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Abstract

There has been a recent, growing interest in clas-
sification and link prediction in structured do-
mains. Methods such as CRFs (Lafferty et al.,
2001) and RMNs (Taskar et al., 2002) support
flexible mechanisms for modeling correlations
due to the link structure. In addition, in many
structured domains, there is an interesting struc-
ture in the risk or cost function associated with
different misclassifications. There is a rich tra-
dition of cost-sensitive learning applied to un-
structured (IID) data. Here we propose a general
framework which can capture correlations in the
link structure and handle structured cost func-
tions. We present a novel cost-sensitive struc-
tured classifier based on Maximum Entropy prin-
ciples that directly determines the cost-sensitive
classification. We contrast this with an approach
which employs a standard 0/1 loss structured
classifier followed by minimization of the ex-
pected cost of misclassification. We demonstrate
the utility of our proposed classifier with experi-
ments on both synthetic and real-world data.

1. Introduction

There has been a recent, growing interest in classification
and link prediction in structured domains. Methods such as
Conditional Random Fields (CRFs) (Lafferty et al., 2001)
and Relational Markov Networks (RMNs) (Taskar et al.,
2002) have been introduced which use discriminative train-
ing to optimize collective classification. Most of these
methods implicitly assume that all errors are equally costly.

Classification in the presence of varying costs associated
with different types of misclassification is important for
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many practical applications. There is a rich tradition of
cost-sensitive learning (Elkan, 2001; Domingos, 1999) ap-
plied to independent and identically distributed (IID) data
for applications such as targeted marketing and fraud & in-
trusion detection. These approaches assume the traditional
machine learning setting, where the data is viewed as a set
of IID samples. Using a series of motivating examples,
we show that when the data is structured the misclassifi-
cation costs may also be structured. Specifically, besides
the misclassification costs associated with misclassifying
each sample we now have misclassification costs associ-
ated with misclassifying groups of related samples.

In this paper, we describe extensions which enable the use
of 0/1 loss structured classifiers for cost-sensitive classi-
fication by minimizing the expected cost of misclassifica-
tion. The problem with this approach is that it requires pre-
cise estimates of class conditional probabilities. One of the
main concerns in traditional cost-sensitive learning is how
to extract good estimates of probabilities from standard ma-
chine learning classifiers (Domingos, 1999; Zadrozny &
Elkan, 2001). This is of particular concern in structured
classifiers which, as we demonstrate in Section 6, can pro-
duce very poor estimates of class conditional probabilities
under certain conditions. Our main contribution is a novel
structured classifier based on Maximum Entropy principles
that does not make explicit use of class conditional proba-
bilities. We present learning and inference algorithms for
the proposed classifier and compare its performance with
other approaches.

2. Motivation

Here we describe two real-world scenarios that can be mod-
eled as structured cost-sensitive classification problems.

2.1. Motivating Example #1: Loan Applicants

Consider the classic cost-sensitive classification problem of
granting loans. This is a 2-class classification problem in
which the bank needs to classify each loan application as
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either “granted” or “denied”. Let us assume that there is
only one applicant per application and that each applicant
also has an account in the bank with some savings in it.
The cost of misclassifying a loan application which should
have been granted is the loss of the interest on the loan
and the loss of the amount in the applicant’s bank account
since there is a chance that the disgruntled applicant might
close the account and move it to another bank. The cost of
misclassifying a loan application which should have been
denied is the loss of the principal amount of the loan in
question (the applicant might default her/his payment).

Consider a small extension to the above scenario. Appli-
cants can now have joint accounts which can have more
than one account holder. Now, the cost of misclassifying a
loan which should have been granted is the loss of the inter-
est on the loan, loss of the amounts in the accounts singly
owned by the applicant of the loan and loss of the amount
in any joint accounts of the applicant (the disgruntled ap-
plicant may close these as well). More importantly, the
amount in the joint accounts can be lost if any of the loans
applied for by any of its account holders end up being de-
nied. In fact, the amount in the joint account is a cost that
is associated with related loans and is a relational cost. Re-
lational costs can be modeled as a cost matrix Cost(yc, ỹc)
which specifies the cost incurred when a set of related enti-
ties denoted by clique c whose correct set of labels is ỹc is
labeled with the set yc. In the above case, c denotes the set
of account holders associated with any particular joint ac-
count, ỹc denotes the set of correct labels for those account
holders (whether their loans are granted or denied) and yc

denotes the labels assigned by the bank.

2.2. Motivating Example #2: Intelligent Light Control
in Buildings

Building control strategies for intelligent light control aim
to increase user comfort and reduce the energy consump-
tion of lighting a building. Two aspects require special
attention: first, we should utilize ambient light fully and
make sure that lights are not turned “on” for locations in
the building which already have enough light from external
sources (a process Singhvi et al. (2005) refers to as daylight
harvesting) and second, we should respect the occupant’s
preferences. Any control strategy needs to keep track of
the amount of light at various locations in the building in
order to achieve daylight harvesting. The use of light me-
ters may not be feasible since sensing light via light meters
is expensive both in terms of battery power and time. In
such cases, a more prudent approach suggested by Desh-
pande et al. (2005) is to predict light at various locations
by observing cheaper attributes (such as temperature and
sensor voltage) and exploiting spatial correlations (attribute
values of nearby sensors) via a statistical model rather than
measure the expensive attributes directly.

We can also frame this problem as an instance of struc-
tured cost-sensitive classification. Consider the case where
the light at an occupied location is predicted to be “low”
when in fact it is well-lit. In this case, the control strat-
egy will turn on lights and incur unwanted electricity costs.
The opposite case is when a poorly lighted occupied loca-
tion is classified as well-lit. In this case, the control strat-
egy will refrain from turning on lights, and this results in
losses in terms of user comfort. Most people would pre-
fer to have lights turned on in and around the occupied lo-
cation. Consider the following misclassification: suppose
we correctly classify a well-lit occupied location but mis-
classify a nearby location which requires lighting as being
well-lit. This will cause the occupant discomfort since s/he
would prefer to have light in the nearby location but the
control strategy will refrain from providing it. This cost,
in terms of occupant discomfort, was incurred even though
we correctly classified the occupied location. The misclas-
sification cost associated with the pair of locations is in ad-
dition to the misclassification cost attached to each location
described previously and these are, in fact, relational costs
which can be modeled using structured cost matrices.

Many traditional cost-sensitive classification problems give
rise to relational costs when extended to the structured case.
Another structured domain that presents a rich source of
varying misclassification costs is classification in social
networks, e.g., predicting suspicious links in a communi-
cation network or classifying entities in a terrorist network.
We can encode structured classification problems using a
Markov network and we next provide relevant notation.

3. Preliminaries

We review the definitions of conditional Markov networks
from Taskar et al. (2002). Let V be a set of discrete random
variables, and let v be an assignment of values to the ran-
dom variables. A Markov network is described by a graph
G = (V,E) and a set of parameters Ψ. Let C(G) denote a
set of (not necessarily maximal) cliques in G. For each c ∈
C(G), let Vc denote the nodes in the clique. Each clique c
has a clique potential ψc(Vc) which is a non-negative func-
tion on the joint domain of Vc and let Ψ = {ψc(Vc)}c∈C(G).
For classification problems, we are often interested in con-
ditional models. Let X be the set of observed random vari-
ables we condition on and let x denote the observed val-
ues of X. Let Xc denote the observed random variables in
clique c ∈ C(G) and let xc denote the observed values of
Xc. Let Y be the set of target random variables to which we
want to assign labels and let y denote an assignment to Y.
Let Yc denote the set of target random variables in clique
c ∈ C(G) and let yc denote an assignment to it. A condi-
tional Markov network is a Markov network (G,Ψ) which
defines the distribution P(y | x) = 1

Z(x) ∏c∈C(G) ψc(xc,yc)
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where Z(x) = ∑y′∏c ψc(xc,y′c).

For the cost sensitive version of this problem, in addition
to (G,Ψ) as in ordinary Markov networks, we also have a
cost graph H = (V,E ′) which is defined over the same set
of random variables V but has a (possibly) different edge
set E ′. Let C(H) denote the set of (not necessarily maxi-
mal) cliques in H. Let Yh denote the set of target random
variables present in clique h∈C(H) and let yh denote an as-
signment to Yh. For each clique h ∈C(H), there is a clique
loss function lh(yh, ỹh). lh is determined by the cost matri-
ces {Costh(yh, ỹh)}h∈C(H) involved in the problem and it is
not necessary that they be the same. Costh(yh, ỹh) is a mea-
sure of how severe the misclassification is if Yh is labeled
with yh when its correct labels are ỹh.

The misclassification cost of a complete assignment y rela-
tive to the correct assignment ỹ is:

Cost(y, ỹ) = ∑
h∈C(H)

Costh(yh, ỹh).

Our aim is to determine y which corresponds to the mini-
mum misclassification cost. In this paper, we consider the
special case where C(G) = C(H).

4. Cost-Sensitive Classification with
Conditional Markov Networks

One approach to performing cost-sensitive classification is
to use a classifier which can output conditional probabili-
ties associated with each possible complete assignment to
Y. We can use these probabilities to compute the complete
assignment y which minimizes the expected cost of mis-
classification:

argminy ∑
y′

P(y′ | x)Cost(y,y′)

Note that the set of conditional probabilities required in the
above equation can be quite large - so large that no classifier
might want to list them out. It is more useful to rewrite the
above expression in terms of the marginals:

argminy ∑
h∈C(H),y′h

Costh(yh,y
′
h)µh(y

′
h | x)

where µh(y′h | x)= ∑y′∼y′h
P(y′ | x) and y′∼ y′h denotes a full

assignment y′ consistent with partial assignment y′h. Any
energy minimization technique can be used to perform this
optimization.

The problem with the above approach is that it requires
accurate estimates of the marginal probabilities. In fact,
Domingos (1999) and Zadrozny and Elkan (2001) show
how to improve the class conditional probabilities obtained
from decision trees and naive bayes classifiers, respec-
tively, using traditional ideas of bagging and smoothing

for use in cost-sensitive classification. A slightly differ-
ent idea proposed in Brefeld et al. (2003) is to learn a
classifier function which associates a higher penalty term
corresponding to misclassifications associated with higher
costs . Brefeld et al. only consider IID input. Recent re-
search in learning for structured domains has also concen-
trated on loss augmented learning of classifier functions
(Taskar et al., 2003; Tsochantaridis et al., 2004) but they
do not involve the loss function during inference. Our aim
is to design a classifier for structured domains that penal-
izes configurations corresponding to higher costs both dur-
ing learning and inference without the explicit computation
of probabilities. We next derive a classifier which penalizes
labelings associated with high misclassification costs based
on Maximum Entropy principles.

5. Cost-Sensitive Markov Networks

The basic idea is to modify the constraints of the Maximum
Entropy framework so that an assignment with higher loss
is assigned a correspondingly lower probability. The tradi-
tional Maximum Entropy constraints can be expressed as:

∑
y

fk(x,y)P(y | x) = Ak, ∀k = 1, . . . ,K

where fk is the kth feature, Ak is the kth empirical feature
count and we employ K such features.

We assume that the features distribute over the cliques
and thus fk(x,y) = ∑c fk(xc,yc). Also we assume that
the constants {Ak}1,...,K come from counting the features
of the fully labeled training data set labeled ỹ and so,
Ak = ∑c fk(xc, ỹc). With these assumptions the above equa-
tion can be rewritten as:

∑
y

P(y | x)∑
c

( fk(xc,yc)− fk(xc, ỹc))
︸ ︷︷ ︸

clique specific constraint

= 0, (1)

∀k = 1, . . . ,K

Eq. 1 attempts to set the sum of P(y|x) weighted by the
difference in total feature counts to 0. A configuration y
with a large difference in total feature count is likely to be
assigned a lower probability P(y|x) so that the sum over
all the configurations remains 0. Thus, the difference in
feature counts acts as a constraint. We would now like to
modify Eq. 1 so that configurations associated with higher
misclassification costs are assigned low probabilities. A
natural way to do this is to scale the clique specific con-
straint with the loss associated with the misclassification
of the clique and modify Eq. 1 to:

∑
y

P(y | x)∑
c

lc(yc, ỹc)( fk(xc,yc)− fk(xc, ỹc))
︸ ︷︷ ︸

scaled clique specific constraint

= 0,

∀k = 1, . . . ,K



Cost-Sensitive Learning with Conditional Markov Networks

The new Maximum Entropy formulation can now be ex-
pressed as:

max∑
y
−P(y | x) logP(y | x)

s.t.∑
y

P(y | x) = 1,

∑
y

P(y | x)∑
c

lc(yc, ỹc)( fk(xc,yc)− fk(xc, ỹc)) = 0,

∀k = 1, . . . ,K

The dual of the above Maximum Entropy formulation is:

min log

[

∑
y′

exp

(

∑
k,c

wklc(y
′
c, ỹc)( fk(xc,y

′
c)− fk(xc, ỹc))

)]

(2)

where {wk}1,...K are the parameters of the classifier.

Eq. 2 is our objective function. Note that this objective
function is not log-linear . Thus the standard methods of in-
ference and learning do not apply. We next describe learn-
ing and inference algorithms for our classifier.

5.1. Learning

Given fully labeled training data, we can learn the above
model by minimizing Eq. 2 w.r.t {wk}1,...K :

argminw log

[

∑
y′

exp{∑
k,c

wklc(y
′
c, ỹc)( fk(xc,y

′
c)− fk(xc, ỹc))}

]

where ỹ is the complete assignment of the labeled training
data. Note that this problem is convex for fully labeled
training data.

Differentiating with respect to wk we get:

∑
y′

[

1
Z

exp

(

∑
k

wk ∑
c

lc(y
′
c, ỹc)( fk(xc,y

′
c)− fk(xc, ỹc))

)

∑
c

lc(y
′
c, ỹc)( fk(xc,y

′
c)− fk(xc, ỹc))

]

(3)

where Z = ∑y′′ exp
(

∑k,c wklc(y′′c , ỹc)( fk(xc,y′′c )− fk(xc, ỹc))
)
.

In order to formulate the gradient (Eq. 3) computation as a
standard inference problem, let us now define the following
probability distribution:

q(y′) =
1
Z

exp

(

∑
k

wk ∑
c

lc(y
′
c, ỹc)( fk(xc,y

′
c)− fk(xc, ỹc))

)

The gradient with respect to wk (Eq. 3) can now be ex-
pressed in terms of q(y′) as:

∑
y′

q(y′)∑
c

lc(y
′
c, ỹc)[ fk(xc,y

′
c)− fk(xc, ỹc)] (4)

Note that computing q(y′) for every complete assignment
y′ is not feasible because the set of all complete assign-
ments could be very large. Fortunately, we can rewrite
Eq. 4 as:

∑
c,y′c

µq
c (y′c)lc(y

′
c, ỹc)[ fk(xc,y

′
c)− fk(xc, ỹc)]

where µq
c (y′c) is the marginal probability of labeling clique

c with y′c under the q distribution. So if we can compute the
marginals then we can compute the gradient without having
to sum up for each possible complete assignment y′. The
marginals µq

c (y′c) can be estimated using standard inference
algoritms (e.g., Yedidia et al. (2000)).

Having computed the gradient with respect to the weights
{wk}1,...K , we can use any gradient-based optimization
method (such as conjugate gradient descent) to perform the
learning.

5.2. Inference

For inference, we need to determine the optimal labeling y
which minimizes Eq. 2:

argminy log

[

∑
y′

exp{∑
k,c

wklc(y
′
c,yc)( fk(xc,y

′
c)− fk(xc,yc))}

]

(5)

Unless the underlying Markov network has special proper-
ties (e.g., being a tree, a sequence or a network with a low
treewidth), exact inference may be infeasible. For the do-
mains described in Section 1, the Markov network might
consist not only of thousands of nodes but may also be
densely connected. In such cases, we resort to approximate
inference.

In order to obtain a lower bound approximation we apply
Jensen’s inequality to Eq. 5:

log

[

∑
y′

exp{∑
k,c

wkl(y′c,yc)( fk(xc,y
′
c)− fk(xc,yc))}

]

≥∑
y′

q(y′)∑
k

wk ∑
c

l(y′c,yc)( fk(xc,y
′
c)− fk(xc,yc))

−∑
y′

q(y′) logq(y′) (6)

where q(y′) is a distribution over all y′ (∑y′ q(y′) = 1,
q(y′)≥ 0).

To find the optimal complete assignment y, we will em-
ploy a 2-step iterative procedure. In each iteration, first, we
will obtain the best approximation by maximizing the right
hand side in Eq. 6 w.r.t q(y′) and, second, we will mini-
mize w.r.t. y. We will keep iterating between these two
steps until our objective function stabilizes.
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The Lagrangian of the RHS in Eq. 6 is:

∑
y′

q(y′)∑
k

wk ∑
c

l(y′c,yc)( fk(xc,y
′
c)− fk(xc,yc))

−∑
y′

q(y′) logq(y′)−µ

(

∑
y′

q(y′)−1

)

(7)

To maximize w.r.t to q(y′), we differentiate with respect to
q(y′) and set the derivative to 0 to get:

q(y′) ∝ exp

[

∑
k

wk ∑
c

l(y′c,yc)( fk(xc,y
′
c)− fk(xc,yc))

]

where ∑y′ q(y′) = 1. As discussed before, computing q(y′)
for every complete assignment y′ may not be feasible.

The second step of the optimization requires minimizing
with respect to y. Thus, we only need to look at the first
term in Eq. 7 (since this is the only term which involves y):

∑
y′

q(y′)∑
k

wk ∑
c

l(y′c,yc)( fk(xc,y
′
c)− fk(xc,yc)) =

∑
y′c,c

∑
k

wkl(y′c,yc)( fk(xc,y
′
c)− fk(xc,yc))µq

c (y′c) (8)

where µq
c (y′c) is the marginal probability of labeling clique

c with y′c under the q distribution. Thus, we only need the
marginal probabilities to perform the second step of the op-
timization. Again, these marginal probabilities µq

c (y′c) can
be estimated using inference algorithms (e.g., Yedidia et al.
(2000)).

One way to minimize Eq. 8 is to define the following dis-
tribution and determine the y corresponding to the highest
probability (note the multiplication of the exponent by a
negative sign):

r(y) ∝ exp

[

∑
y′c,c

∑
k

wkl(y′c,yc)( fk(xc,yc)− fk(xc,y
′
c))µq

c (y′c)

]

where ∑y r(y) = 1. To determine the y corresponding to the
maximum r(y), we can use inference algorithms.

6. Experiments

We performed experiments on synthetic random graph data
and real-world sensor network data to address the follow-
ing questions: Can misclassification costs be reduced by
exploiting correlations across links and do structured cost-
sensitive classifiers have an advantage over traditional ma-
chine learning cost-sensitive classifiers? Are the probabil-
ity estimates of 0/1 loss structured classifiers dependable?
How do cost-sensitive methods perform in the presence of
structured cost functions?

In all our experiments we compare misclassification costs
achieved by three different classifiers: LOGREG - logis-
tic regression which classifies each sample based on the
attributes followed by minimization of expected cost of
misclassification, MN - relational markov networks (Taskar
et al., 2002) followed by minimization of expected cost of
misclassification as described in Section 4 and CSMN - the
proposed classifier described in Section 5.

For simplicity, we consider cliques of maximum size 2 in
all our experiments. For each classifier, we assumed a
”shrinkage” prior and compute the MAP estimate of the
parameters. More precisely, we assumed that different pa-
rameters are a priori independent and define p(wi) = λw2

i .
We tried a range of regularization constants for each classi-
fier and report the best results. Typically, we found that for
LOGREG λ = |Y|×10−4 (where |Y| is the number of sam-
ples in the training set) gave the best results (which matches
with Zhang and Oles (2001)’s suggestion), for MN λ = 10
gave the best results (Taskar et al. (2002) report using a
regularization constant of the same magnitude λ ≈ 5.5) and
for CSMN λ = 20 returned the best results.

6.1. Synthetic Data Generation

Commonly available real-world networks exhibit proper-
ties like preferential attachment and correlations amongst
the labels across links. Since our aim is to find out how
structured classifiers will perform on such networks, we
chose to model our synthetic data generation algorithm
along the lines of the evolutionary network model de-
scribed in Bollobas et al. (2003). The algorithm is outlined
in Algorithm 1.

The synthetic data generator (Algorithm 1) “grows” a
graph from an empty set of nodes. The number of nodes in
the final graph is controlled by the parameter numNodes.
α is a parameter which controls the number of links
in the graph. Roughly, the final graph should contain

1
1−α numNodes number of links. For all our experiments,
we set numNodes = 300.

We generated binary class data using our synthetic data
generator; this is a common case in cost-sensitive applica-
tions (”loan granted”/”loan denied”, ”good customer”/”bad
customer”, ”terrorist”/”non-terrorist” etc.). Algorithm 1
proceeds through iterations and in each iteration it either
connects a newly created node to the graph or connects two
existing nodes in the graph. Each time Algorithm 1 creates
an edge it makes a call to Algorithm 2. Algorithm 2 imple-
ments a rudimentary form of preferential attachment where
a node can choose which nodes to link based on their la-
bels. This introduces correlations amongst the labels across
links. The strength of these correlations is controlled by
the parameter ρ . Each node can link to nodes of its own
class with probability ρ . With probability 1− ρ , a node
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can choose to link to a node of the other class. In addi-
tion, nodes with higher out-degree have a higher chance of
getting linked to. This introduces the power-law degree dis-
tribution commonly observed in most real-world networks.
We refer the interested reader to Bollobas et al. (2003) for
more details regarding this aspect of our synthetic data gen-
eration algorithm. After generating the graph, we generate
attributes for each node using fixed, class-specific multi-
variate Bernoulli distributions.

Algorithm 1 Synthetic data generator
SynthGraph(numNodes, α , ρ)
1: i← 0
2: G← /0
3: while i < numNodes do
4: sample r ∈ [0,1] uniformly at random
5: if r <= α then
6: v← select any node uniformly at random from G
7: connectNode(v, G, ρ)
8: else
9: add a new node v to G
10: choose v.label from {0,1} uniformly at random
11: connectNode(v, G, ρ)
12: i← i+1
13: end if
14: end while
15: for i = 1 to numNodes do
16: v← ith node in G
17: genAttributes(v)
18: genNodeCostMatrix(v)
19: end for
20: for each edge e in G do
21: genEdgeCostMatrix(e)
22: end for
23: return G

Algorithm 2 Generating an edge in the synthetic data graph
connectNode(v, G, ρ)
1: sample r uniformly at random from [0,1]
2: if r ≤ ρ then
3: cn← v.label
4: else
5: cn← (v.label +1) mod 2
6: end if
7: w← select a node from G with w.label = cn and probability of selection pro-

portional to its out-degree
8: introduce an edge from v to w

Finally, we generate sample dependent cost matrices for
the data. For simplicity, we considered cliques only
upto size 2 (nodes and edges) and thus we needed
to generate only two types of cost matrices: one for
the nodes (genNodeCostMatrix) and one for the edges
(genEdgeCostMatrix). For the node cost matrices
Cost(y, ỹ), we set the diagonal entries to 0 and sampled
the off-diagonal entries uniformly from [0,2]. For the edge
cost matrices Cost(yc, ỹc), we set the diagonal entries to
0 and sampled the off-diagonal elements uniformly from
[0,

ham(yc, ỹc)
2 ] where ham(yc, ỹc) denotes the hamming dis-

tance between yc and ỹc. The factor of 1
2 with the hamming

distance reduces the disadvantage of LOGREG.

For each experiment, we produced three datasets and per-
formed 3-fold cross validation. Each number we report is
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Figure 1. 3-fold cross validation results of varying ρ (X-axis). α
was kept constant at 0.25.

the average misclassification cost obtained. For all runs of
CSMN, we set the clique loss matrices equal to the cost
matrices: lc(yc, ỹc) = Costc(yc, ỹc).

6.2. Performance Comparisons

For our first experiment, we varied the correlation amongst
labels across links to find out if structured classifiers ac-
tually help decrease misclassification costs. We varied the
value of ρ from 0.5 to 1.0 keeping α constant at 0.25. Re-
call that ρ controls the chance of a node with label c link-
ing to another node with label c. Setting ρ = 1 will cause
nodes with label c to exclusively link with other nodes of
label c whereas setting ρ = 0.5 will cause nodes with label
c to randomly choose nodes to link to irrespective of their
labels.

Figure 1 shows that structured classifiers (CSMN and MN)
can exploit correlations in the link structure to reduce mis-
classification costs. The plot shows that CSMN manages to
produce lower misclassification costs than MN on all set-
tings of ρ . CSMN achieves 8.19% reduction in costs over
LOGREG at ρ = 0.8 which increases to 38.87% at ρ = 1.0.
Note that at ρ = 0.75, CSMN achieves an avg. accuracy of
80.44% whereas the 0/1 loss MN achieves an avg. accuracy
of 81.88% indicating that a higher avg. accuracy does not
necessarily imply a lower avg. misclassification cost.

We also show a plot labeled CSMN w/o CSINF that uses the
parameters learned by CSMN but performs inference by
simply maximizing the sum of the feature counts weighted
by the parameters (ignores costs completely during infer-
ence). As is clear, CSMN w/o CSINF performs quite poorly
even in the case when there are significant correlations in
the links (ρ = 0.7,0.8) and shows the importance of involv-
ing the costs during inference.

In Figure 1, at ρ = 0.85 and above, MN shows very high
misclassification costs. This is most likely the result of the
inference algorithms used. We used loopy belief propaga-
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tion (LBP) (Yedidia et al., 2000) for inference in our im-
plementation as suggested by Taskar et al. (2002). LBP is
a message passing algorithm that is known to return very
poor estimates of class conditional probabilities when the
graph has a large number of short cycles (Yedidia et al.,
2005). As we increase the strength of the correlations in
the link structure, new nodes attach themselves to the same
nodes in the graph (the nodes with the highest out-degree
with the same label). This introduces cycles making it
very difficult for LBP to estimate the marginal probabili-
ties. Note that CSMN avoids this pitfall because it does not
rely on the explicit use of probabilities.

The previous experiment was performed on datasets with
a constant number of edges (≈ 400 edges in a graph of
300 nodes). We also wanted to see how varying edge den-
sity affects the performance of the classifiers. In our sec-
ond experiment, we varied α from 0 to 0.4 and kept ρ
constant at 0.85. Recall that the number of edges in the
graph is roughly 1

1−α times the number of nodes. Fig-
ure 2 shows the results. At α = 0.0, the misclassification
cost due to the misclassification of edges is small but this
fraction increases as α increases. Since LOGREG does
not care about the edge cost matrices it performs well at
α = 0.0 but poorly at higher settings of α . CSMN con-
sistently returns lower misclassification costs than MN. In-
creasing edge density increases the number of short cycles.
At α = 0.25 and higher, due to the large number of cycles
in the graph, MN returns inaccurate estimates of class con-
ditional probabilities thus resulting in very poor results. At
α = 0.4, CSMN achieves a 63.52% reduction in costs over
MN and 13.26% reduction in costs over LOGREG.

6.3. Experiments on Sensor Network Data

Next, we report experiments comparing the performance
of the various cost-sensitive classifiers on the problem of
providing intelligent light control discussed in Section 2.2.
The Intel lab dataset (Bodik et al., 2004) contains more
than 2,000,000 readings consisting of temperature, humid-
ity, light, battery voltage, time and date recorded from a
sensor network of about 54 different sensors/motes along
with the sensors’ ids and (x,y) coordinates. To introduce
links between the sensors, we defined an edge for ev-
ery pair of sensors which were within 5 meters of each
other and obtained a dependency graph with 122 edges.
We performed experiments to predict light at various lo-
cations using the other three attributes, temperature, hu-
midity and battery voltage, and spatial correlations. We
discretized each attribute into three nominal values and re-
moved all readings with missing values. To generate re-
lational graphs, we organized the dataset into snapshots
such that each snapshot consists of readings from at least
50 different sensors with no two readings from the same
sensor. Finally, We divided the set of snapshots into three
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Figure 2. 3-fold cross validation results of varying α (X-axis). ρ
was kept constant at 0.85.

sets containing, roughly, the same distribution of values for
the light attribute (high light, medium light and low light)
and performed 3-fold cross validation. Unfortunately, the
dataset does not come with cost matrices. We augmented
the dataset with, hopefully realistic, costs and varied the
misclassification costs to illustrate the performance of the
various classifiers under different settings.

For simplicity, we considered cliques up to size 2 and gen-
erated label dependent cost matrices for nodes and edges.
We introduced a parameter γ to define the cost due to occu-
pant discomfort in units of electricity and defined the cost
matrices in terms of γ . To generate the node cost matrix
Costnode(y, ỹ), we used simple intuitions such as: if the pre-
dicted value of light is high light and the correct class la-
bel is low light (cost due to occupant discomfort) then we
pay a cost of γ , if the predicted value of light is low light
and the correct class label is medium light (cost due to ex-
cess electicity usage) then we pay a cost of 1. This gave
us a 3× 3 node cost matrix. To define the edge cost ma-
trix Costedge(yc, ỹc), we used simple intuitions like the one
introduced in Section 2.2: if the predicted class labels of
a pair of linked sensors is (high light, high light) whereas
the correct class labels are (high light, low light) then we
pay a cost of γ (occupant discomfort caused due to lack of
light in a location near the occupied location). This gave us
a 9×9 cost matrix with 32 non-zero entries. For these ex-
periments we set the clique loss matrices equal to the cost
matrices: lc(yc, ỹc) = Costc(yc, ỹc).

Determining the appropriate value of γ is a difficult prob-
lem. Intuitively, if we set γ too high then the classifiers will
tend to label all nodes with a low light value since the cost
associated with occupant discomfort is too high. During
our experiments this phenomenon occurred at γ = 2. On the
other hand, if we set γ too low (= 0.2) then the classifiers
tend to label all nodes with a high light value because the
cost of turning “on” the lamp at some location is too high.
We demonstrate the performance of the various classifiers
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LOGREG, MN and CSMN at three different settings of γ
(Figure 3). As Figure 3 shows, CSMN produces the lowest
average misclassification costs. At γ = 1, CSMN achieved
a 30.15% reduction in average misclassification costs over
LOGREG and a 9.94% reduction in average misclassifica-
tion costs over MN.

7. Conclusion

In this paper, we have formulated the cost-sensitive clas-
sification problem for structured data. Using a series of
motivating examples, we showed that in structured clas-
sification the misclassification costs also tend to be struc-
tured. Existing unstructured IID cost-sensitive classifica-
tion methods do not provide a natural means to handle
structured cost functions. We proposed a baseline based
on existing 0/1 loss structured classifiers which minimizes
the expected cost of misclassification. We also proposed
a novel classifier which does not explicitly depend on the
accurate estimation of class conditional probabilities. We
compared the performance of various cost-sensitive classi-
fiers on synthetic and real-world data to show that the pro-
posed classifier can lead to significant reductions in mis-
classification costs.
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