran (Fig. 14c) is the most interest-
ing experiment in this subsection. Here we varied the fanout
from 1 to 8 to vary the symmetry in the PGMs produced by
the query (but kept the number of tuples in Ad fixed). At
fanout 1, we have no symmetry and no shared factors in the
base data since every tuple from S has a unique existence
probability but the shared factors increase as we increase
fanout. Thus, at fanout 1, SharedInf and SharedInf (2P) per-
form worse than BatchVE, but not by a huge margin; in fact,
SharefInf fares slightly better at this extreme parameter set-
ting. At fanout 2, where we have a slight amount of symmetry
in the query (every tuple from S joins with exactly 2 tuples
from Ad), SharedInf and SharedInf (2P) are already doing
better than BatchVE. At fanout 8 they both perform signifi-
cantly better than BatchVE. Note that most of the SharedInf
arith. ops. times in this plot may look larger than SharedInf
(2P)’s, which is disconcerting. The differences, however, are
not very large in absolute terms, for example, at fanout = 1 the
difference between SharedInf arith. ops and SharedInf (2P)
arith. ops. is about a 100 milliseconds. We took a closer look
at the reason behind this and found that if we simply compare
the number of multiplications and summations, then these
turn out to be identical. We hypothesize that these longer
arith. ops. times for SharedInf could be because of the addi-
tional bookkeeping we need to do; SharedInf (2P)’s book-
keeping is not nearly as complex, since for SharedInf we
need to keep track of shared random variables and shared
factors simultaneously. In the experiments with TPC-H data
(reported later), as we increased the size of the relations, the
increased scale removes these discrepancies.

In Fig. 14d, instead of using identical fanouts for all tuples
in S, we sampled them from a Poisson distribution with
parameter λ. However, we kept the number of tuples in S
fixed. Note that at λ = 1, most fanouts sampled turn out
to be 1, but some samplings produce 2, 3, . . ., i.e., numbers
greater than 1, and SharedInf utilizes this to do better than
BatchVE even at λ = 1. At λ = 10, SharedInf performs
much better.

Until now we had kept the existence probabilities of tuples
in relation S distinct; in the next experiment we introduced
some shared factors here by dividing the tuples in S into
buckets. Two tuples in the same bucket have the same

123

Managing and exploiting rich correlations 1087

existence probability. The number of tuples in S was fixed to
60, so at 60 buckets (right end of the plot), we have exactly 1
tuple belonging to each bucket. Figure 14e shows how Shar-
edInf’s performance deteriorates when the number of buckets
increase.

7.2 Experiments with TPC-H data

We also ran experiments on a database with the TPC-H
schema. We picked Q5 from the TPC-H specification since it
involves a join among six relations, of which we made 4 rela-
tions (customer, lineitem, supplier and order) probabilistic.
The query determines the volume of sales being generated in
various regions. Each customer places k1 orders, each order
is broken down into k2 sub-orders each of which is a lineitem
entry, each sub-order is then diverted to a supplier. Each tuple
from customer is uncertain and these were divided into p1

buckets such that tuples from the same bucket had the same
existence probabilities; similarly, the supplier tuples were
also divided into p2 buckets. Moreover, each customer sub-
order is usually (with 95% probability) routed to one of c sup-
pliers, else the supplier is chosen randomly. For the lineitem
and order relations, we made the discount attribute uncer-
tain (domain size 4d) and correlated with the type of the part
being ordered (domain size d); we also made the orderdate
attribute uncertain (domain size d). We set the parameters in
the following manner: k1 ∼ poisson(2), k2 ∼ poisson(3),
p1 = p2 = 5, c = 3, d = 50. We defined the scale factor to
be the number of tuples in lineitem in tuple-uncertainty for-
mat divided by 6×106. The results are shown in Fig. 14f. The
results showed similar trends for other parameter settings, for
instance the execution time for SharedInf went down when
we decreased c and increased d and so on.

Figure 14f shows that in this case of a four-relation join on
uncertain data, SharedInf performs significantly better than
not only BatchVE (which is to be expected) but also when
compared to SharedInf (2P). The reason for this speedup
is also captured in Fig. 14f: SharedInf saves significantly
on arithmetic operations, whereas the time spent on running
multiplications and summations in SharedInf (2P) shows up
prominently. We investigated the reason behind this and com-
pared the distributions of intermediate factors with respect
to their sizes in the case of SharedInf and SharedInf (2P).
Figure 14g shows the results. We find that if we just look at
factors with more than three arguments then on an average,
about 30–35% of the intermediate factors produced by Shar-
edInf (2P) fall in this category whereas as SharedInf only
produces such factors about 25% of the time. If we just look
at factors with five arguments then the difference is more
prominent. About 10% of the intermediate factors gener-
ated by SharedInf (2P) have five arguments where SharedInf
has only 1%. Since dealing with large factors (especially
when their arguments have large domains) is where inference

algorithms usually spend the bulk of their time, this clearly
shows SharedInf manages to determine elimination orders
that produce smaller factors and lead to faster inference than
SharedInf (2P).

7.3 Experiments with uncertain join attributes

The next two plots (Fig. 14h, i), show results for a two rela-
tion join between S and Ad where the join attribute SourceID
itself was uncertain. This relates to the structure uncertainty
where we are unsure about the primary/foreign key values
in the data. For instance, as in Fig. 1b, we may have another
relation in our database which stores the id of the person
who posted the pre-owned car ad. We may want to join with
that relation so we can take into account the reliability of the
seller while trying to return to the user cars of her/his interest.
But we may not know the seller’s identity as this information
may not have been properly extracted or is simply unavail-
able (s/he used the guest login). Joins on uncertain attributes
give rise to very complicated PGMs and, to keep some control
over the complexity of the PGM, we setup this experiment by
generating uncertain attribute values for SourceID in both S
and Ad in the following fashion. First we constructed k key
values, then for each tuple in either relation we sampled from
this pool of keys m distinct keys randomly to include in the
domain of the uncertain join attribute value. Finally we pad-
ded each attribute value’s domain with unique key values so
that the total domain size is 50. Thus increasing k makes
it less likely that two tuples from the two relations join; on
the other hand, increasing m increases the chance that two
tuples join. Note that if two tuples join then this may be
due to multiple entries being common in their domain. Fig-
ure 14h shows that increasing the value of m (k was held con-
stant at 100), all three algorithms’ times increase, although
BatchVE has a more pronounced dependency on the value
of m. Figure 14i shows how increasing the value of k (m was
held constant at 2) helps reduce SharedInf’s and SharedInf
(2P)’s times more drastically than BatchVE’s.

In almost all our experiments, SharedInf achieved signifi-
cant speedups of up to 15 times compared to BatchVE and 7
times compared to SharedInf (2P). These numbers can easily
increase if the random variables have larger domains. If we
restrict our attention to time spent in multiplying factors and
summing over random variables (arithmetic operations), then
the speedups achieved by SharedInf range from 100 times,
when compared to BatchVE, to 13 times, when compared
to SharedInf (2P). More importantly, SharedInf showed an
ability to reduce the number of large factors introduced dur-
ing inference which means it determines better elimination
orders for inference. Both SharedInf and SharedInf (2P) can
waste time during query evaluation looking for symmetry
when there is not much in the PGM. But in such cases, as
our experimental study demonstrates, the time wasted is not

123

1088 P. Sen et al.

exorbitant. SharedInf also performs more preprocessing and
book-keeping in comparison to SharedInf (2P) but here also,
the excess time seems worth the effort if it reduces the num-
ber of large factors introduced during inference.

8 Related work

The work described in this article builds on work from a num-
ber of different research areas. In what follows, we review
the prior work from the areas most closely related to ours.

8.1 Structured large scale PGMs and lifted inference

Researchers in machine learning and artificial intelligence
have spent a considerable amount of time developing mod-
els that enable them to express and reason with uncertainty
and complex correlations. One of the issues they face when
applying these approaches in the real-world is that of scale.
Usually, modeling any non-trivial domain requires a large
number of random variables resulting in a large model that
is difficult to maintain and unwieldy to use. This has led to
the development of a fairly long list of structured large-scale
graphical models over the past decade, including (but not lim-
ited to) probabilistic relational models (PRMs) [20,23] and
Markov logic networks [37]. We refer the interested reader
to Getoor and Taskar [22] for an introduction to these and
various other models. All of these approaches model shared
correlations in some way, and developing new methods for
exploiting them during inference and learning is an active
research area; our bisimulation-based inference algorithm is
a contribution to that line of work as well [43].

Among these, PRMs probably resemble PrDB most clo-
sely, because they too deal with relational data and shared
factors. Most of the prior work on PRMs [20,23] has con-
centrated on how to specify and learn a schema-level prob-
abilistic model for relational data. However, there are two
important differences between large scale graphical models
like PRMs and probabilistic databases like PrDB:

– Barring a few proposals such as Problog [14], most struc-
tured large scale graphical models restrict the user to
ask queries that can be expressed only in terms of ran-
dom variables and marginal and/or conditional probabil-
ity distributions. Unlike probabilistic databases, they do
not allow the use of a sophisticated, high-level querying
language like SQL to enhance the usability of the system
and the choice of posing more expressive queries.

– More importantly, even though most of these approaches
exploit shared correlations to keep the model compact,
during inference they usually ground or unroll the whole
model and use standard inference algorithms to compute
the required marginal/conditional probabilities.

More recently, researchers have started developing tech-
niques for lifted inference, which try to exploit shared cor-
relations for efficient inference; that line of work is closely
related to our approach here. However, most of the work
in lifted inference [15,32,34] assumes that the shared cor-
relations are clearly specified using first-order logic that is
subsequently used to speed up inference. In our work, we
do not assume the presence of a first-order description. This
is because the query evaluation approach for probabilistic
databases does not provide such a description, and it is not
clear how to redefine the query evaluation approach to do
so. Instead, we showed how to automatically discover the
symmetry in the PGM by using a bisimulation-based algo-
rithm. Our techniques provide an alternative way to do infer-
ence over shared factors, and can be directly applied to that
problem as well. We note that our approach subsumes a spe-
cific kind of lifted inference known as inversion elimination
[15,34]. In fact, most of the operations defined in the lifted
inference literature in conjunction with inversion elimination
can be clearly seen in our framework too, e.g., parameter-
ized factors [34] correspond to factors assigned the same
color in rv-elim graphs and parameterized random variables
[34] correspond to random variables assigned the same color
in augmented rv-elim graphs.

Singla and Domingos [45] present another lifted inference
approach that has superficial similarities to our approach.
They propose an algorithm that lifts or compresses the fac-
tor graph corresponding to the PGM which consists of both
vertices depicting random variables and factors. They then
show that the compressed graph can be used to run inference
approximately. This approach is similar to compressing our
augmented rv-elim graph, however, our aug. rv-elim graph
is more detailed because it not only contains vertices that
denote factors in the PGM but also intermediate factors that
get generated during inference. Because of this, through the
use of the aug. rv-elim graph we can perform exact infer-
ence, whereas the algorithm by Singla and Domingos can
only provide approximate results.

8.2 Probabilistic databases

As discussed in the introduction, much of the recent work
on probabilistic databases is based on computing marginal
probabilities to answer queries [11,13,21,31,36]. As such,
making this part of query evaluation more efficient has been
one of the main focuses of this area of research. Das Sarma
et al. [13] describe memoization techniques in Trio where
every time a tuple’s existence probability is computed, Trio
caches its result; the cached results are in turn used to com-
pute existence probabilities of other tuples if required. In
contrast, our approaches reuse computation at a finer level
by computing each intermediate factor once and reusing it
for every shared intermediate factor that is generated during

123

Managing and exploiting rich correlations 1089

the run of inference. Another distinction is that Trio does
not attempt to exploit shared correlations. Other approaches
to faster query processing include using traditional index
structures [44] and special-purpose index structures [12], but
these only help in data retrieval, and not in speeding up the
inference process itself. Re et al. [36] present techniques for
query processing with approximate inference but with guar-
anteed ranking. In a recent work, Wang et al. [46] observe that
in many scenarios, users may want to query a probabilistic
database at various levels at granularity. Query processing at
coarse levels of granularity has many similarities to the lifted
inference problem, and the authors draw upon the prior work
in that area to efficiently process such queries. Our work in
this article is orthogonal to their work, and our techniques
can be applied to their problem as well.

In a related vein, Bravo and Ramakrishnan [5] suggest
representing factors as relations so that we can use the exter-
nal memory algorithms already implemented in a traditional
RDBMS to efficiently implement the elimrv operation. In
our query evaluation procedure, we tend to produce numer-
ous small factors (a three argument and-factor involving
three exists random variables consists of only 23 = 8 rows)
and representing each of them as a separate relation will be
infeasible. It may be interesting to see how their methods for
representing large factors using relations can be combined
with our current approach of representing factors as objects.

9 Conclusion

In this article, we presented PrDB, a flexible and efficient
probabilistic database model. We showed how query evalu-
ation corresponded to probabilistic inference in an appropri-
ately constructed graphical model. In addition, we showed
how to exploit shared correlations to speed up probabilis-
tic inference during query evaluation. We introduced a new
graph-based data structure, called rv-elim graph, that com-
pactly captures a run of an inference process, and explained
how to build it from the PGM given an elimination order.
We then showed how the graph can be compressed using an
algorithm based on bisimulation. We also presented a new
algorithm for choosing an elimination order that attempts to
maximize the sharing opportunities. We empirically evalu-
ated our approach and demonstrated that, even with a few
shared correlations, our approach does significantly better
than naive inference approaches.

Even though we mainly focused on computing marginal
probability distributions in this article, it is straightforward
to extend our approach to speed up computation of joint or
conditional probability distributions. Our work so far has
identified a number of interesting directions for further
research. Approximate inference algorithms are commonly
used for large-scale probabilistic inference, and combining

those with shared factors may result in significant speedups
in query processing. Another direction for future work is to
combine our approach which begins with a grounded proba-
bilistic network, with the approaches developed in the lifted
inference literature that begin with a first-order description
of the probabilistic network. We believe that further devel-
opment of techniques that specifically target PGMs arising
out of probabilistic databases will drastically improve query
evaluation times beyond the current state of the art.

Acknowledgments This work was supported in part by the National
Science Foundation under Grants No. 0438866 and IIS-0546136. We
would also like to thank Elena Zheleva for pointing us to the work
on directed factor graphs [19] and the anonymous reviewers for their
comments and suggestions.

References

1. Andritsos, P., Fuxman, A., Miller, R.J.: Clean answers over dirty
databases. In: ICDE (2006)

2. Arnborg, S.: Efficient algorithms for combinatorial problems on
graphs with bounded decomposability—a survey. BIT 25(1),
2–23 (1985)

3. Bosc, P., Pivert, O.: About projection-selection-join queries
addressed to possibilistic relational databases. IEEE Trans. Fuzzy
Syst. 13(1), 124–139 (2005)

4. Boulos, J., Dalvi, N., Mandhani, B., Re, C., Mathur, S., Suciu, D.:
Mystiq: a system for finding more answers by using probabilities.
In: SIGMOD (2005)

5. Bravo, H., Ramakrishnan, R.: Optimizing MPF queries: decision
support and probabilistic inference. In: SIGMOD (2007)

6. Buckles, B., Petry, F.: A fuzzy model for relational databases. Fuzzy
Sets Syst. 7(3), 213–226 (1982)

7. Cheng, R., Kalashnikov, D., Prabhakar, S.: Evaluating probabilistic
queries over imprecise data. In: SIGMOD (2003)

8. Choenni, S., Blok, H.E., Leertouwer, E.: Handling uncertainty
and ignorance in databases: a rule to combine dependent data.
In: DASFAA (2006)

9. Cowell, R., Dawid, A., Lauritzen, S., Spiegelhater, D.: Probabilis-
tic Networks and Expert Systems. Springer, Berlin (1999)

10. Dalvi, N., Suciu, D.: Management of probabilistic data: founda-
tions and challenges. In: PODS (2007)

11. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic
databases. In: VLDB (2004)

12. Das Sarma, A., Agrawal, P., Nabar, S., Widom, J.: Towards special-
purpose indexes and statistics for uncertain data. In: Workshop on
Management of Uncertain Data (MUD), Auckland, New Zealand
(2008)

13. Das Sarma, A., Theobald, M., Widom, J.: Exploiting lineage for
confidence computation in uncertain and probabilistic databases.
In: ICDE (2008)

14. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: a probabilistic
prolog and its application in link discovery. In: IJCAI (2007)

15. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilis-
tic inference. In: IJCAI (2005)

16. Dechter, R.: Bucket elimination: a unifying framework for proba-
bilistic inference. In: UAI (1996)

17. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M.,
Hong, W.: Model-driven data acquisition in sensor networks.
In: VLDB (2004)

123

1090 P. Sen et al.

18. Dovier, A., Piazza, C., Policriti, A.: A fast bisimulation algo-
rithm. In: International Conference on Computer Aided Verifica-
tion, Paris, France (2001)

19. Frey, B.: Extending factor graphs so as to unify directed and undi-
rected graphical models. In: UAI (2003)

20. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning proba-
bilistic relational models. In: IJCAI (1999)

21. Fuhr, N., Rolleke, T.: A probabilistic relational algebra for the inte-
gration of information retrieval and database systems. ACM Trans.
Inf. Syst. 15(1), 32–66 (1997)

22. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational
Learning. MIT Press, Cambridge (2007)

23. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning prob-
abilistic models of link structure. J. Mach. Learn. Res. 3, 679–
707 (2002)

24. Gupta, R., Sarawagi, S.: Creating probabilistic databases from
information extraction models. In: VLDB (2006)

25. Halpern, J.: An analysis of first-order logics for reasoning about
probability. Artif. Intell. 44(1–2), 167–207 (1990)

26. Huang, C., Darwiche, A.: Inference in belief networks: A proce-
dural guide. Int. J. Approx. Reason. 15(3), 225–263 (1996)

27. Imielinski, T., Lipski, W. Jr.: Incomplete information in relational
databases. J. ACM 31(4), 761–797 (1984)

28. Jampani, R., Xu, F., Wu, M., Perez, L., Jermaine, C., Haas, P.:
MCDB: a monte carlo approach to managing uncertain data. In:
SIGMOD (2008)

29. Kanellakis, P., Smolka, S.: CCS expressions, finite state processes,
and three problems of equivalence. In: ACM Symposium on Prin-
ciples of Distributed Computing, Montreal, Canada (1983)

30. Kjaerulff, U.: Triangulation of graphs—algorithms giving small
total state space. Technical report, University of Aalborg, Denmark
(1990)

31. Koch, C., Olteanu, D.: Conditioning probabilistic databases. In:
VLDB (2008)

32. Milch, B., Zettlemoyer, L., Kersting, K., Haimes, M., Kaelbling, L.:
Lifted probabilistic inference with counting formulas. In: AAAI
(2008)

33. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufmann, Menlo Park (1988)

34. Poole, D.: First-order probabilistic inference. In: IJCAI (2003)
35. Re, C., Dalvi, N., Suciu, D.: Query evaluation on probabilis-

tic databases. IEEE Data Eng. Bull. Spec. Issue Probab. Data
Manag. 29(1), 17–24 (2006)

36. Re, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on
probabilistic data. In: ICDE (2007)

37. Richardson, M., Domingos, P.: Markov logic networks. Mach.
Learn. 62(1–2), 107–136 (2006)

38. Richardson, T.: A characterization of Markov equivalence for
directed cyclic graphs. Int. J. Approx. Reason. 17(2–3), 107–
162 (1997)

39. Rish, I.: Efficient Reasoning in Graphical Models. PhD thesis, Uni-
versity of California, Irvine (1999)

40. Sen P., Deshpande, A.: Representing and querying correlated tuples
in probabilistic databases. In: ICDE (2007)

41. Sen, P., Deshpande, A., Getoor, L.: Representing tuple and attri-
bute uncertainty in probabilistic databases. In: DUNE Workshop
(ICDM) (2007)

42. Sen, P., Deshpande, A., Getoor, L.: Exploiting shared correlations
in probabilistic databases. PVLDB 1(1), 809–820 (2008)

43. Sen, P., Deshpande, A., Getoor, L.: Bisimulation-based approxi-
mate lifted inference. In: UAI (2009)

44. Singh, S., Mayfield, C., Prabhakar, S., Hambrusch, S., Shah, R.:
Indexing uncertain categorical data. In: ICDE (2007)

45. Singla, P., Domingos, P.: Lifted first-order belief propagation.
In: AAAI (2008)

46. Wang, D., Michelakis, E., Garofalakis, M., Hellerstein, J.: Bayes-
Store: managing large, uncertain data repositories with probabilis-
tic graphical models. In: VLDB (2008)

47. Zhang, N., Poole, D.: A simple approach to Bayesian network
computations. In: Canadian Conference on Artificial Intelligence,
Banff, Canada (1994)

48. Zhang, N., Poole, D.: Exploiting causal independence in Bayesian
network inference. J. Artif. Intell. Res. 5, 301–328 (1996)

123

	PrDB: managing and exploiting rich correlations in probabilistic databases
	Abstract
	1 Introduction
	2 Background: graphical models overview
	2.1 Directed graphical models
	2.2 Undirected graphical models
	2.3 Probabilistic graphical models: general formulation

	3 PrDB model
	3.1 Representing correlations
	3.2 Storing uncertainty models

	4 Query evaluation in PrDB
	4.1 Generating factors for general queries
	4.2 Optimizations
	4.3 Limitations of standard probabilistic inference

	5 Inference with shared factors
	5.1 The elimrv operator
	5.2 The rv-elim graph
	5.3 Identifying shared factors
	5.4 Bisimulation for rv-elim graphs
	5.5 Inference on the compressed rv-elim graph

	6 Elimination order generation and optimizations
	6.1 Minimum size heuristic
	6.2 Augmented rv-elim graph: generation and coloring
	6.3 Further optimizations

	7 Experimental evaluation
	7.1 Car DB experiments
	7.2 Experiments with TPC-H data
	7.3 Experiments with uncertain join attributes

	8 Related work
	8.1 Structured large scale PGMs and lifted inference
	8.2 Probabilistic databases

	9 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

