
Cost-Sensitive Learning with Conditional Markov

Networks

Prithviraj Sen∗

sen@cs.umd.edu

Lise Getoor∗

getoor@cs.umd.edu

Abstract

There has been a recent, growing interest in classification and link
prediction in structured domains. Methods such as conditional random
fields and relational Markov networks support flexible mechanisms for
modeling correlations due to the link structure. In addition, in many
structured domains, there is an interesting structure in the risk or cost
function associated with different misclassifications. There is a rich tra-
dition of cost-sensitive learning applied to unstructured (IID) data. Here
we propose a general framework which can capture correlations in the
link structure and handle structured cost functions. We present two new
cost-sensitive structured classifiers based on maximum entropy principles.
The first determines the cost-sensitive classification by minimizing the
expected cost of misclassification. The second directly determines the
cost-sensitive classification without going through a probability estima-
tion step. We contrast these approaches with an approach which employs
a standard 0/1-loss structured classifier to estimate class conditional prob-
abilities followed by minimization of the expected cost of misclassification
and with a cost-sensitive IID classifier that does not utilize the correla-
tions present in the link structure. We demonstrate the utility of our
cost-sensitive structured classifiers with experiments on both synthetic
and real-world data.

1 Introduction

Traditional machine learning classifiers assume that data consists of numerous
independent and identically distributed (IID) examples. Many domains give rise
to data that does not satisfy this assumption and is more naturally represented
by a graph or network structure (e.g., classifying hypertext documents con-
nected via hyperlinks, sequence data arising from natural language processing,
2D images in computed vision, etc.). There has been a recent, growing inter-
est in classification and link prediction in such structured domains. Methods
such as conditional random fields (CRFs) (Lafferty et al., 2001) and relational

∗Department of Computer Science, University of Maryland, College Park, MD 20783.

1

Markov networks (RMNs) (Taskar et al., 2002) have been introduced which
use discriminative training to optimize collective classification. Most of these
methods implicitly assume that all errors are equally costly.

Classification in the presence of varying costs associated with different types
of misclassifications is important for many practical applications. There is a rich
tradition of cost-sensitive learning (Domingos, 1999; Elkan, 2001) for applica-
tions such as targeted marketing and fraud and intrusion detection that assume
that the data is best viewed as a set of IID examples. Using a series of motivat-
ing examples, we show that when the data is structured, the misclassification
costs may also be structured. Specifically, besides the costs associated with
misclassifying each example we now have costs associated with misclassifying

groups of related examples.
In this paper, we propose two cost-sensitive structured classifiers based on

maximum entropy principles. The first classifier is a simple extension of 0/1-loss
structured classifiers using Bayes risk theory where the cost-sensitive classifica-
tion is obtained by minimizing the expected cost of misclassification. The prob-
lem with this approach is that it requires precise estimates of class conditional
probabilities. One of the main concerns in traditional cost-sensitive learning is
how to extract good estimates of probabilities from standard machine learning
classifiers (Domingos, 1999; Zadrozny and Elkan, 2001). This is of particular
concern in structured classifiers where it is common to utilize approximate in-
ference methods since exact inference is usually too expensive especially in the
case when we are dealing with networked data devoid of any special properties
or regularities (irregular graphs). To address this issue, we propose a novel cost-
sensitive structured classifier that does not make explicit use of class conditional
probabilities. We present learning and inference algorithms for both proposed
classifiers and compare their performance with other approaches.

This paper builds on our earlier work in Sen and Getoor (2006). In compari-
son with the earlier paper, this manuscript contains additional details, new tech-
nical advances and a significantly expanded experimental evaluation. Specifi-
cally, we develop new approaches for learning structured cost-sensitive condi-
tional Markov networks based on minimizing expected costs of misclassification
using the costs on the training set. In addition, we also present new experiments
with real-world sensor data quantifying the conditions when the various models
succeed in reducing misclassification costs.

2 Motivation

Here we describe two real-world scenarios that can be modeled as structured
cost-sensitive classification problems.

2.1 Motivating Example #1: Loan Applicants

Consider the classic cost-sensitive classification problem of granting loans. This
is a 2-class classification problem in which the bank needs to classify each loan

2

application as either “granted” or “denied”. Let us assume that there is only
one applicant per application and that each applicant also has an account in
the bank with some savings in it. The cost of misclassifying a loan application
that should have been granted is the loss of the interest on the loan and the
loss of the amount in the applicant’s bank account, since there is a chance that
the disgruntled applicant might close the account and move it to another bank.
The cost of misclassifying a loan application that should have been denied is
the loss of the principal amount of the loan in question (the applicant might
default her/his payment).

Consider a small extension to the above scenario. Applicants can now have
joint accounts which can have more than one account holder. Now, the cost of
misclassifying a loan which should have been granted is the loss of the interest
on the loan, loss of the amounts in the accounts singly owned by the applicant
of the loan and loss of the amount in any joint accounts of the applicant (the
disgruntled applicant may close these as well). More importantly, the amount in
the joint accounts can be lost if any of the loans applied for by any of its account
holders end up being denied. In fact, the amount in the joint account is a cost
that is associated with related loans and is a relational cost. Relational costs

can be modeled as a cost matrix Cost(yc, ỹc) which specifies the cost incurred
when a set of related entities denoted by clique c whose correct set of labels is ỹc

is labeled with the set yc. In the above case, c denotes the set of account holders
associated with any particular joint account, ỹc denotes the set of correct labels
for those account holders (whether their loans are granted or denied) and yc

denotes the labels assigned by the bank.

2.2 Motivating Example #2: Intelligent Light Control in
Buildings

Building control strategies for intelligent light control aim to increase user com-
fort and reduce the energy consumption of lighting a building. Two aspects
require special attention: first, we should utilize ambient light fully and make
sure that lights are not turned “on” for locations in the building which already
have enough light from external sources (a process Singhvi et al. (2005) refers
to as daylight harvesting) and second, we should respect the occupant’s prefer-
ences. Any control strategy needs to keep track of the amount of light at various
locations in the building in order to achieve daylight harvesting. The use of light
meters may not be feasible since sensing light via light meters is expensive both
in terms of battery power and time. In such cases, a more prudent approach
suggested by Deshpande et al. (2005) is to predict light at various locations by
observing cheaper attributes (such as temperature and sensor voltage) and ex-
ploiting spatial correlations (attribute values of nearby sensors) via a statistical
model rather than measure the expensive attributes directly.

We can also frame this problem as an instance of structured cost-sensitive

classification. Consider the case where the light at an occupied location is pre-
dicted to be “low” when in fact it is well-lit. In this case, the control strategy
will turn on lights and incur unwanted electricity costs. The opposite case is

3

when a poorly lighted occupied location is classified as well-lit. In this case, the
control strategy will refrain from turning on lights, and this results in losses in
terms of user comfort. Most people would prefer to have lights turned on in and

around the occupied location. Consider the following misclassification: suppose
we correctly classify a well-lit occupied location but misclassify a nearby location
which requires lighting as being well-lit. This will cause the occupant discom-
fort since s/he would prefer to have light in the nearby location but the control
strategy will refrain from providing it. This cost, in terms of occupant dis-
comfort, was incurred even though we correctly classified the occupied location.
The misclassification cost associated with the pair of locations is in addition
to the misclassification cost attached to each location described previously and
these are, in fact, relational costs which can be modeled using structured cost
matrices.

3 Related Work

Research on 0/1-loss structured classifiers has seen a considerable amount of
activity in various research communities ranging from machine learning, infor-
mation retrieval, spatial statistics, computer vision and the database research
community each with slightly different areas of focus. For instance, researchers
in computer vision and spatial statistics tend to concentrate on graphs with
regular structure such as 2D grids or 3D grids whereas researchers in machine
learning and information retrieval tend to work with irregular graphs. We re-
fer the interested reader to leading conferences in each of the above research
communities to get a taste of their specific brands of research. Here, we report
recent research performed mainly by the machine learning community since that
is most closely related to our work in this paper.

One of the most popular applications for 0/1-loss structured classifiers is the
classification of hypertext and webpage classification where the objective is to
classify wepbages and the assumption is that the hyperlinks that connect them
represent correlations in labels across links. Chakrabarti et al. (1998) is perhaps
one of the earliest and most well known works that looked at this application
using an extension of the Naive Bayes classifier that could exploit the hyperlink
structure. Slattery and Craven (1998) also considered the same application but
utilized techniques from inductive logic programming combined with a logistic
regression classifier to utilize hyperlinks and text-based attributes of webpages.
These works showed that classification accuracy can be significantly improved
by exploiting the graph structure.

Lafferty et al. (2001) was perhaps the first to provide a coherent, princi-
pled probabilistic framework utilizing undirected graphical models or Markov
networks based on maximum entropy principles as a means for constructing
structured classifiers and applied them to the task of labeling sequence data
available in the natural language processing domain. Taskar et al. (2002) ex-
tended these ideas to classify data with arbitrary graph structures. When the
graph structure is linear, efficient inference is possible using techniques based on

4

Viterbi decoding (Lafferty et al., 2001), the same cannot be said when dealing
with arbitrary graphs. Taskar et al. proposed the use of approximate inference
techniques to get around this problem. Since then there has been a spate of work
in this field including iterative structured classifiers (Neville and Jensen, 2000;
Lu and Getoor, 2003), generative models for both link structure and attributes
(Cohn and Hofmann, 2001; Getoor et al., 2002), max-margin Markov networks
(Taskar et al., 2003), associative Markov networks (Taskar et al., 2004), learning
structured classifiers in unsupervised and semi-supervised settings (Xu et al.,
2006) etc.

Research in cost-sensitive learning can be differentiated into three main ap-
proaches. The first approach includes specific ideas to make particular classi-
fiers cost-sensitive such as decision trees (Bradford et al., 1998; Knoll et al.,
1994), neural networks (Geibel and Wysotzki, 2003) and support vector ma-
chines (Fumera and Roli, 2002). The second approach utilizes Bayes risk theory
and assigns each example to the class with the lowest expected misclassifica-
tion cost (Domingos, 1999; Zadrozny and Elkan, 2001). This requires the use of
classifiers that can produce accurate class-conditional probabilities. There has
been some work extending such approaches to the case when we do not know
the misclassification costs exactly (Zadrozny and Elkan, 2001). The third ap-
proach involves modifying the distribution of training examples so that learned
classifier becomes cost-sensitive (Chan and Stolfo, 1998; Zadrozny et al., 2003;
Abe et al., 2004). Of the three, the third approach is perhaps most closely
connected to the assumption that the data consists of IID examples and thus
it is not obvious how to extend it to the case of structured classifiers where the
IID assumption is not made.

In this paper, we propose two cost-sensitive structured classifiers. The first
one is a simple extension of conditional Markov networks (Taskar et al., 2002)
using Bayes risk theory. The second one is derived by adding misclassification
costs to the maximum entropy formulation itself which forms the basis of con-
ditional Markov networks. In the next section, we describe the notation used in
the rest of the paper and provide some relevant background on Markov networks
and related algorithms.

4 Preliminaries

Let V be a set of discrete random variables, and let v be an assignment of values
to the random variables. A Markov network is described by a graph G = (V, E)
and a set of parameters Ψ. Let CG denote a set of (not necessarily maximal)
cliques in G. For each c ∈ CG, let Vc denote the nodes in the clique. Each
clique c has a clique potential ψc(Vc) which is a non-negative function on the
joint domain of Vc and let Ψ = {ψc(Vc)}c∈CG

. For classification problems, we
are often interested in conditional models. Let X be the set of observed random
variables on which we condition and let x denote the observed values of X. Let
Xc denote the observed random variables in clique c ∈ CG and let xc denote the
observed values of Xc. Let Y be the set of target random variables to which

5

we want to assign labels and let y denote an assignment to Y. Finally, let Yc

denote the set of target random variables in clique c ∈ CG and let yc denote an
assignment to it.

Definition 4.1 [Conditional Markov Networks (Taskar et al., 2002)].
Let G = (V, E) be an undirected graph with Ψ, y, x, CG, xc and yc as defined

above. A conditional Markov network is a Markov network (G,Ψ) which defines

the distribution P (y | x) = 1
Z(x)

∏

c∈CG
ψc(xc, yc) where Z(x) =

∑

y′

∏

c ψc(xc, y
′
c).

Notice that the above definition of conditional Markov networks is defined
using clique-specific potential functions Ψ = {ψc(Vc)}c∈CG

. This is not very
useful in the supervised learning scenario where our goal is to learn a classifier
from given labeled data and apply the classifier to determine the labels for
unseen test data. For instance, having learned the potential functions on the
cliques of the training data one would not know how to extend them to the
previously unseen test data. To get around this problem it is common to define
the potential functions in terms of a small set of features:

ψc(Vc = vc) = exp

[
K∑

k=1

wkfk(xc, yc)

]

(1)

where fk denotes the kth feature, K is the number of features used, yc is the
assignment to the target random variables, xc are the observed attributes in
Vc as given in vc and {wk}

K
k=1 are the parameters of the conditional Markov

network that assigns a weight to each feature.
Conditional Markov networks, as defined above, are based on the principles

of maximum entropy (Jaynes and Rosenkrantz (ed.), 2003) that aims to learn
the probability distribution with the maximum entropy whose expected feature
counts are equal to the empirical feature counts (feature counts on the labeled
training data). Expressed in symbols this can be written as:

max
∑

y

−P (y | x) logP (y | x)

s.t.
∑

y

P (y | x) = 1,

∑

y

P (y | x)fk(x,y) = Ak ∀k = 1, . . . ,K (2)

where Ak is the count of the kth feature from the labeled training data.
Solving the above constrained optimization for P (y|x) gives us the expres-

sion for P (y|x) shown in Definition 4.1 as a product of clique potentials.
For the cost-sensitive version of the structured classification problem, in

addition to (G,Ψ) as in traditional Markov networks, we also have a cost graph

H = (V, E′) which is defined over the same set of random variables V but
has a (possibly) different edge set E ′. Let CH denote the set of (not necessarily

6

maximal) cliques in H. Let Yh denote the set of target random variables present
in clique h ∈ CH and let yh denote an assignment to Yh. For each clique h ∈ CH ,
there is a clique loss function lh(yh, ỹh). lh is determined by the cost matrices
{Costh(yh, ỹh)}h∈CH

involved in the problem and it is not necessary that they
be the same. Costh(yh, ỹh) is a measure of how severe the misclassification is if
Yh is labeled with yh when its correct labels are ỹh.

The misclassification cost of a complete assignment y relative to the correct
assignment ỹ is:

Cost(y, ỹ) =
∑

h∈CH

Costh(yh, ỹh).

Our aim is to determine y which corresponds to the minimum misclassification
cost. In this paper, we consider the special case where CG = CH . Note that the
same random variable may be involved in many different cliques, and according
to the above formulation (mis)classification of random variables with higher
degrees has a greater affect on the overall misclassification cost associated with
the complete assignment.

While describing learning and inference algorithms for the new classifiers
we will frequently require two types of quantities that need to be computed
from Markov networks: marginal probabilities for each target random variable
and expectations of feature counts. Both these quantities can be computed
using inference procedures. Unfortunately, most relational datasets and their
underlying Markov networks consist of thousands of nodes and exact inference
is infeasible unless the Markov network has special properties such as being
a linear chain, being a tree, having low treewidth or consisting of very few
nodes. In such cases, the usual approach is to resort to approximate inference
methods. We next describe a very simple yet general approximate inference
algorithm known as Loopy Belief Propagation (LBP) (Yedidia et al., 2000) that
is widely regarded for its efficacy (Murphy et al., 1999; Berrou et al., 1993;
McEliece et al., 1998; Kschischang and Frey, 1998). Note that there exist other
approximate inference algorithms, e.g., (Hummel and Zucker, 1983; Besag, 1986;
Yedidia et al., 2000; Minka, 2001), and we are not suggesting that LBP is the
only algorithm which can be used. For completeness and to provide context, we
provide a brief description of LBP next.

4.1 Loopy Belief Propagation (Yedidia et al., 2000)

In this section, for brevity, we assume that the set of cliques CG in the conditional
Markov network G = (V, E) is composed of only the set of nodes and the set
of edges, otherwise known as a pairwise Markov network. Most of the material
in this section is based on Yedidia et al. (2000). There exist various methods to
extend the basic LBP procedure to larger clique sizes and for those details we
refer the interested reader to Yedidia et al. (2005).

We will use indices to enumerate the target random variables in Y. Thus Yi

represents the ith random variable in Y. When we restrict CG to just the set of

7

nodes and edges, P (y|x) (Definition 4.1), can be rewritten as:

P (y | x) =
1

Z(x)

∏

i

φi(yi)
∏

(i,j)∈E

ψij(yi, yj)

where φi represents the product of clique potentials defined on the node Yi and
any edges containing Yi as the only target random variable.

The LBP procedure is very simple and involves exchanging messages among
target random variables connected via edges. Each message is a function of the
label on the destination node. Let mi→j(yj) denote the message sent from the
ith target random variable to the jth target random variable. The fixed point
equation describing LBP is:

mi→j(yj) = α
∑

yi

φi(yi)ψij(yi, yj)
∏

k∈Ni\j

mk→i(yi) ∀yj ,∀(ij) ∈ E

where α is a normalizing constant such that
∑

yj
mi→j(yj) = 1 and Ni denotes

the set of target random variables Yi is linked to.
Once the messages stabilize, we can compute the marginal probabilities as

we show next. In practice, one usually measures the square of the L2-norm of
the change in the message entries summed over all messages at the end of each
iteration. If this change falls below a user-defined threshold then LBP is said
to have stabilized. Sometimes, this criterion may not be met, in which case we
stop after a user-defined number of iterations have elapsed.

4.1.1 Extracting marginal probabilities

Let µi(yi) denote the marginal probability of target random variable Yi being
labeled with yi. One can compute µi(yi) (approximately) from the messages
mi→j(yj) (once they have stabilized) as follows:

µi(yi) = αφi(yi)
∏

j∈Ni

mj→i(yi) ∀i,∀yi

where α is a normalization constant such that
∑

yi
µi(yi) = 1.

LBP also gives us a method to compute the approximate edge marginal
probabilities for an edge between the ith and jth target random variables:

µij(yi, yj) = αφij(yi, yj)
∏

k∈Ni\j

mk→i(yi)
∏

k∈Nj\i

mk→j(yj) ∀(ij) ∈ E,∀yi, yj

where φij(yi, yj) = φi(yi)φj(yj)ψij(yi, yj) and α is a normalization constant
such that

∑

yi,yj
µij(yi, yj) = 1.

4.1.2 Computing expectations of feature counts

While learning the parameters of a conditional Markov network we will also
require the expectations of feature counts. Let f(yi) denote a feature that is

8

applied to every target random variable in the conditional Markov network. We
would like to compute the expected value of

∑

i f(yi) under the distribution
defined by the conditional Markov network. The brute force way of performing
this computation is to compute:

EP (y|x)

[
∑

i

f(yi)

]

=
∑

y

P (y|x)
∑

i

f(yi)

The outer summation on y makes this computation difficult unless the
Markov network consists of a very small number of nodes and we are dealing
with very few class labels.

An easier way to compute the above quantity would be to first rewrite it
using linearity of expectations so that it is expressed in terms of marginal prob-
abilities:

∑

y

P (y|x)
∑

i

f(yi) =
∑

i,yi

f(yi)
∑

y∼yi

P (y|x) =
∑

i,yi

f(yi)µi(yi) (3)

where y ∼ yi denotes the complete labelings y that label Yi with yi, in other
words, y ∼ yi can be read as ‘complete assignments y that agree with the local
assignment yi’. Note that the summations in the final expression are linear in
the number of nodes and the number of class labels, respectively, hence much
easier to compute.

Thus to compute the expectations of feature counts, we can simply use
LBP to estimate (approximate) marginal probabilities and use these estimates
to compute (approximate) expectations of feature counts. Similarly, for a fea-
ture defined over the edges in the Markov network we can compute (approx-
imate) expectations for feature counts using the edge marginals from LBP:
EP (y|x)[

∑

ij f(yi, yj)] =
∑

(ij)∈E,yi,yj
f(yi, yj)µij(yi, yj).

Note that the only property we assumed in the above rewrites is that the
features distribute over the Markov network as a sum. If the Markov network
can be expressed as a product of clique potentials (Definition 4.1) and if each
clique potential can be defined in terms of features (Eq. 1) then this assumption
will always hold.

5 Cost-Sensitive Markov Networks by Minimiz-
ing Expected Cost of Misclassification

Traditionally, conditional Markov network classifiers aim to predict the labeling
that maximizes P (y|x) (Definition 4.1). When we are dealing with varying
misclassification costs, the above objective function does not make sense. In
fact, given unseen test data, the optimal labeling in such a case is to compute
the Bayes optimal prediction (Domingos, 1999) that minimizes the conditional

risk (Duda et al., 2001) R(y|x):

R(y|x) =
∑

y′

P (y′|x)Cost(y,y′) (4)

9

In the 0/1-loss setting, the parameters of a conditional Markov network
{wk}

K
k=1 are estimated by maximizing the probability of a fully labeled training

set with correct class labels ỹ, e.g. by computing argmaxwP (ỹ|x). In the case
when we have varying misclassification costs, even this optimization does not
make sense. We would like to learn a classifier that penalizes the configurations
corresponding to higher misclassification costs which is an idea that has been
proposed in various other work dealing with cost-sensitive learning (Domingos,
1999; Brefeld et al., 2003; Geibel and Wysotzki, 2003). One way to do this is to
alter the objective function while learning the parameters {wk}

K
k=1. Instead of

maximizing the given labeling we will now minimize the weighted sum of prob-
abilities corresponding to each labeling where each configuration’s probability
is weighted by its misclassification cost w.r.t. to the correct set of class labels:

argminw

∑

y

P (y|x)Cost(y, ỹ) (5)

Since each configuration’s probability is weighted by its misclassification
cost, the higher the cost the more it contributes to the objective function. By
minimizing the objective function we are thus going to minimize the probabil-
ity mass allocated to configurations with higher misclassification costs in effect
penalizing configurations with higher misclassification costs more than configu-
rations with low misclassification costs.

Combining these two ideas we will get a classifier that uses costs both during
learning and testing. We next derive algorithms that can perform the new
learning and testing optimizations.

5.1 Learning

Given fully labeled training data, we would like to estimate the weight vector
{wk}

K
k=1 by performing the following optimization:

argminw

∑

y

1

Z(x)
exp

[
∑

c∈CG

K∑

k=1

wkfk(xc, yc)

]

Cost(y, ỹ) (6)

where Z(x) =
∑

y′ exp
[
∑

c∈CG

∑K
k=1 wkfk(xc, yc)

]

and ỹ is the labeling on the

training data.
A simple approach to learning conditional Markov networks is to utilize one

of the various first-order gradient-based optimization methods, e.g., gradient
descent, conjugate-gradient descent, etc. (Taskar et al., 2002). We will follow the
same approach. The key step to utilizing gradient-based optimization methods
is to show how to compute the gradient of the objective function.

10

To compute the gradient, we take log and differentiate w.r.t. wk.

∂

∂wk

[

log

{
∑

y

Cost(y, ỹ) exp

(
∑

c∈CG

K∑

k=1

wkfk(xc, yc)

)}

− logZ(x)

]

=
∂

∂wk
log

{
∑

y

Cost(y, ỹ) exp

(
∑

c∈CG

K∑

k=1

wkfk(xc, yc)

)}

−
∂ logZ(x)

∂wk
(7)

The first term in the above expression reduces to:

∂

∂wk
log

{
∑

y

Cost(y, ỹ) exp

(
∑

c∈CG

K∑

k=1

wkfk(xc, yc)

)}

=

∑

y

Cost(y, ỹ) exp
(
∑

c∈CG

∑K
k=1 wkfk(xc, yc)

)
∑

c∈CG
fk(xc, yc)

∑

y′ Cost(y′, ỹ) exp
(
∑

c∈CG

∑K
k=1 wkfk(xc, y′c)

) (8)

which is simply the expectation of
∑

c∈CG
fk(xc, yc) under the following distri-

bution:

Q1(y|x) ∝ Cost(y, ỹ) exp

(
∑

c∈CG

K∑

k=1

wkfk(xc, yc)

)

such that Q1(y|x) ≥ 0,
∑

y
Q1(y|x) = 1.

The second term in Eq. 7 (after expanding Z(x)) reduces to:

∂ logZ(x)

∂wk
=

∑

y

exp
(
∑

c∈CG

∑K
k=1 wkfk(xc, yc)

)
∑

c∈CG
fk(xc, yc)

∑

y′ exp
(
∑

c∈CG

∑K
k=1 wkfk(xc, y′c)

)

which is the expectation of
∑

c∈CG
fk(xc, yc) under the distribution P (y|x).

Thus Eq. 7 can be expressed as:

∂

∂wk

[

log

{
∑

y

Cost(y, ỹ) exp

(
∑

c∈CG

K∑

k=1

wkfk(xc, yc)

)}

− logZ(x)

]

= EQ1(y|x)[
∑

c∈CG

fk(xc, yc)]− EP (y|x)[
∑

c∈CG

fk(xc, yc)]

We have already seen how to use approximate inference techniques to com-
pute the expectations of feature counts (Section 4.1). We can use those tech-
niques to compute the expectations under the distribution P (y|x). Unfortu-
nately, the expectations under the distribution Q1(y|x) cannot be computed
by the techniques described in Section 4.1 because the probability under the

11

distribution is not in product form due the presence of the term Cost(y, ỹ).
Cost(y, ỹ) does not distribute as a product over the cliques in the network and
does not match a Markov network probability distribution. We get around this
issue by applying Jensen’s inequality and making a lower bound approximation
that allows us to approximate Cost(y, ỹ) as a product of terms:

Cost(y, ỹ) =
∑

c∈CG

Costc∈CG
(yc, ỹc) ≥ |CG|

∏

c∈CG

Costc∈CG
(yc, ỹc)

1/|CG| (9)

where |CG| denotes the number of cliques in the network.
With this approximation we can now apply the techniques described in Sec-

tion 4.1 and thus compute the gradient.

5.2 Inference

Given unseen test data and the parameters of a conditional Markov network we
would like to compute:

argmin
y

∑

y′

P (y′ | x)Cost(y,y′)

Note that the set of conditional probabilities P (y′|x) required in the above
equation can be quite large – so large that no classifier might be able to list
them out. For instance, consider a conditional Markov network with 100 target
random variables each of which can be assigned one of 10 class labels. The num-
ber of complete assignments (and hence the number of conditional probabilities
P (y′|x)) for this network is 10100. In general, producing a listing of all the con-
ditional probabilities P (y′|x) will only be possible for the smallest of conditional
Markov networks. On the other hand, the number of marginal probabilities for
each target random variable Y in the network is linear in the number of class
labels and the size of the network (in the above example 10 × 100). In such a
case, it is more feasible to work with the marginal probabilities (by first com-
puting them using an approximate inference method) instead of the conditional
probabilities P (y′|x). Thus it is more useful to rewrite the above expression in
terms of the marginals:

argmin
y

∑

c∈CG,y′

c

Costc(yc, y
′
c)µc(y

′
c | x) (10)

where µc(y
′
c | x) =

∑

y′∼y′

c
P (y′ | x) and y′ ∼ y′c denotes a full assignment y′

consistent with partial assignment y′c.
Any energy minimization technique (exact or approximate) can be used to

perform the above optimization. A simple way to achieve this is to utilize the
methods described in Section 4.1. Consider the following probability distribu-
tion:

Q2(y|x) ∝ exp

−
∑

c∈CG,y′

c

Costc(yc, y
′
c)µc(y

′
c | x)

 (11)

12

where Q2(y|x) ≥ 0 and
∑

y
Q2(y|x) = 1.

Notice that determining the configuration y with the lowest value of Eq. 10
corresponds to determining the configuration corresponding to highest probabil-
ity under the distribution Q2(y|x). Since Q2(y|x) distributes as a product over
the cliques of the Markov network we can utilize the techniques described in
Section 4.1 to find the most probable configuration. This gives us a simple two-
step inference procedure where we first estimate the marginals under P (y|x)
and then estimate the cost-sensitive labeling using those marginals. Both steps
can be performed using techniques described in Section 4.1.

5.3 Issues

The problem with the above approach is that it requires accurate estimates of
the marginal probabilities (Abe et al., 2004). Note that estimating class condi-
tional probabilities is a harder problem than 0/1-loss classification since 0/1-loss
classification only requires that we identify the class with the maximum class
conditional probability and need not estimate the probabilities accurately. In
fact, Domingos (1999) and Zadrozny and Elkan (2001) show how to improve
the class conditional probabilities obtained from decision trees and naive Bayes
classifiers, respectively, using traditional ideas of bagging and smoothing for use
in cost-sensitive classification. Instead of minimizing expected cost of misclas-
sification, a slightly different idea proposed in Brefeld et al. (2003) is to learn
a classifier function which associates a higher penalty term corresponding to
misclassifications associated with higher costs . Brefeld et al. (2003) only con-
sider IID input. Recent research in learning for structured domains has also
concentrated on loss augmented learning of classifier functions (Taskar et al.,
2003; Tsochantaridis et al., 2004), but they do not involve the loss function
during inference. Our aim is to design a classifier for structured domains that
penalizes configurations corresponding to higher costs both during learning and
inference without the explicit computation of probabilities. We next derive a
conditional Markov network classifier which penalizes labelings associated with
high misclassification costs based on maximum entropy principles.

6 Cost-Sensitive Markov Networks

To come up with a structured cost-sensitive classifier that avoids the use of
probability estimates we need to go in a different direction. We will begin by
taking a closer look at the constraints in the maximum entropy formulation that
forms the basis of conditional Markov networks. The essential idea is to modify
the constraints of the maximum entropy framework so that an assignment with
higher loss is assigned a correspondingly lower probability. The traditional
maximum entropy constraints can be expressed as:

∑

y

fk(x,y)P (y | x) = Ak, ∀k = 1, . . . ,K

13

where fk is the kth feature, Ak is the kth empirical feature count and we employ
K such features.

We assume that the features distribute over the cliques and thus fk(x,y) =
∑

c fk(xc, yc). Also we assume that the constants {Ak}1,...,K come from count-
ing the features of the fully labeled training data set labeled ỹ and so, Ak =
∑

c fk(xc, ỹc). With these assumptions the above equation can be rewritten as:

∑

y

P (y | x)
∑

c

(fk(xc, yc)− fk(xc, ỹc))
︸ ︷︷ ︸

clique specific constraint

= 0, (12)

∀k = 1, . . . ,K

Eq. 12 attempts to set the sum of P (y|x) weighted by the difference in total
feature counts to 0. We would now like to modify Eq. 12 so that it involves the
misclassification costs into the maximum entropy formulation. A natural way
to do this is to scale the clique specific constraint with the loss associated with
the misclassification of the clique and modify Eq. 12 to:

∑

y

P (y | x)
∑

c

lc(yc, ỹc) (fk(xc, yc)− fk(xc, ỹc))
︸ ︷︷ ︸

scaled clique specific constraint

= 0,

∀k = 1, . . . ,K

The new maximum entropy formulation can now be expressed as:

max
∑

y

−P (y | x) logP (y | x)

s.t.
∑

y

P (y | x) = 1,

∑

y

P (y | x)
∑

c

lc(yc, ỹc)(fk(xc, yc)− fk(xc, ỹc)) = 0,

∀k = 1, . . . ,K

The dual of the above maximum entropy formulation is:

min log

∑

y′

exp

∑

k,c

wklc(y
′
c, ỹc)(fk(xc, y

′
c)− fk(xc, ỹc))

 (13)

where {wk}1,...K are the parameters of the classifier.
Eq. 13 is our objective function. Note that this objective function is not

log-linear. Thus the standard methods of inference and learning do not apply.
We next describe learning and inference algorithms for our classifier.

14

6.1 Learning

Given fully labeled training data, we can learn the above model by minimizing
Eq. 13 w.r.t {wk}1,...K :

argminw log

∑

y′

exp{
∑

k,c

wklc(y
′
c, ỹc)(fk(xc, y

′
c)− fk(xc, ỹc))}

where ỹ is the complete assignment of the labeled training data.
Differentiating with respect to wk we get:

∑

y′

[

1

Z
exp

(
∑

k

wk

∑

c

lc(y
′
c, ỹc)(fk(xc, y

′
c)− fk(xc, ỹc))

)

∑

c

lc(y
′
c, ỹc)(fk(xc, y

′
c)− fk(xc, ỹc))

]

(14)

where Z =
∑

y′′ exp
(
∑

k,c wklc(y
′′
c , ỹc)(fk(xc, y

′′
c)− fk(xc, ỹc))

)

.

In order to formulate the gradient (Eq. 14) computation as a standard in-
ference problem, let us now define the following probability distribution:

Q3(y
′) ∝ exp

(
∑

k

wk

∑

c

lc(y
′
c, ỹc)(fk(xc, y

′
c)− fk(xc, ỹc))

)

such that Q3(y
′) ≥ 0 and

∑

y′ Q3(y
′) = 1.

The gradient in Eq. 14 is thus simply the expectation of
∑

c lc(y
′
c, ỹc)(fk(xc, y

′
c)−

fk(xc, ỹc)) under the distribution Q3(y
′) which can be computed using tech-

niques described in Section 4.1.
Having computed the gradient with respect to the weights {wk}1,...K , we

can use any gradient-based optimization method (such as conjugate gradient
descent) to perform the learning.

6.2 Inference

For inference, we need to determine the optimal labeling y which minimizes
Eq. 13:

argmin
y

log

∑

y′

exp{
∑

k,c

wklc(y
′
c, yc)(fk(xc, y

′
c)− fk(xc, yc))}

 (15)

Unless the underlying Markov network has special properties (e.g., being a tree,
a sequence or a network with a low treewidth), exact inference may be infeasible.
In such cases, we resort to approximate inference.

15

In order to obtain a lower bound approximation we apply Jensen’s inequality
to Eq. 15:

log

∑

y′

exp{
∑

k,c

wkl(y
′
c, yc)(fk(xc, y

′
c)− fk(xc, yc))}

≥
∑

y′

Q4(y
′)
∑

k

wk

∑

c

l(y′c, yc)(fk(xc, y
′
c)− fk(xc, yc))

−
∑

y′

Q4(y
′) logQ4(y

′) (16)

where Q4(y
′) is a distribution over all y′ (

∑

y′ Q4(y
′) = 1, Q4(y

′) ≥ 0) and we
show how to compute it subsequently.

To find the optimal complete assignment y, we will employ a 2-step iterative
procedure. In each iteration, first, we will obtain the best approximation by
maximizing the right hand side in Eq. 16 w.r.t Q4(y

′) and, second, we will
minimize w.r.t. y. We will keep iterating between these two steps until our
objective function stabilizes.

The Lagrangian of the RHS in Eq. 16 is:

∑

y′

Q4(y
′)
∑

k

wk

∑

c

l(y′c, yc)(fk(xc, y
′
c)− fk(xc, yc))

−
∑

y′

Q4(y
′) logQ4(y

′)− τ

∑

y′

Q4(y
′)− 1

 (17)

To maximize w.r.t to Q4(y
′), we differentiate with respect to Q4(y

′) and set the
derivative to 0 to get:

Q4(y
′) ∝ exp

[
∑

k

wk

∑

c

l(y′c, yc)(fk(xc, y
′
c)− fk(xc, yc))

]

where
∑

y′ Q4(y
′) = 1.

The second step of the optimization requires minimizing with respect to y.
Thus, we only need to look at the first term in Eq. 17 (since this is the only
term which involves y):

∑

y′

Q4(y
′)
∑

k

wk

∑

c

l(y′c, yc)(fk(xc, y
′
c)− fk(xc, yc)) =

∑

y′

c,c

∑

k

wkl(y
′
c, yc)(fk(xc, y

′
c)− fk(xc, yc))µ

Q4

c (y′c) (18)

where µQ4

c (y′c) is the marginal probability of labeling clique c with y′c under the
Q4(y

′) distribution.

16

One way to minimize Eq. 18 w.r.t. y is to define the following distribution
and determine the configuration corresponding to the highest probability:

Q5(y) ∝ exp

∑

y′

c,c

∑

k

wkl(y
′
c, yc)(fk(xc, yc)− fk(xc, y

′
c))µ

Q4

c (y′c)

where
∑

y
Q5(y) = 1, Q5(y) ≥ 0. To determine the y corresponding to the

maximum Q5(y), we can use inference algorithms.

6.3 Inference for Cost-Sensitive Pairwise Markov Networks

Algorithm 1 describes the pseudo-code for the above inference procedure for
pairwise Markov networks using loopy belief propagation (Section 4.1). The
pseudo-code contains comments that clearly demarcate the use of loopy belief
propagation and we hope that this will aid the user who wants to use the cost-
sensitive inference procedure but may want to substitute LBP with an alternate
inference procedure.

7 Experiments

We performed experiments on synthetic random graph data and real-world sen-
sor network data to substantiate the following claims: misclassification costs can
be reduced by exploiting correlations across links and structured cost-sensitive
classifiers perform better than traditional machine learning cost-sensitive clas-
sifiers, the probability estimates of 0/1-loss structured classifiers using approx-
imate inference methods may not be dependable and thus utilizing techniques
that require accurate estimates of class-conditional probabilities may return
poor results, and structured cost-sensitive classifiers can exploit structured cost
functions to return decreased misclassification costs.

In all our experiments we compare misclassification costs achieved by four
different classifiers: LOGREG - logistic regression which classifies each sample
based on the attributes followed by minimization of expected cost of misclas-
sification (the minimization of expected cost of misclassification is simply a
wrapper around standard logistic regression), MN - conditional Markov net-
works followed by minimization of expected cost of misclassification, CSMN1

conditional Markov networks with the extensions described in Section 5 and
CSMN2 - the classifier described in Section 6.

For simplicity, we consider cliques of maximum size 2 in all our experiments.
For each classifier, we assumed a “shrinkage” prior and compute the MAP esti-
mate of the parameters. More precisely, we assumed that different parameters
are a priori independent and define p(wk) ∝ exp(−λw2

k). We tried a range of
regularization constants for each classifier and report the best results. Typi-
cally, we found that for LOGREG λ = |Y| × 10−4 (where |Y| is the number of
examples in the training set) gave the best results (which matches with Zhang

17

Algorithm 1 Cost-sensitive inference for pairwise cost-sensitive Markov net-
work G(V, E) using loopy belief propagation.

1: Let y denote our best guess of the labels
2: Initialize y randomly
3: num itn← 0
4: while y shows change and num itn < MAX ITN do
5: {Estimate Q4 using loopy belief propagation}
6: num Q4 itn← 0
7: while messages mQ4

i→j show change and num Q4 itn < MAX Q4 ITN do

8: m
Q4

i→j(y
′
j) = α

∑

y′

i
φ

Q4

i (y′i)ψ
Q4

ij (y′i, y
′
j)
∏

h∈Ni\j m
Q4

h→i(y
′
i),∀y

′
j∀(ij) ∈ E

9: where φQ4

i (y′i) =
∏

x,st.(xi)∈E exp[
∑

k wkl(y
′
i, yi)(fk(x, y′i)− fk(x, yi))]

10: ψ
Q4

ij (y′i, y
′
j) = exp

[∑

k wkl({y
′
i, y

′
j}, {yi, yj})(fk({y′i, y

′
j})− fk({yi, yj}))

]

11: α is a normalization constant s.t.
∑

y′

j
m

Q4

i→j(y
′
j) = 1

12: num Q4 itn← num Q4 itn + 1
13: end while
14: µ

Q4

i (y′i) = αφ
Q4

i (y′i)
∏

j∈Ni
m

Q4

j→i(y
′
i),∀y

′
i∀i

15: µ
Q4

ij (y′i, y
′
j) = αφ

Q4

ij (y′i, y
′
j)
∏

h∈Ni\j m
Q4

h→i(y
′
i)
∏

h∈Nj\im
Q4

h→j(y
′
j),∀y

′
i, y

′
j ,∀(ij)

16: where φQ4

ij (y′i, y
′
j) = φ

Q4

i (y′i)φ
Q4

j (y′j)ψ
Q4

ij (y′i, y
′
j)

17: {Estimate Q5 using loopy belief propagation}
18: num Q5 itn← 0
19: while messages mQ5

i→j show change and num Q5 itn < MAX Q5 ITN do

20: m
Q5

i→j(yj) = α
∑

yi
φ

Q5

i (yi)ψ
Q5

ij (yi, yj)
∏

h∈Ni\j m
Q5

h→i(yi),∀yj∀(ij) ∈ E

21: where φQ5

i (yi) =
∏

xst.(xi)∈E exp
[
∑

y′

i
,k wkl(y

′
i, yi)(fk(x, yi)− fk(x, y′i))µ

Q4

i (y′i)
]

22: ψ
Q5

ij (yi, yj) = exp
[
∑

y′

i
,y′

j
,k wkl({y

′
i, y

′
j}, {yi, yj})(fk(yi, yj)− fk(y′i, y

′
j))µ

Q4

ij (y′i, y
′
j)
]

23: α is a normalization constant s.t.
∑

yj
m

Q5

i→j(yj) = 1
24: num Q5 itn← num Q5 itn + 1
25: end while
26: for each node i do
27: µ

Q5

i (yi) = αφ
Q5

i (yi)
∏

j∈Ni
m

Q5

j→i(yi),∀yi

28: Let yi ← argmaxyµ
Q5

i (y) and add yi to y
29: end for
30: num itn← num itn + 1
31: end while

18

and Oles (2001)’s suggestion), for MN and CSMN1 λ = 10 gave the best re-
sults (Taskar et al. (2002) report using a regularization constant of the same
magnitude λ ≈ 5.5) and for CSMN2 λ = 20 returned the best results.

7.1 Synthetic Data Generation

Commonly available real-world networks exhibit properties like preferential at-
tachment and correlations among the labels across links. Since our aim is to find
out how structured classifiers will perform on such networks, we chose to model
our synthetic data generation algorithm along the lines of the evolutionary net-
work model described in Bollobas et al. (2003). The algorithm is outlined in
Algorithm 2.

The synthetic data generator (Algorithm 2) “grows” a graph from an empty
set of nodes. The number of nodes in the final graph is controlled by the
parameter numNodes. α is a parameter which controls the number of links in
the graph. Roughly, the final graph should contain 1

1−αnumNodes number of
links. We experimented with graphs of difference sizes and found the results to
be similar. For the experiments reported here, we set numNodes = 100.

Algorithm 2 Synthetic data generator

SynthGraph(numNodes, α, ρ)

1: i← 0
2: G← ∅
3: while i < numNodes do
4: sample r ∈ [0, 1] uniformly at random
5: if r <= α then
6: v ← select any node uniformly at random from G

7: connectNode(v, G, ρ)
8: else
9: add a new node v to G

10: choose v.label from {0, 1} uniformly at random
11: connectNode(v, G, ρ)
12: i← i+ 1
13: end if
14: end while
15: for i = 1 to numNodes do
16: v ← ith node in G
17: genAttributes(v)
18: genNodeCostMatrix(v)
19: end for
20: for each edge e in G do
21: genEdgeCostMatrix(e)
22: end for
23: return G

We generated binary class data using our synthetic data generator; this

19

is a common case in cost-sensitive applications (“loan granted”/“loan denied”,
“good customer”/“bad customer”, “terrorist”/“non-terrorist” etc.). Algorithm 2
proceeds through iterations and in each iteration it either connects a newly cre-
ated node to the graph or connects two existing nodes in the graph. Each time
Algorithm 2 creates an edge it makes a call to Algorithm 3. Algorithm 3 imple-
ments a rudimentary form of preferential attachment where a node can choose
which nodes to link based on their labels. This introduces correlations among
the labels across links. The strength of these correlations is controlled by the
parameter ρ. Each node can link to nodes of its own class with probability ρ.
With probability 1 − ρ, a node can choose to link to a node of the other class.
In addition, nodes with higher out-degree have a higher chance of getting linked
to. This introduces the power-law degree distribution commonly observed in
many real-world networks. We refer the interested reader to Bollobas et al.
(2003) for more details regarding this aspect of our synthetic data generation
algorithm. After generating the graph, we generate attributes for each node
using fixed, class-specific multivariate Bernoulli distributions. More specifically,
for each node we generated 5 attribute values. Each attribute can either be
present or absent (boolean-valued). We sampled for attribute ids from class-
specific binomial distributions. In particular, for a specific node in the graph
we begin by setting all 5 of its attribute values to 0. Then we sample from the
binomial distribution with p=(1+c)/3, n=5 (where c denotes the class label of
the node) and set the attribute with the sampled id to 1. We do this four times
for each node.

Algorithm 3 Generating an edge in the synthetic data graph

connectNode(v, G, ρ)

1: sample r uniformly at random from [0, 1]
2: if r ≤ ρ then
3: cn ← v.label

4: else
5: cn ← (v.label + 1) mod 2
6: end if
7: w ← select a node from G with w.label = cn and probability of selection

proportional to its out-degree
8: introduce an edge from v to w

Finally, we generate sample dependent cost matrices for the data. Since we
considered cliques only up to size 2 (nodes and edges), we needed to generate
only two types of cost matrices: one for the nodes (genNodeCostMatrix) and
one for the edges (genEdgeCostMatrix). For the node cost matrices Cost(y, ỹ),
we set the diagonal entries to 0 and sampled the off-diagonal entries uniformly
from [0, 2]. For the edge cost matrices Cost(yc, ỹc), we set the diagonal entries

to 0 and sampled the off-diagonal elements uniformly from [0, ham(yc,ỹc)
2] where

ham(yc, ỹc) denotes the Hamming distance between yc and ỹc. The factor of 1
2

with the Hamming distance reduces the disadvantage of LOGREG.

20

 20

 30

 40

 50

 60

 70

 0.5 0.6 0.7 0.8 0.9 1

A
vg

. m
is

cl
as

si
fic

at
io

n
co

st
s

ρ

CSMN1
MN
LOGREG
CSMN2

 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70

 0 0.1 0.2 0.3 0.4

A
vg

. m
is

cl
as

si
fic

at
io

n
co

st
s

α

CSMN1
MN
LOGREG
CSMN2

(a) (b)

Figure 1: (a) 10-fold cross validation results of varying ρ (X-axis). α was kept
constant at 0.25.(b) 10-fold cross validation results of varying α (X-axis). ρ was
kept constant at 0.85.

For each experiment, we produced 10 datasets and performed 10-fold cross
validation. Each number we report is the average misclassification cost obtained.
For all runs of CSMN2, we set the clique loss matrices equal to the cost matrices:
lc(yc, ỹc) = Costc(yc, ỹc).

7.2 Performance Comparisons

For our first experiment, we varied the correlation among labels across links to
find out if structured classifiers actually help decrease misclassification costs.
We varied the value of ρ from 0.5 to 1.0 keeping α constant at 0.25. Recall that
ρ controls the chance of a node with label c linking to another node with label c.
Setting ρ = 1 will cause nodes with label c to exclusively link with other nodes
of label c whereas setting ρ = 0.5 will cause nodes with label c to randomly
choose nodes to link to irrespective of their labels.

Figure 1 (a) shows that structured classifiers (CSMN2 and MN) can exploit
correlations in the link structure to reduce misclassification costs. The plot
shows that CSMN2 manages to produce the lowest misclassification costs com-
pared to all the other classifiers on all settings of ρ. CSMN2 achieves 9.96% re-
duction in costs over LOGREG at ρ = 0.7 which increases to 23.5% at ρ = 1.0.
Also, at ρ = 0.75, CSMN2 achieves an avg. accuracy of 80.1% whereas the
0/1-loss MN achieves an avg. accuracy of 80.9% indicating that a higher avg.
accuracy does not necessarily imply a lower avg. misclassification cost.

In Figure 1 (a), at ρ = 1.0, MN shows an increase in misclassification costs
when it should be expected to utilize the correlations across links to show better
performance. This is most likely the result of the inference algorithms used.
As indicated earlier, we used loopy belief propagation (LBP) (Yedidia et al.,
2000) for inference in our implementation as described in Section 4.1. LBP
is a message passing algorithm that is known to return very poor estimates

21

of marginal probabilities when the graph has a large number of short cycles
(Yedidia et al., 2005). As we increase the strength of the correlations in the link
structure, new nodes attach themselves to the same nodes in the graph (the
nodes with the highest out-degree with the same label). This introduces cycles
making it very difficult for LBP to estimate the marginal probabilities. Note
that CSMN2 avoids this pitfall because it does not rely on the explicit use of
probabilities.

In Figure 1 (a), CSMN1 tends to fare the worst among the four models
and this may be due to the use of the approximation described in Eq. 9 while
learning. The equality in the lower bound approximation holds when all costs are
equal and the bound becomes progressively looser as this condition is violated.
In the case where we have sample dependent randomly generated costs, this
bound is not very tight thus causing problems during CSMN1’s learning phase.
Despite this fact Figure 1 (a) shows that CSMN1 performs better when the
correlations between class labels across links aid cost-sensitive classification as
indicated by the dip shown in the plot when ρ is increased. As we show in
the experiments on real-world data, when the bound in Eq. 9 is tight and the
network is sparse CSMN1 can produce good results. Table 1 (a) shows the
result of two-tailed paired t-tests comparing the performance of CSMN2 with
the other models. Note that since we compare misclassification costs, less is
better. Bold values indicate 95% level of significance or above.

The previous experiment was performed on datasets with a constant number
of edges (≈ 133 edges in a graph of 100 nodes). We also wanted to see how
varying edge density affects the performance of the classifiers. In our second
experiment, we varied α from 0 to 0.4 and kept ρ constant at 0.85. Recall
that the number of edges in the graph is roughly 1

1−α times the number of
nodes. Figure 1 (b) shows the results. At α = 0.0, the misclassification cost
due to the misclassification of edges is small but this fraction increases as α
increases. Since LOGREG does not care about the edge cost matrices (does
not use them to compute the cost-sensitive classification, only uses them to
compute the final misclassification cost) it performs well at α = 0.0 but poorly
at higher settings of α. CSMN2 consistently returns the lowest misclassification
costs. Increasing edge density increases the number of short cycles. At α = 0.3
and higher, due to the large number of cycles in the graph, MN and CSMN1,
due to their dependence on LBP, return inaccurate estimates of class conditional
probabilities thus resulting in very poor results. Once again, due to the presence
of sample dependent misclassification costs, Eq. 9 is not very tight and CSMN1

does not produce very good results. Table 1 (b) shows the result of two-tailed
paired t-tests comparing the performance of CSMN2 with the other models for
these experiments. Bold values indicate 95% level of significance or above.

7.3 Experiments on Sensor Network Data

Next, we report experiments comparing the performance of the various cost-
sensitive classifiers on the problem of providing intelligent light control dis-
cussed in Section 2.2. The Intel lab dataset (Bodik et al., 2004) contains more

22

ρ CSMN2 vs.
LOGREG

CSMN2
vs. MN

CSMN2 vs.
CSMN1

0.50 -5.0 -3.5 -8.8
0.55 -4.1 -3.7 -12.5
0.60 -2.73 -3.3 -12.9
0.65 -4.1 -2.99 -2.5
0.70 -2.8 -2.33 -7.8
0.75 -2.8 -2.5 -9.9
0.80 -5.7 -2.0 -6.0
0.85 -4.6 -2.9 -7.5
0.90 -6.6 -2.4 -4.4
0.95 -3.0 -4.3 -2.3
1.00 -3.1 -4.4 -1.0

(a)

α CSMN2 vs.
LOGREG

CSMN2
vs. MN

CSMN2 vs.
CSMN1

0.00 -3.2 -2.7 -6.4
0.05 -2.3 -2.0 -3.2
0.10 -6.1 -2.7 -5.1
0.15 -3.2 -2.4 -5.7
0.20 -2.6 -2.8 -6.4
0.25 -4.6 -2.9 -7.5
0.30 -5.9 -17.2 -3.8
0.35 -2.27 -7.2 -8.4
0.40 -3.0 -8.0 -9.5

(b)

Table 1: Results of two-tailed paired t-tests for experiments on synthetic data
with (a) varying ρ and (b) varying α. Bold values indicate 95% level of signifi-
cance or more.

23

(a) (b)

Figure 2: Lab from which the Intel lab dataset (Bodik et al., 2004) was collected.
The figures show the lab layout at two different edge densities with sensors and
edges shown in black. (a) Network obtained by connecting each pair of sensors
within 7 meters of each other. (b) Network obtained by connecting each pair of
sensors within 5 meters of each other.

than 2,000,000 readings consisting of temperature, humidity, light, battery volt-

age, time and date recorded from a sensor network of about 54 different sen-
sors/motes along with the sensors’ ids and (x, y) coordinates. To introduce
links between the sensors, we defined an edge for every pair of sensors which
were within d meters of each other and experimented with two settings: d = 7
(Figure 2 (a)) and d = 5 (Figure 2 (b)). We performed experiments to predict
light at various locations using the other three attributes, temperature, humid-
ity and battery voltage, and spatial correlations. We discretized each attribute
into three nominal values and removed all readings with missing values. To
generate relational graphs, we organized the dataset into snapshots such that
each snapshot consists of readings from at least 50 different sensors with no two
readings from the same sensor. Finally, we divided the set of snapshots into 10
sets containing, roughly, the same distribution of values for the light attribute
(high light, medium light and low light) and performed 10-fold cross validation.
Unfortunately, the dataset does not come with cost matrices. We augmented
the dataset with, hopefully realistic, label-dependent costs and varied the mis-
classification costs to illustrate the performance of the various classifiers under
different settings.

For simplicity, we considered cliques up to size 2 and generated label depen-
dent cost matrices for nodes and edges. We introduced a parameter γ to define
the cost due to occupant discomfort in units of electricity and defined the cost
matrices in terms of γ. See Appendix A for the complete cost matrices used in
the following experiments. To generate the node cost matrix Costnode(y, ỹ), we
used simple intuitions such as: If the predicted value of light is high light and
the correct class label is low light (cost due to occupant discomfort) then we
pay a cost of γ; if the predicted value of light is low light and the correct class
label is medium light (cost due to excess electricity usage) then we pay a cost
of 1. This gave us a 3 × 3 node cost matrix. To define the edge cost matrix
Costedge(yc, ỹc), we used simple intuitions like the one introduced in Section 2.2:

24

(a) (b)

Figure 3: (a) 10-fold cross validation results on Intel lab (Bodik et al., 2004)
dataset, X-axis shows various settings of γ when d = 7. (b) 10-fold cross val-
idation results on Intel lab (Bodik et al., 2004) dataset, X-axis shows various
settings of γ when d = 5.

If the predicted class labels of a pair of linked sensors is (high light, high light)
whereas the correct class labels are (high light, low light) then we pay a cost
of γ (occupant discomfort caused due to lack of light in a location near the
occupied location). This gave us a 9 × 9 cost matrix with 32 non-zero entries.
For these experiments we set the clique loss matrices equal to the cost matrices:
lc(yc, ỹc) = Costc(yc, ỹc).

Determining the appropriate value of γ is a difficult problem. Intuitively, if
we set γ too high then the classifiers will tend to label all nodes with a low light
value since the cost associated with occupant discomfort is too high. During
our experiments this phenomenon occurred at γ = 2. On the other hand, if we
set γ too low (= 0.2) then the classifiers tend to label all nodes with a high
light value because the cost of turning “on” the lamp at some location is too
high. We demonstrate the performance of the various classifiers LOGREG, MN,
CSMN1 and CSMN2 at three different settings of γ (Figure 3).

As Figure 3 shows, CSMN2 produces the lowest average misclassification
costs on both settings d = 7 and d = 5. At γ = 1 and d = 7, CSMN2

achieved a 53.5% reduction in average misclassification costs over LOGREG, a
19.4% reduction in average misclassification costs over MN and 12.8% reduction
in average misclassification costs over CSMN1. Further, CSMN1 does much
better in these experiments compared to the experiments with synthetic data
we reported earlier since the use of label-dependent misclassification costs (as
opposed to sample-dependent misclassification costs) introduces a number of
cliques with similar costs thus allowing the lower bound approximation (Eq. 9)
to be much tighter. At d = 5 and γ = 0.6, LOGREG shows better performance
than MN and this may be due to the fact that the misclassification costs due
to the edges are only incurred due to occupant discomfort and the cost due to
occupant discomfort is small when γ is set to a small number (like 0.6) thus

25

allowing a classifier such as LOGREG to get away with only classifying the
nodes correctly.

The results at d = 7 (Figure 3 (a)) show that when the edge density is
higher CSMN2 still holds an advantage over the other two structured classifiers
because MN and CSMN1 still depend on probability estimation which is difficult
in dense Markov networks. This is further corroborated by the fact that the
differences in results are less pronounced when d = 5 (Figure 3 (b)) where,
due to the sparse network structure, inference is easier and MN and CSMN1

perform much better producing results close to CSMN2’s; in fact, at γ = 1.6 and
d = 5 CSMN1 produces almost identical results to CSMN2’s across all 10 splits.
Table 2 shows the results of two-tailed paired t-tests for these experiments.

8 Discussion and Conclusion

In this paper, we have formulated the cost-sensitive classification problem for
structured data. Using a series of motivating examples, we showed that in struc-
tured classification the misclassification costs may also be structured. Existing
unstructured IID cost-sensitive classification methods do not provide a natural
means to handle structured cost functions. We proposed an approach based on
Bayes optimal prediction extending existing 0/1-loss structured classifiers and
IID cost-sensitive classifiers that minimizes the expected cost of misclassifica-
tion. We also proposed a novel classifier which does not explicitly depend on
the accurate estimation of class conditional probabilities. We compared the per-
formance of various cost-sensitive classifiers on synthetic and real-world data to
quantify the conditions when the proposed approaches work well and to show
that they can lead to significant reductions in misclassification costs.

Our experiments show that structured cost-sensitive classifiers can achieve
significant improvements compared to their unstructured counterparts and that
these benefits are higher when the graph structure is sparse and accurate infer-
ence is feasible. It may not always be possible to judge just by looking at the
data whether the graph structure is too dense for approximate inference algo-
rithms to produce probability estimates that are accurate enough and for this
reason we believe the cost-sensitive classifier proposed in Section 6 (CSMN2) is
a more prudent alternative because in all our experiments it produced equiva-
lent, if not better, results than the other cost-sensitive models we tried. On the
other hand, recall that in this paper we only concentrated on problems whose
cost graph was identical to the underlying Markov network. It is easy to see
that this assumption is only a limitation for the cost-sensitive Markov network
presented in Section 6 and not for the classifier presented in Section 5 (CSMN1).
If we are faced with an application that has special properties that allow the use
of accurate inference methods (e.g., the application produces sequences only)
then it may be a good idea to utilize the model presented in Section 5 since
it is based on Bayes optimal prediction which is guaranteed to return optimal
results (Domingos, 1999).

As indicated in Section 3, research in the structured classifiers has been grow-

26

CSMN2 vs. γ = 0.6 γ = 1.0 γ = 1.6

LOGREG -2.6 -5.4 -3.4
MN -2.4 -2.3 -4.9

CSMN1 -2.6 -2.0 -4.7

(a)

CSMN2 vs. γ = 0.6 γ = 1.0 γ = 1.6

LOGREG -2.13 -4.8 -3.2
MN -2.6 -3.0 -1.3

CSMN1 -1.6 -1.9 -0.1

(b)

Table 2: Results of two-tailed paired t-tests for experiments on Intel lab (Bodik
et al., 2004) dataset with (a) d = 7 and (b) d = 5. Bold values indicate 95%
level of significance or above.

ing at a rapid pace and a number of IID classifiers have now been extended to
handle structured inputs. Most notably, max-margin Markov networks (Taskar
et al., 2003) and associative Markov networks (Taskar et al., 2004) are extensions
of support vector machines that assume that each misclassification is equally
costly. An interesting line of future research would be to develop cost-sensitive
versions of these classifiers so that they utilize varying misclassification costs
during inference. Another line of future work would be to apply the proposed
classifiers to newer domains. Research in intelligent light control for buildings
has benefited greatly in the recent past due to advances in sensor network tech-
nologies and we believe there are significant opportunities to apply cost-sensitive
decision theoretic models in this area. Another exciting area for cost-sensitive
applications is the field of social networks arising from various domains such as
counter-terrorism where we would like to classify people as terrorists or non-
terrorists and different people are connected via communication links but the
cost of misclassifying a terrorist as a non-terrorist is different from the cost of
misclassifying a non-terrorist as a terrorist. Given the diversity of the domains
that give rise to data requiring classification in the presence of varying misclas-
sification costs, we believe, there is room for considerable research to be done
in the area of structured cost-sensitive classification.

Acknowledgements: This work was supported by the National Science Foun-
dation (NSF #0423845). The authors would also like to thank all the anonymous
reviewers for their helpful comments.

27

References

N. Abe, B. Zadrozny, and J. Langford. An iterative method for multiclass
cost-sensitive learning. In Proceedings of the International Conference on

Knowledge Discovery and Data Mining, 2004.

C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-
correcting coding and decoding: Turbo codes. In Proceedings of IEEE Inter-

national Communications Conference, 1993.

J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal

Statistical Society, 1986.

P. Bodik, W. Hong, C. Guestrin, S. Madden, M. Paskin, and R. Thibaux. Intel
lab dataset. http://berkeley.intel-research.net/labdata/, 2004.

B. Bollobas, C. Borgs, J. T. Chayes, and O. Riordan. Directed scale-free graphs.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2003.

J. Bradford, C. Kunz, R. Kohavi, C. Brunk, and C. Brodley. Pruning decision
trees with misclassification costs. In Proceedings of the European Conference

on Machine Learning, 1998.

U. Brefeld, P. Geibel, and F. Wysotzki. Support vector machines with example
dependent costs. In Proceedings of the European Conference on Machine

Learning, 2003.

S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using
hyperlinks. In International Conference on Management of Data, 1998.

P. Chan and S. Stolfo. Toward scalable learning with non-uniform class and cost
distributions. In Proceedings of the International Conference on Knowledge

Discovery and Data Mining, 1998.

D. Cohn and T. Hofmann. The missing link - a probabilistic model of docu-
ment content and hypertext connectivity. In Advances in Neural Information

Processing Systems, 2001.

A. Deshpande, C. Guestrin, S. Madden, and W. Hong. Exploiting correlated
attributes in acquisitional query processing. In International Conference on

Data Engineering, 2005.

P. Domingos. Metacost: A general method for making classifiers cost sensitive.
In Proceedings of the International Conference on Knowledge Discovery and

Data Mining, 1999.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley Inter-
science, 2001.

C. Elkan. The foundations of cost-sensitive learning. In Proceedings of the

International Conference on Artificial Intelligence, 2001.

28

G. Fumera and F. Roli. Cost-sensitive learning in support vector machines. In
Convegno Associazione Italiana per L’Intelligenza Artificale, 2002.

P. Geibel and F. Wysotzki. Perceptron based learning with example dependent
and noisy costs. In Proceedings of the International Conference on Machine

Learning, 2003.

L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models
of link structure. Journal of Machine Learning Research, 2002.

R. Hummel and S. Zucker. On the foundations of relaxation labeling processes.
In IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983.

E. T. Jaynes and R. D. Rosenkrantz (ed.). E. T. Jaynes: Papers on Probability,

Statistics and Statistical Physics. Springer, 2003.

U. Knoll, G. Nakhaeizadeh, and B. Tausend. Cost-sensitive pruning of decision
trees. In Proceedings of the European Conference on Machine Learning, 1994.

F. R. Kschischang and B. J. Frey. Iterative decoding of compound codes by
probability progation in graphical models. IEEE Journal on Selected Areas

in Communication, 1998.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In Proceedings of

the International Conference on Machine Learning, 2001.

Q. Lu and L. Getoor. Link based classification. In Proceedings of the Interna-

tional Conference on Machine Learning, 2003.

R. J. McEliece, D. J. C. MacKay, and J. F. Cheng. Turbo decoding as an
instance of Pearl’s belief propagation algorithm. IEEE Journal on Selected

Areas in Communication, 1998.

T. Minka. Expectation propagation for approximate bayesian inference. In Pro-

ceedings of the Annual Conference on Uncertainty in Artificial Intelligence,
2001.

K. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approxi-
mate inference: An empirical study. In Proceedings of the Annual Conference

on Uncertainty in Artificial Intelligence, 1999.

J. Neville and D. Jensen. Iterative classification in relational data. In AAAI

Workshop on Learning Statistical Models from Relational Data, 2000.

P. Sen and L. Getoor. Cost-sensitive learning with conditional markov networks.
In Proceedings of the International Conference on Machine Learning, 2006.

V. Singhvi, A. Krause, C. Guestrin, J. Garrett, and H. S. Matthews. Intelligent
light control using sensor networks. In Conference on Embedded Networked

Sensor Systems, 2005.

29

S. Slattery and M. Craven. Combining statistical and relational methods for
learning in hypertext domains. In International Conference on Inductive Logic

Programming, 1998.

B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for
relational data. In Proceedings of the Annual Conference on Uncertainty in

Artificial Intelligence, 2002.

B. Taskar, V. Chatalbashev, and D. Koller. Learning associative markov net-
works. In Proceedings of the International Conference on Machine Learning,
2004.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Ad-

vances in Neural Information Processing Systems, 2003.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector
machine learning for interdependent and structured output spaces. In Pro-

ceedings of the International Conference on Machine Learning, 2004.

L. Xu, D. Wilkinson, F. Southey, and D. Schuurmans. Discriminative unsuper-
vised learning of structured predictors. In Proceedings of the International

Conference on Machine Learning, 2006.

J. Yedidia, W.T.Freeman, and Y. Weiss. Generalized belief propagation. In
Advances in Neural Information Processing Systems, 2000.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy approxi-
mations and generalized belief propagation algorithms. In IEEE Transactions

on Information Theory, 2005.

B. Zadrozny and C. Elkan. Learning and making decisions when costs and prob-
abilities are both unknown. In Proceedings of the International Conference

on Knowledge Discovery and Data Mining, 2001.

B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-
proportionate example weighting. In Proceedings of the IEEE International

Conference on Data Mining, 2003.

T. Zhang and F. Oles. Text categorization based on regularized linear classi-
fication methods. In IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2001.

A Cost Matrices for Experiments with Sensor
Network Data

A.1 Node Cost Matrix

Table 3 shows the complete node cost matrix used for the Intel Lab data ex-
periments. Rows indicate assigned class labels and columns indicate true class

30

l m h
l 0 1 2
m γ 0 1
h γ γ 0

Table 3: Node cost matrix used for sensor network data experiments. Each class
label is abbreviated to its first letter, e.g., ‘l’ denotes low light.

labels. For instance, row 1 column 3 provides the misclassification cost incurred
when we misclassify a location as having low light when the true class label is
high light. In this case what can happen is that, an occupant might come in
and the building control system might still turn on lights even though there is
sufficient light to begin with thus incurring unwanted electricity costs. When
the misclassification is ‘milder’, a location with high light being labeled medium
then we only incur a cost of 1 (row 2 column 3). On the other hand, when a
location with low light is assigned the label high light then the control system
may not turn on lights even if an occupant occupies the location thus leading
to occupant discomfort, incurring a cost of γ (row 3 column 1).

A.2 Edge Cost Matrix

Table 4 shows the complete edge cost matrix used for the sensor network data
experiments. The edge cost matrix assumes that all occupants would like to
have a medium light or high light area nearby. Each row/column is annotated
with 2 class labels, one each for two locations next to one another. Once again,
rows indicate assigned labels whereas columns indicate true labels. As opposed
to the node cost matrix, the edge cost matrix only returns cost due to occupant
discomfort (the excess electricity cost will be returned by the node cost matri-
ces). For instance, for row 1 column 2, the second location is misclassified as
having low light when in fact it has medium light which means that the control
system is going to turn on lights if an occupant occupies the first location thus
incurring no occupant discomfort cost indicated by a 0 in the edge cost matrix
(note that this misclassification will still incur an excess electricity cost of 1
from the node cost matrix). Also, for row 4 column 2, if an occupant comes into
the second location then the control system will not turn on lights at the first
location even though it should (since the true label is low light) thus incurring
occupant discomfort cost.

31

(l,l) (l,m) (l,h) (m,l) (m,m) (m,h) (h,l) (h,m) (h,h)
(l,l) 0 0 0 0 0 0 0 0 0
(l,m) γ 0 0 γ 0 0 γ 0 0
(l,h) γ 0 0 γ 0 0 γ 0 0
(m,l) γ γ γ 0 0 0 0 0 0
(m,m) γ γ γ γ 0 0 γ 0 0
(m,h) γ γ γ γ 0 0 γ 0 0
(h,l) γ γ γ 0 0 0 0 0 0
(h,m) γ γ γ γ 0 0 γ 0 0
(h,h) γ γ γ γ 0 0 γ 0 0

Table 4: Edge cost matrix used for sensor network data experiments. Each
row/column is annotated with a pair of class labels and each class label is
abbreviated to its first letter, e.g., ‘(m,h)’ represents (medium light, high light).

32

