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Abstract
We generalize the graph streaming model to hypergraphs.
In this streaming model, hyperedges are arriving online
and any computation has to be done on-the-fly using a
small amount of space. Each hyperedge can be viewed
as a set of elements (nodes), so we refer to our proposed
model as the “set-streaming” model of computation. We
consider the problem of “maximum coverage”, in which
k sets have to be selected that maximize the total weight
of the covered elements. In the set-streaming model of
computation, we show that our algorithm for maximum-
coverage achieves an approximation factor of 1

4 . When
multiple passes are allowed, we also provide a Θ(log n)
approximation algorithm for the set-cover. We next consider
a multi-topic blog-watch application, an extension of blog-
alert like applications for handling simultaneous multiple-
topic requests. We show how the problems of maximum-
coverage and set-cover in the set-streaming model can be
utilized to give efficient online solutions to this problem. We
verify the effectiveness of our methods both on synthetic and
real weblog data.

1 Introduction
The data streaming model has gained popularity for a variety
of monitoring applications where a large volume of data is
generated rapidly and continuously, and must be analyzed
on the fly, using space significantly sublinear in the data
size. An emerging class of such monitoring applications
deal with massive dynamic graphs. For example the web
graph, where each web page represents a node and each
hyperlink represents an edge. The edges in the web graph
are generated in a streaming fashion by a web-crawler. As
a result, different models of graph streaming have been
developed [9, 18, 8, 6, 5] in the past decade to handle such
voluminous edge streams.

Hypergraphs are a natural extension of graphs, where an
edge can represent any collection of vertices. Hypergraphs
capture more complex relationships between objects and

have been used in different application areas of computer
science including vision [23], network design [1], system
architecture [17] etc. For example, the blogosphere can
be modeled as a hypergraph, where nodes are topics and
each blog is represented by a hyperedge describing the
collection of topics that the blog covers. Different statistical
properties of this hypergraph reveal important information
about topical behavior of the blogosphere. Another example
is the community affiliation network of the social network
graph, where each node represents a member of the social
network and each community is represented by a hyperedge
covering the members of the community. All these networks
are massive in size and growing continuously. New web-logs
and communities are being created every moment and thus
they are generating a huge stream of hyperedges, which if
processed efficiently will reveal deep structural properties of
these networks.

We thus extend the graph-streaming model to hyper-
graphs, where hyperedges are streaming in. Since each hy-
peredge can be viewed as a set of vertices, we call our new
model, the set-streaming model (SS-model) of computation.
We consider two problems in this model, the maximum cov-
erage problem [12] and the set cover problem [14]. A maxi-
mum coverage problem is defined as follows: a collection of
sets S = {S1, S2, ..., Sm} is defined over a domain of ele-
ments E = {e1, e2, ..., en} with associated weights {wi}n

i=1.
The goal is to find k sets that maximize the total weight of
the elements covered. For set cover, we are interested in find-
ing minimum number of sets which cover all the elements.
In our model, sets are coming online as a stream and for
the constraint of space a set not explicitly stored in the main
memory at its arrival time, cannot be accessed in future. So-
lutions to these problems in the SS-model will be useful for
applications in scientific navigational queries [13], in multi-
topic blog alert applications, in community search on social
networks and in many other applications where the underly-
ing data resource can be viewed as a dynamic hypergraph.

In this paper, we give new algorithms for the maximum



coverage and the set cover problem in the SS-model with
strong theoretical guarantees. In addition, we elaborate on
one of their application in blog-monitoring, which we call
(Blog-Watch). We briefly motivate the Blog-Watch applica-
tion here and then describe it in detail in Section 3.1.

Blog-Watch: The blogosphere hosts millions of blogs
and grows everyday. Each blog contains posts on multiple
topics and the topics show a rich variation from one blog
to another. Sometimes blogs have overlapping topics of
interest, sometimes they are disjoint.

Given this scenario, users are likely to be interested in
the following types of questions:

• Find at most k blogs to read interesting articles on a list
of topics.

• Find a minimum collection of blogs which contains
relevant articles on a list of topics.

The challenge is how these questions can be answered
and maintained over time. In blog alert like applications
when user requests a single alert for more than one topic,
the performance is very poor. Therefore for obtaining
good results, users need to create separate alert for ev-
ery topic of their interest, which is certainly not desir-
able. Blog search applications as well cannot handle si-
multaneous search on multiple topics. For example, when
searched with topics music,travel, book and sports in a
single search query (on 15th February 2008), the Google
blog search returned the top-4 blogs as “www.wakulla.com”,
“www.dumblittleman.com”, “www.cooking guidelive.com”
and “fundraiseitforward.com”. None of these seem to match
any of the topics of music, travel, book or sports.

The expanding size of the blogosphere and its changing
nature makes the problem even more difficult. New blogs
are constantly added, and new topics are emerging. The best
set of blogs that is now related to a user’s topics of interest
will change and evolve over time. In a rapid changing sce-
nario like this, an offline algorithm that stores all the blogs
and needs to re-evaluate the result every time there is an ad-
dition of a blog or a post within a blog will not be practi-
cal in terms of both space and time. Rerunning the offline
algorithm periodically might miss some important discus-
sions on relevant topics if the period is not small enough.
Thus to maintain an updated list at all time efficiently, we
need algorithms that process the updates in blogs incremen-
tally. Also since the size of the total blogosphere is huge,
the algorithms must analyze blog-streams using very little
in-memory space. Therefore the algorithms cannot afford to
load all the blogs in memory or do heavy disk IO operations
for every update.

This problem can be solved efficiently, as we will see
in Section 3.1, by maintaining relevant statistics over the
blogs in a carefully designed data-structure and exploiting
the solutions of maximum coverage problem and the set

cover problem in the Set Streaming model (SS-model) of
computation.

Contributions: The contributions of this paper include:

1. We propose a new model of computation called the set-
streaming model (SS-model) (Section 2.2) and give a
1
4 approximation algorithm for the maximum coverage
(MC-k) problem in this model (Section 2.3). In addition
to this, we show how a log4 n + 1 approximation
algorithm for set-cover (SC) problem can be obtained
in the SS-model (Section 2.5).

2. We introduce a new blog monitoring algorithm called
Blog-Watch which on given a list of topics and a max-
imum cardinality k of the number of blogs a user is
willing to monitor, returns at most k blogs covering
those topics (Section 3). We present details of our Blog-
Watch algorithm in Section 3.1.

3. We evaluate our algorithm both on synthetic and
real blog datasets. Our preliminary experiments with
35, 000 blogs containing nearly 2 million posts demon-
strate the strength of our method (Section 4.1).

2 Coverage Problems in the Set-Streaming Model
In this section, we review some basic definitions, introduce
the SS-model and provide approximation algorithms for the
maximum coverage and the set cover problem in this model.

2.1 Background We begin by reviewing the definitions of
maximum coverage and set cover problem.

DEFINITION 1. Maximum-k Coverage (MC-k) Given a set
of elements E with an associated weight w : E → R,
|E| = n, a collection of subsets S of E and an integer k,
the maximum-k coverage problem finds k sets from S , that
maximize the total weight of the covered elements in E .

If instead of specifying k, the number of sets, a budget
B is specified and each set has an associated cost, then the
objective becomes to find a collections of sets such that
the total cost of these sets are ≤ B and the weight of the
elements covered is maximized. This is known as budgeted
maximum coverage (BMC) problem [15].

DEFINITION 2. Set Cover (SC) Given a set of elements E ,
|E| = n, and a collection of subsets S of E , the set cover
problem finds a minimum number of sets from S that cover
all the elements in E . An element e ∈ E is said to be covered
by S ∈ S , if e ∈ S.

If each set S ∈ S has an associated weight w : S → R
and the objective is to obtain a collection of sets from S
which cover all the elements and have minimum total weight,
it is known as weighted set cover (WSC) problem.



Both the problems of MC-k and SC are well-known to
be NP-Hard. There are various approximation algorithms
for SC [22, 14] achieving either one of the two competitive
factors O(log n) or f , where f is the maximum number of
sets in which a particular element occurs. A maximization
(minimization) approximation algorithm is said to be α
competitive iff the resultant solution S is always ≥ 1

α (
≤ α ) times of the optimum. For MC-k problem a simple
greedy algorithm achieves an approximation factor of 1 −
(1 − 1

k )k < (1 − 1
e ). These bounds are the best possible

assuming P 6= NP . The approximation bound for BMC and
WSC are similar to MC-k and SC respectively. However all
these algorithms are essentially offline and need to know the
elements and the sets before running the algorithm.

2.2 The Set-Streaming Model & Related Work Alon et
al.[20] introduced the online set-cover problem. In their
work, the collection of sets is known a priori and the ele-
ments are arriving online. Buchbinder and Naor [21] discuss
a primal dual framework for several packing (dual of cover-
ing) and covering algorithms and improve the approximation
bound of [20]. An online algorithm for maximum coverage
problem, when elements have unit weight is discussed in [2].
However all these algorithms have an essential feature that
the sets are known in advance. Only the elements are arriv-
ing online and the algorithms do not know in advance which
subset of elements will arrive.

We propose an alternate model for online coverage
problems, which we refer to as the set-streaming model (SS).
In this model, the elements in E are known, but the sets are
not known in advance. The sets arrive in a streaming fashion.
A solution, consistent with the stream of sets seen so far, has
to be computed on-the-fly. Only a subset of the sets seen so
far should be kept in memory. An algorithm under this model
will be said to have optimum space if the subsets of the sets
kept in the memory at any instance of time is the desired
solution. A set that is dropped at any point of time cannot
be retrieved at a later time. The model ideally allows only a
single pass over the set stream. Like some other models of
data streaming computation, if the SS-model allows multiple
passes, we call it multi-pass SS-model.

There has been previous work on online algorithm for
pipelined set-cover problem [19], where the sets are coming
online. However in the pipelined set-cover problem, the
weight of a set depends upon the order in which the set
is presented and cannot be arbitrary. None of the previous
online algorithms for MC-k and SC can be applied for these
problems in the SS-model (both single pass and multi-pass).

2.3 Online Maximum-K Coverage We begin by present-
ing a 1

4 competitive algorithm for the MC-k problem in the
SS-model. We assume that a ground set of elements E are
provided. The objective is to compute a solution close to the

optimum by storing only a few sets from the set-stream. In
the SS-model, once a set is discarded it cannot be recovered.
Our algorithm at any instance works only with k + 1 sets
and selects k of them to store. Since any optimum algorithm
will store at least k sets, our algorithm has optimum space
complexity in terms of the number of sets.

Online Maximum-k Coverage Algorithm: Let us de-
note the i-th set in the stream by Si and let Tcurr =
{T1, T2, . . . , Tk} denote at any point the k sets in the current
solution. Initially when no more than k sets are seen, Tcurr

contains all those sets. Therefore assuming a set arrives at
each time unit, at time = k, Tcurr = {S1, S2, . . . , Sk}. The
algorithm always maintains Tcurr. At any time the new set
that arrives is compared with Tcurr. Depending on whether
the new set is selected in the solution or not, Tcurr is adjusted
or left unaltered. A set not explicitly saved in Tcurr cannot
be retrieved at a later time.

The algorithm Maximum-k Coverage(Tcurr, St) de-
scribes how Tcurr is updated at time t, when St arrives in
the stream. The update procedure makes a greedy choice in
a constrained manner. Instead of always favoring the new set
if it is better by the greedy criteria, the algorithm selects it
only when the gain is substantial.

The algorithm compares the newly arrived set St with
the k sets of Tcurr in turn. From each Tj a distinct set Rj is
computed. From St, the set B is obtained. Rj represents all
those elements of Tj which will be dropped from Tcurr if Tj

is replaced by St. So e ∈ Rj iff e ∈ Tj − (St

⋃
i 6=j Ti), i.e e

is only present in Tj and not in any of the other sets in Tcurr

or St. On the otherhand B represents all the new elements
which will be included in Tcurr, if St replaces some set in
Tcurr. Therefore e ∈ B iff e ∈ St−

⋃
i Ti, i.e e is not present

in Tcurr but St contains e.
If there exists a set Tj ∈ Tcurr such that the weight

of the elements in Rj is less than twice the weight of
the elements in B, then St is selected for inclusion. St

replaces Tj if the weight of the elements in Rj , represented
by w(Rj), is minimum. Therefore St is chosen in Tcurr,
if the weight of the new elements that get covered by St

is substantially more than the weight of the elements that
get removed. Therefore the coverage of the elements are
improved significantly when the algorithm decides to change
the sets in its current solution.

To compute Rj for each set efficiently, we maintain a
chained hash table for the elements covered. Each element
has a counter associated with it. An element which gets
covered for the first time has its counter set to 1. For each
new set that covers it, its counter is incremented. While
computing Rj , for each e ∈ Tj , its counter is decremented
by 1. If the decremented value is 0 and e /∈ St, then
e ∈ Rj . All the elements in Tj with counter value of 1
are possible candidates for Rj . So only those elements are
checked. B can be computed analogously, by checking for



each element e ∈ St, whether its count is 0 in Tcurr. So all
the operations in the update procedure can be done in time
linear in size(Tcurr) =

∑k
i=1 |Ti|.

Algorithm 2.1: MAXIMUM-K COVERAGE(Tcurr, St)

if t == 0

then





Tcurr = ∅, C = ∅
for i ← 1 to k

do Ti = ∅
if t > 0 and t ≤ k

then





Ti ← Si

for each e ∈ Ti

do





if e /∈ C

then
{

count[e] = 1
C ← C ∪ {e}

else count[e] ← count[e] + 1
Tcurr ← Tcurr ∪ Ti

if t > k

then





B ← 0
for each e ∈ St

do





if e /∈ C

then





B ← B + w(e)
C ← C ∪ {e}
count[e] ← 1

else count[e] ← count[e] + 1
for j ← 1 to k

do





Rj ← 0
for each e ∈ Tj

do
{

if count[e] == 1
then Rj ← Rj + w(e)

Rmin ← MINIMUM(R1, R2, . . . , Rk)
if B ≥ 2 ∗Rmin

then





Tmin ← St

for each e ∈ Tmin

do





count[e] ← count[e]− 1
if count[e] == 0

then
{

Delete count[e]
C ← C − {e}

else





for each e ∈ St

do





count[e] ← count[e]− 1
if count[e] == 0

then
{

Delete count[e]
C ← C − {e}

return (Tcurr)

Note that it is crucial to consider St for inclusion,
only when the gain in coverage is substantial (twice in our
algorithm) over the set that it replaces. Following example
shows that if a new set is allowed to replace a set in the
current solution, whenever its gain is more than the set it
replaces, no approximation guarantee better than Θ( 1

k ) can
be obtained.

Shortcoming of Simple Greedy Strategy. Let there be
k2(k+1)

2 elements in the universe. Partition these elements
into k disjoint sets S1, S2, .., Sk, such that S1 contains
the first k elements, S2 contains the next 2k elements,, Si

contains the next iS elements and so on. Let there be k + 1
sets defined on each of Si. Call them Ti,1, Ti,2, , Ti,k, Ti,k+1.
Ti,1 contains the first i elements of Si, Ti,2 contains the
next i elements and so on. Set Ti,k+1 contains all the
elements of Si. The order in which the sets arrive is
T1,1, T1,2, , T1,k, T1,k+1, T2,1, .., T2,k+1, T3,1, .., Tk,k+1.
When T1,k+1 arrives, there are already k sets in the solution
and replacing any T1,i with T1,k+1 does not give any gain.
So T1,k+1 is discarded. Next since replacing T1,1 by T2,1 im-
proves the coverage, T1,1 is replaced by T2,1. Similarly T1,2

is replaced by T2,2 and so on. When the set T2,k+1 arrives
the current coverage contains the sets T2,1, T2,2, .., T2,k.
Replacing any of the sets with T2,k+1 does not give any gain,
so T2,k+1 is dropped. Continuing in this fashion greedy
returns the final coverage as Tk,1, Tk,2, .., Tk,k, covering k2

elements. However OPT = {T1,k+1, T2,k+1, .., Tk,k+1}.
Thus OPT covers k2(k+1)

2 elements, giving an approxi-
mation bound of 2

(k+1) . In our algorithm T3,1, T3,2 will
not remove T2,1, T2,2 etc. Therefore the set T3,k+1 will be
included and so on. In fact, for this example, our algorithm
gives an approximation ratio much better than 1

4 .
Next, we prove that the Algorithm 3.1 achieves an ap-

proximation factor of 1
4 for the maximum coverage problem

in the SS-model.

2.4 Analysis of MC-k in the SS Model Let the opti-
mum solution for MC-k be {O1, O2, . . . , Ok}. W.l.o.g we
can assume each of these Oi’s, i = 1, 2, . . . , k are dis-
joint. Otherwise let Oi denote those elements not included
in O1, O2, .., Oi−1. We charge the cost of the optimum, de-
noted by OPT , to the solution obtained by the algorithm 2.1.
If by this charging scheme each element covered by the final
Tcurr is charged at most α ≥ 1 times of their weight, then
α ∗ cost(Tcurr) ≥ OPT , or we have an 1

α approximation
algorithm for MC-k. In the same way we can define charge
on a set. The weight of a set s is the total weight of the el-
ements in s. If by the charging scheme each set in the final
Tcurr is charged at most β ≥ 1 times of their weight and
each element is charged at most α ≥ 1 times of their weight,
then we get a 1

α+β approximation algorithm for MC-k.
Charging of elements and sets can be divided into

several subcases.
Case 1: If Oi is included in Tcurr at some point of time,

let Tj = Oi at that time. Then for each element e ∈ Oi,
charge the element e ∈ Tcurr by w(e).

Case 2: Else Oi was not included when it arrived in
the stream. Let again the current cover at the time when Oi

arrived be Tcurr.



Case 2.a: For any e ∈ Oi∩Tcurr, charge the element by
w(e). That is if the element e ∈ Oi is covered by the current
solution, charge it by its weight.

We refer to the charge acquired by Case 1 and Case 2.a
as “element charge (EC)”.

Case 2.b: Now if Oi had been included, the new
elements which would have got covered are Bi = Oi −
Tcurr. Consider the elements which would have got removed
in the process. If Oi had replaced Tj , then the elements
removed would be Rj . We charge each e ∈ Rj , for j =
1, 2, . . . , k, by w(Bi)w(e)

w(∪k
j=1Tj)

.
We refer to the charge acquired in Case 2.b by “set-

charge(SC)”.

LEMMA 2.1. Each set Tj , for j = 1, 2, . . . , k, gets a charge
of at most 2w(Rj)

k , by Case 2.b, for each set Oi in optimum
which is never included in Tcurr by the algorithm (2.1).

Proof: We know Rj = Tj − {Oi ∪ (∪k
l=1,l 6=jTl)} for j =

1, 2, . . . , k. Therefore Rj ⊆ Tj and Rj ∩ Rj′ = φ, if
j 6= j′. Hence w(∪k

j=1Rj) =
∑k

j=1 w(Rj). Since Oi was
not selected by the algorithm, it must hold:

w(Bi) ≤ 2w(R1), w(Bi) ≤ 2w(R2), . . . w(Bi) ≤ 2w(Rk)

Or, we have by summing both sides of the inequality

kw(Bi) ≤ 2
k∑

j=1

w(Rj) = 2w(∪k
j=1Rj)

So we have, w(Bi) ≤ 2
kw(∪k

j=1Rj).
Therefore ∀e ∈ ∪k

j=1Rj ,

charge on e =
w(Bi)w(e)
w(∪k

j=1Rj)
≤ 2w(e)

k

Hence we get,

charge on Tj =
∑

e∈Rj

charge on e

≤
∑

e∈Rj

2w(e)
k

=
2w(Rj)

k
≤ 2w(Tj)

k

Now we show how the accumulated charge is distributed
among the elements and the sets of the final solution.
Transfer of Set-Charge:

If S replaces Tj in some iteration of the algorithm (2.1),
then w(BS) ≥ 2w(Rj). If any element e ∈ Tj − Rj is now
covered by T ′j , j′ > j, then transfer the set-charge on Tj for
e to set-charge on T ′j for e. Since set-charge on any element

e by any Oi is ≤ 2w(e)
k . The Lemma 2.1 thus holds for T ′j .

The remaining set-charge on Tj is ≤ 2w(Rj)
k . Transfer

the remaining set-charge on Tj as set-charge on S. Since

w(BS) ≥ w(Rj), and S covers only the elements in BS , the
Lemma 2.1 holds for S as well.

Now since there are k sets in the optimum cover, a set
can be charged at most k times by Case 2.b. Hence we have
the following lemma:

LEMMA 2.2. The total set-charge in the final cover, Tfinal,
returned by the Algorithm 2.1, is at most 2w(Tfinal).

Transfer of Element-Charge:
∀e ∈ Tj − Rj , e continues to remain covered after re-

placement of Tj by S. Now let R1, R2, .., Rl be all the ele-
ments removed at each iteration and B1, B2, ..., Bl be all the
elements that get newly covered in those iterations respec-
tively. Let initially all the elements covered by the first k
sets be B0. Let the final elements which are covered be de-
noted by F , where w(F ) =

∑
i>=0 w(Bi)−

∑
i>=1 w(Ri).

We have,

2w(R1) < w(B1), 2w(R2) < w(B2), . . . , 2w(Rl) < w(Bl)

Or, 2
∑

i>=1 w(Ri) <
∑

i>=1 w(Bi). Hence we obtain:

2
∑

i>=1

w(Ri) ≤
∑

i>=1

w(Bi) =
∑

i>=0

w(Bi)− w(B0)

= w(F ) +
∑

i>=1

w(Ri)− w(B0)

Or,
∑

i>=1 w(Ri) < w(F ) − w(B0) < w(F ). Now since
the element-charge on the elements which are removed does
not exceed their weight and

∑
i>=1 w(Ri) < w(F ), the

element-charge on the removed elements is at most w(F ). In
addition to this, each element in F might have an element-
charge. Therefore, noting that w(Tfinal) = w(F ), we have
the following lemma:

LEMMA 2.3. The total element-charge in the final cover,
Tfinal, returned by the Algorithm 2.1, is at most 2w(Tfinal).

Finally we have the theorem,

THEOREM 2.1. Algorithm 3.1 achieves an approximation
factor of 1

4 for the MC-k problem in the SS model.

Proof: Total set-charge and element-charge is ≥ w(OPT ).
And total set-charge and element-charge ≤ 4w(F ) from
the Lemma 2.2 and 2.3. Hence w(OPT ) ≤ 4w(F ), or
w(F ) ≥ 1

4w(OPT ).

2.5 Online Set-Cover If multiple passes are allowed (pre-
cisely log2 n(log4 n+1) passes), then the algorithm for MC-
k can be used to give a (log4 n+1) approximation algorithm
for SC. The algorithm is an adaptation of SCG algorithm
from [4].



Algorithm 2.2: SET COVER(g)

lower ← 1
upper ← n
while upper > lower

do





Lcurr ← ∅
Ê ← E
g ←

⌊
lower+upper

2

⌋

for i ← 1 to log4 n + 1

do





Tcurr ← ∅
Tcurr ← Maximum-g Coverage(Ê)
Lcurr ← Lcurr ∪ {Tcurr}
Ê ← E − E(Lcurr)

if Ê == ∅
then

{
upper ← g

else
{
lower ← g

g ←
⌊

lower+upper
2

⌋

g ← upper
Lcurr ← ∅
Ê ← E
for i ← 1 to log4 n + 1

do





Tcurr ← ∅
Tcurr ← Maximum-g Coverage(Ê)
Lcurr ← Lcurr ∪ {Tcurr}
Ê ← E − E(Lcurr)

return (Lcurr)

Suppose we are able to guess l∗, the optimum number
of sets in the cover. We will run the MC-k algorithm with
k = l∗. By the approximation guarantee of Algorithm 2.1,
the number of elements covered is at least 1

4 -th of the total
elements. Iterating this algorithm for log4 n+1 times results
in a solution that covers all the elements. Since in each
iteration at most l∗ sets are included, we obtain a solution
which contains at most l∗(log4 n + 1) sets.

To guess l∗, remember that 1 ≤ l∗ ≤ |S|. We do a
binary search in this interval. If our guessed value g < l∗,
then by iterating for log4 n + 1 times, the obtained sets
will not be able to cover all the elements. If the guess
g ≥ l∗, all the elements get covered in log4 n + 1 iterations.
Therefore if with our current guess, all the elements are
not covered in log4 n + 1 iterations, we increase our guess
(increase the lower boundary of binary search), else we lower
the guess (decrease the upper boundary of binary search).
Using Θ(log2 n) iterations we will be able to guess l∗ within
an interval of l∗ ± 1. Therefore all together we require
log2 n(log4 n + 1) iterations to obtain an approximation
factor of (log4 n + 1).

Algorithm 2.2 describes the SC algorithm in the SS-
model in detail. In it, lower and upper represent the two
boundaries of the guessed value of the optimum set cover.

g represents the guessed value. Here, one function call to
Maximum-g Coverage(Ê) runs Algorithm 2.1 for the entire
stream of sets, considering only the elements in Ê and
returns the cover in Tcurr. Lcurr includes all the sets in Tcurr

over the log4 n+1 iterations. E(Lcurr) denotes the elements
covered by the sets in Lcurr. The first while loop detects the
correct guess and after that, using that guess, the final cover
is obtained.

Improving the number of passes is an important open
problem. However it can be proved that in a single pass
any set streaming algorithm that maintains a minimal cover
cannot achieve an approximation guarantee better than the
trivial bound of K, where K is the maximum size of any set.
Here a cover is said to be minimal, if deleting any set from
the cover, uncovers at least one element.

3 The Blog Watch Problem
This section introduces the blog watch problem in further
detail. We first give some high-level desiderata for a blog
watch solution and then give detailed description of the
components of the Blog-Watch application and show how
the MC-k algorithm in the SS-model can be used in this
application.

Consider the following excerpts from two results re-
turned in the top ten results of Google Blog Search when
searched with topics “travel + music + sports + book” on
May 2008:

Life is like a computer game.. We are all characters in
our own game fighting to get next level.... I take inspiration
from street/ skate/ sports culture, subcultures and tribes but
also music, animals, comics, computer games, science and
science fiction, ...

Do you watch any sports on TV/which ones?: Nope.
I’m not too into sports. Do you watch music videos?:
Sometimes. Do you like watching I Love the 80’s even if
you weren’t living in the 80’s?

When searching for good blogs to read on music and
sports, it is unlikely that blogs containing these posts will be
of interest. Among the other eight returned entries, only two
were remotely related to the topics. These keyword-based
searches are unlikely to retrieve appropriate results, since
they apply AND semantics and try to retrieve blog-posts
that match all of the topics they specify. A better solution
is returning a collection blogs/posts which together covers
the topics, without the requirement that each blog covers all
topics of interest.

Here, we propose a Blog-Watch application for moni-
toring blogs that avoids these shortcomings. In this setting,
users specify a set of topics in which they are interested, and
the algorithm returns a set of blogs that the users should mon-
itor for upcoming posts. Users specify the maximum number



of blogs they are willing to monitor and the application fig-
ures out which blogs best satisfy the user’s requirements.

The blogosphere is growing very quickly; new posts and
new blogs are getting created every moment. In addition,
as blogs evolve, the topics they cover change as well. A
blog watch algorithm must be able to maintain the set of
blogs for each user very efficiently, needs to scale with the
growth of the blogosphere, and needs to be able to adapt to
changing blog topics. The algorithm should update the list
of recommended blogs for each user efficiently in memory
as new blogs and posts are available, without requiring
intensive disk I/O operations.

Therefore to summarize, the essential properties of
Blog-Watch are:

• fast incremental update procedure for scalability,

• efficient use of memory space, and

• ability to adapt to evolving blog topics.

Our proposed Blog-Watch system requires a crawler,
an input module, an estimator module and a monitoring
module. The crawler handles the blog-stream and collects
new posts and new blogs as they are available. Using proper
indexing and the estimator module, for each new-coming
blog or updated blog (because of new posts), a set of topics
is determined. These sets represents the topics that each
blog covers. The input module allows users to maintain
their preferences and watches. The input module helps
in establishing weight for each topic for every user. The
monitoring module obtains this set-stream and perform the
main algorithmic tasks. We describe the modules in detail
next.

3.1 Blog Watch Modules In order to do a good job at
monitoring blogs, Blog-Watch needs to estimate how well
a blog covers a topic. It also needs to discover when a
blog previously not selected becomes an attractive choice
and must be added to the watch list, and it also needs
to determine when a blog must be dropped. We describe
a few estimators which are essential to maintain and will
help to establish connection between Blog-Watch with the
maximum coverage algorithm.

Estimators: The topic coverage estimator predicts,
given a blog and a topic, whether the blog covers that topic
well. Topic coverage estimators can be classified into two
categories: attribute-based estimators and collective estima-
tors. Attribute-based estimators are further categorized into
frequency-based and concentration-based estimates1.

Attribute-based estimators are local estimators for each
blog. Users tag each post they write with a sequence of cate-
gories. The categories from each post in a blog are collected

1Our current implementation of Blog-Watch uses variations of attribute-
based estimates only.

to form a category distribution vector (CDV) for each blog.
Frequency-based estimate (FE) and concentration-based es-
timate (CE) uses CDV to determine whether a blog b cover a
topic t.

• Frequency-based estimate: The frequency-based esti-
mate counts the number of posts in b on the category
t over a time window. Let f(t, b) denote the count of
posts on topic t in the blog b in the time window. Then if
f(t, b) ≥ θFE , t is reported as a topic covered in b. Here
θFE is a threshold.

• Concentration-based estimate: The concentration-based
estimate depends on the density of posts on the topic t in
b over a time window. If Tb denotes the total number of
posts in blog b in the time window, then if ft,b

Tb
≥ θCE , t

is reported as a topic covered by the blog b. Here θCE is
another threshold.

If the user wants to read only a few blogs but wants to
cover many topics, she/he is likely looking for summarizer
blogs. Whereas, if the number of blogs she/he is willing
to monitor is large, it is likely the user prefers blogs that
are more focussed. The concentration-based estimator can
capture this property. If user is willing to read at most k
blogs and is interested in l topics, then depending on the ratio
of k to l, and choosing θCE appropriately, the estimator can
determine whether a blog covers a certain topic.

The collective estimator considers the local goodness
property of a blog b and also the blogs which have a link from
b. Each blog b gets a local score sb,t on topic t, depending
on the attribute-based estimator. The final score of the blog
b on t is computed as follows:

(3.1) score(b, t) = sb,t +
∑

v is a neighbour of b

αsv,t

Here a blog v is a neighbor of blog b, if there is a link from
blog b to v. α is a constant between 0 and 1, known as the
decay factor. When α = 0, the above is the simple attribute-
based estimator.

In addition to topic coverage estimators, it is also pos-
sible to maintain an estimate of the growth of a blog. To
determine how much a blog has grown, we can maintain
two scores for each blog, PrevScore and CurrScore.
PrevScore reflects the score when the blog was last con-
sidered by the Blog-Watch algorithm for possible inclusion in
the recommended list. Whenever there is a new post, the cur-
rent score of the blog, CurrScore is updated. If the differ-
ence in CurrScore and PrevScore is substantial, the blog
can be reconsidered for inclusion by the algorithm. In our
current implementation, we have not used this estimator.

Indexing: Blog-Watch maintains a two-way index
structure by the blog id and topic id. For each blog, its topic
vector and list of neighbors is maintained for calculating
the various scores. The structure is indexed by the blog id,



which enables efficient update computation on each blog.
The crawler, on receiving a post from a blog, extracts the
topic tags and any reference to other blogs. It sends this
information to the index manager. The index manager uses
the index on blog id to extract the topic vector for that
blog and update it with the topic tags of the current post.
Neighbors of each blog are also kept updated similarly.

The index manager sends this updated entry to estimator
module. The index manager has a second index structure
maintained on topics. For each topic, there is a set of links
to blog ids that has a high score on that topic. There is a
third index based on userid which maintains the list of topics
a user is interested.

3.2 Monitoring Module The monitoring module makes
use of the information from the other modules and uses the
MC-k algorithm in the SS model to retrieve a set of blogs for
each user satisfying his/her interest.

We begin by defining some notations:

B: The universe of weblogs.

T : The universe of topics.

UIu: The set of topics a user u is interested in, UIu ⊆ T .

TWu(t): The interest, or topic weight, the user u has for
topic t ∈ UIu.

Categories(b): The topics that blog b covers;
Categories(b) ⊆ T .

Benefitu(B): The benefit of the blogs b ∈ B for user u:

Benefitu(B) =
∑

t∈UIu∩(∪b∈BCategories(b))

TW (t).

The correspondence of these definitions with the param-
eters of MC-k and SC is as follows: We define an element
e ∈ E for each topic t ∈ UIu. Each blog b represents a set.
The set corresponding to a blog b is Categories(b). The en-
tries in TW correspond to the weight function w : E → R.
Our Blog-Watch algorithm, given a budget of k by user u,
UIu, and TWu will find k blogs from B that cover the max-
imum number of topics in UIu. If all the topics in UIu can
not be covered by k blogs, then the topics with higher weight
will be given more preference, that is the application will
try to maximize Benefitu(B) . This problem exactly maps
to the MC-k problem. If the requirement is to cover all the
topics by using minimum number of blogs, the problem be-
comes identical to the SC problem.

Here, though UIus are known in advance, the blogs are
discovered online by the crawler. Even though a blog had
been seen earlier, the Categories(b) may change and the

blog may appear as a new one to the application. The SS-
model becomes necessary in this scenario, by processing the
blogs online in a space effective way.

Note that here in fact we are getting a stream of posts.
However topics of all the posts contained within a blog
determines the topic set of a blog. Therefore when a new
post on a new topic is added, the corresponding topic set of
the blog is updated. And this new topic set is now viewed as
the incoming set in the SS-model.

3.3 Topic and Interest Shift Note that the topics that a
blog covers may undergo changes over time. Some old
topics may fail to be covered and some new topics might
emerge in a blog. The algorithm reflects these changes in its
computation by maintaining the topic and growth estimator.
A blog which was previously not a good choice for a user
may become a viable choice as topics shift. This change will
be reflected in the growth estimator and the algorithm will
consider that blog for inclusion in its recommended list. If
there is a topic shift in one of the blogs in the recommended
list, then a lazy deletion technique can be employed. The
blog is not removed, however the blog benefit is lowered.
Therefore if a new better alternative comes, the old set
gets dropped. If user’s interest shifts, Blog-Watch uses
the topic-based index structure for fast detection of good
replacements.

4 Experimental Evaluation
In this section, we present our experimental evaluation com-
paring the approximation bounds of MC-k and SC algorithms
in the SS-model with their offline counterparts. We also
demonstrate the performance of Blog-Watch on a sequence
of topics, using attribute-based estimators, for a large collec-
tion of real-world blogs.

4.1 Results on Synthetic Data Set The first set of exper-
iments were performed on a synthetically generated data set
to compare the performance of the MC-k and the SC algo-
rithms in the SS model. In the results reported here, we con-
sidered |E| = 1000 with element weights following a normal
distribution with mean 500 and variance 200. The number of
sets was 10, 000 and their average length was 10 (the length
varies from 1 to 20 following a normal distribution). The ele-
ments for each set were chosen from E uniformly at random.
We also experimented with other distributions for generating
the sets and the weight functions. The results were qualita-
tively similar in nature.

Figure 1(a) shows the competitive analysis of MC-
k problem in the SS-model compared to the offline version.
The y axis plots the fraction of the total weight of the
elements covered by the the offline algorithm compared to
the MC-k algorithm in the SS-model. A ratio closer to 1
represents a better solution. The result is shown for different
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Figure 1: MC-k performance of offline vs. SS model. (a)
Performance ratio (b) Fraction of elements covered.

values of k. At k = 30, the worst performance ratio of 1.25
was observed. This implies the total weight of the elements
covered in the SS-model is at least (1−1/e)/1.25 = 0.504 of
the OPT. For k ≥ 40, the ratio is lower than 1.1. Figure 1(b)
shows how the fraction of elements covered grows with the
number of sets. The rate of growth of MC-k algorithm in
the SS-model is nearly same as the offline one. In the data
used, the offline algorithm covers all the elements by 92 sets,
whereas the algorithm in SS-model requires 101 sets, just 9
sets more. In this dataset, the offline greedy algorithm [14]
for SC covers the elements in 108 sets, while the online SS-
model uses 124 sets.

4.2 Results on a Real-world Blog Collection Our Blog-
Watch experiments were run on a weblog collection crawled
between July 4, 2005 to July 24, 2005 2. The data format

2http://www.blogpulse.com/www2006-workshop
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Figure 2: Topic coverage performance of BW and OBW with
FE and CE, using (a) uniform and (b) non-uniform topic
weighting.

included among other information, topic tags/categories for
each post. Our experiments were restricted to only those
posts which had non-empty English alphanumeric topic tags;
this resulted in a dataset with ∼ 35, 000 blogs and about 2
million posts. We used the attribute-based coverage estima-
tors over the topic tags of the posts to determine the topics
each blog covers. Due to the short time frame of our col-
lected data, each blog is considered for inclusion in the al-
gorithm whenever there is a new post, ignoring the growth
estimator. The growth estimator will be useful for long term
running of Blog-Watch.

A set of 100 blogs were sampled uniformly from the
dataset and a set of 20 topics were picked randomly from
the collection of topic tags of these blog posts. Table 1 lists
the 20 selected topics, which were used as the user’s interest
in our experiments. The performance of Blog-Watch is
compared with the one which instead uses the offline MC-



Topic Weight1 Weight2 Topic Weight1 Weight2
movie 3 1 life 1 1
health 3 3 art 1 1

health insurance 3 3 jewelry 1 1
internet 1 1 apartment 5 1

financial news 4 4 clothing 1 1
education 2 2 software 3 3
politics 2 2 technology 2 2
travel 4 1 blog 1 1
music 4 4 media 1 4
sports 1 1 podcast 1 1

Table 1: Distribution of preference weights on topics of
interest.

k algorithm while monitoring. We use the notation BW
and OBW to refer to Blog-Watch and its offline version.
Under the uniform interest model (all the topics have same
preference weight), the performance of BW in terms of topic
coverage is nearly identical to OBW. Figure 2(a) shows that
for uniform interest model, the number of topics covered by
BW and OBW remains same on day 1, with varying k. The
coverage on the successive days does not show any different
trend as well.

Figure 2(a) also shows that, when k is low, using CE for
coverage covers more topics than using FE. The difference
diminishes as k increases and eventually the coverage by
FE is more. This suggests that the appropriate choice of
estimator may depend on the value of k.

When the preference weights on topics are not same
and are taken from the Weight 1 column of Table 1, the
BW performance differs from the OBW. The performance
also depends on the type of coverage estimator used (FE
or CE). Figure 2(b) illustrates the different behavior of BW
and OBW for the two different coverage estimators. The
total blog benefit is more for OBW and the gain grows as
the number of blogs to be monitored increases. However
it is always within a factor of 1.3 and 1.15 over the BW
respectively for FE and CE. In these experiments we have
set θFE = b2 ∗ Number of days c and θCE = 1/2 for the
concentration-based estimates.

A sample set of blogs returned by our Blog-Watch ap-
plication when FE is used and k is set to 10 is shown
in Table 2. When CE is used, the results are quite
similar, although barbho we.typepad/lucky
was replaced by agentlebossanova.net/rio.
At the time at which these blogs were crawled,
barbhowe.typepad/lucky had a large number of
posts on movies (now its topics have changed). CE preferred
agentlebossanova.net/rio, because it covered 4
topics from the user’s prescribed list, namely travel, music,
sport and media.

Another trend that we observed in Blog-Watch is blog
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Figure 3: Relative growth of update time for OBW compared
to Blog-Watch.

continuity. When k = 5, CE is used and the preference
weights from column Weight 1 of Table 1 are chosen, the
difference in the coverage of BW and OBW is observed for
the topics “financial news” and “software”. OBW covers
the topic “financial news”, whereas in BW “software” is
covered. Note that the preference weight for financial
news is less than twice the preference weight of software.
Closer observation at the operation of BW reveals that the
blog covering financial news was crawled after the blogs
in software. Since the user’s interest in financial news is
not significantly more than software and because both of
them cannot be covered in the limited budget of k without
lowering the blog benefit, BW maintained its previous sets of
blogs. Thus BW will maintain continuity, by not switching
to a new blog unless there is a substantial gain in doing so.
A similar trend is observed when FE is used in BW.

The topic ‘apartment’ has a high weight in the Weight
1 column of Table 1 and the blog ‘allaboutguide/apartments’
covers it, when k = 5 in BW. However when there is a slight
modification in the weight distribution (column Weight 2 of
Table 1), allaboutguide/apartments is replaced by a media
blog at k = 5. The rest of the blogs chosen remained
unaltered. This shows that BW does not alter the set of blogs
substantially, when there is a little change in the preference
weights. This is another desirable property of an application
like this.

Figure 3 shows the relative growth of the time require-
ment of OBW compared to BW. The time to update the rec-
ommended list of blogs for each user in BW remains nearly
constant when a new post/blog becomes available. However
for OBW, the recommended list of blogs cannot be main-
tained incrementally. Moderate changes in the blogosphere
will require OBW to rerun the monitoring module on the en-
tire dataset. The update time thus grows proportionately with



the number of blogs in this case.

586.typepad Music,Movie, Games,TV News,
/hecklerspray Music Gossip, Current Affairs
18minutegap Politics
angelique.typepad Apple, Cell Phones,Music,iTunes,

iPod, Mobile phones,Software,
Entertainment, music,technology

allaboutguide/apartments apartments
awads.net/wp Technology, Oracle, Java, XML, SQL
barbhowe. Movie Reviews
typepad/lucky
101-healthinsurance Health, Health Insurance
101lab.net/blog Internet
freddyblog.crossnet.se Blogosphere
hotdeals.dealworld.info Furniture,OfficeDepot,Electronics,

Software,Printers,CompUSA,
Coupon,Computer Hardware
Computer Accessories,CircuitCity

Table 2: The blogs returned by Blog-Watch at k = 10 using
frequency based coverage estimator.

4.3 Discussion The experimental results indicate the ap-
proximation capability of MC and SC in SS-model is even
better than the worst case bound of 1

4 and O(log n) pre-
dicted by the theoretical analysis. For blog monitoring pur-
poses, the results verify that the streaming algorithm is ca-
pable of identifying al most the same set of blogs as an of-
fline algorithm, at significantly less cost. The update time
for the streaming algorithm remains constant, whereas for
the offline algorithm it increases more than linearly with the
growth of the blogosphere.

5 Related Work on Weblogs
In a recent work on weblogs [16], Leskovec et al. have ad-
dressed question such as: which blogs one should read to
avoid missing important stories ? The experimental results
indicate that, when the blogs have identical cost, the major-
ity of the returned blogs are on politics. When weighted by
the number of posts, the summarizers are returned. The pro-
cessing is done offline and no topic oriented blog detection
is addressed. Glance et al. [10] analyzed online discussion
about various consumer products to make timely decision
regarding brands, products and strategies in the corporate
space. They approached topic classification in discussions
with machine learning techniques and showed online win-
now classifiers do a reasonable job in this scenario. Gruhl
et al. [11] explored the dynamics of information diffusion
in weblogs using topic level propagation and individual-to-
individual propagation. Other works on blogs have focussed
on modeling traffic characteristics and communication pat-
terns [7], detecting communities using the topology of we-

blogs [3], modeling trust and influence, etc.

6 Conclusion
We have introduced a new streaming model of computation,
the Set Streaming model and have considered the problems
of maximum coverage and set cover problem in this model.
We have designed approximation algorithms with guaran-
teed approximation bound for both the problems. As an
application of these algorithms in the new model, we have
designed the blog monitoring application Blog-Watch. We
have shown how the various desirous properties of Blog-
Watch can be captured by different parameters of these ab-
stract algorithms. Incorporating all the features of Blog-
Watch using link analysis and scalable topic detection al-
gorithms is a future direction of work. Improving the ap-
proximation guarantee for the maximum coverage problem
and obtaining a trade off between the approximation guaran-
tee of set cover and the number of passes required are open
theoretical questions.
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