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ABSTRACT
Learning structured representations has emerged as an im-
portant problem in many domains, including document and
Web data mining, bioinformatics, and image analysis. One
approach to learning complex structures is to integrate many
smaller, incomplete and noisy structure fragments. In this
work, we present an unsupervised probabilistic approach
that extends affinity propagation [7] to combine the small
ontological fragments into a collection of integrated, con-
sistent, and larger folksonomies. This is a challenging task
because the method must aggregate similar structures while
avoiding structural inconsistencies and handling noise. We
validate the approach on a real-world social media dataset,
comprised of shallow personal hierarchies specified by many
individual users, collected from the photosharing website
Flickr. Our empirical results show that our proposed ap-
proach is able to construct deeper and denser structures,
compared to an approach using only the standard affinity
propagation algorithm. Additionally, the approach yields
better overall integration quality than a state-of-the-art ap-
proach based on incremental relational clustering.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data mining ; I.2.6 [ARTIFICIAL INTELLI-
GENCE]: Learning—Knowledge Acquisition

General Terms
Algorithms, Experimentation, Human Factors, Measurement

Keywords
Folksonomies, Taxonomies, Collective Knowledge, Social Meta-
data, Social Information Processing, Data Mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’11, February 9–12, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

1. INTRODUCTION
Learning structure from data has emerged as an impor-

tant problem in many domains, for example, learning gene
networks from microarray data [5] and learning the structure
of probabilistic networks from knowledge bases [10]. Here
we focus on learning complex structures from data that may
already be explicitly structured, albeit more simply.

Learning complex structures from collections of many small,
simple structures may provide insights into data that indi-
vidual small structures cannot provide. To infer complex
structures one needs machinery to manipulate and combine
structured data. For example, in order to find communities
of authors of scientific papers, one must first identify individ-
ual entities appearing among author names in co-authorship
network [1], then aggregate co-authorship relations between
the identified entities. To learn complex structures of a spe-
cific form, such as a tree or a directed acyclic graph, the inte-
gration method must have extra machinery to avoid struc-
tural inconsistencies, that are likely to appear when data is
combined arbitrarily. The task becomes even more challeng-
ing when data comes from numerous heterogeneous sources.
Such data is inherently noisy and inconsistent, and there is
certainly no single, unified structure to be found that ex-
plains all the data.

One instance of such a task is learning a taxonomy from
many smaller trees generated by many people: the so-called
folksonomy learning task [16]. In folksonomy learning, the
input, structured metadata in the form of hierarchies of con-
ceptual terms created by individual users, is combined into
a global taxonomy that reflects how a community organizes
knowledge. Users who create personal hierarchies to orga-
nize content may use idiosyncratic categorization schemes [9]
and naming conventions. Simply combining nodes with sim-
ilar names is very likely to lead to ill-structured graphs con-
taining loops and shortcuts (multiple paths from one node to
another), rather than a tree. The folksonomy learning prob-
lem has been addressed in recent work [17] using a bottom-
up approach to heuristically construct the folksonomy.

In this paper, we present a more flexible probabilistic
framework for learning complex structures with a specific
form from fragments of structured data by exploiting struc-
tural information. Our approach extends affinity propaga-
tion [7] to use structural information to guide the inference
process to combine data concurrently into more complex
structures with a desired form. We examine two strategies
for introducing structural information into affinity propa-



Animal

Wildlife Pet

Mammal BirdBird

Corvid PigeonQuail

Wren

Hawk

Animal

Wildlife Pet

Mammal BirdBird

Corvid PigeonQuail

Wren

Hawk

Animal

Wildlife Pet

Animal

PetWildlife

Animal

Bird

Wildlife

Mammal

Wildlife

Bird

Pet

Bird

AnimalAnimal AnimalAnimalAnimal

Bird

Corvid Pigeon

Bird

Quail Wren

Bird

Hawk

Bird

Pet

Animal

Wildlife Pet

Animal

PetWildlife

Animal

Bird

Wildlife

Mammal

Wildlife

Bird

Pet

Bird

AnimalAnimal AnimalAnimalAnimal

Bird

Corvid Pigeon

Bird

Quail Wren

Bird

Hawk

Bird

Pet

(a) (b)

Figure 1: Illustrative examples on (a) a commonly
shared conceptual categorization (hierarchy) sys-
tem; (b) personal hierarchies expressed by the users
based on the conceptual categorization in (a). For
illustrative purposes, nodes with similar names have
similar color.

gation: through the similarity function and through con-
straints.

2. LEARNING FOLKSONOMIES BY INTE-
GRATING STRUCTURED METADATA

We take as our motivating example user-generated struc-
tured metadata on the Social Web. We assume that groups
of users share common conceptualizations of the world, which
can be represented as a taxonomy or hierarchy of concepts.
Figure 1(a) depicts one such common conceptualization about
‘animal’ and its ‘bird’ subconcepts shared by a group of
users. When users organize the content they create, e.g.,
photographs on Flickr, they select some portions of the com-
mon taxonomy for categorization. We observe these cate-
gories through the shallow personal hierarchies Flickr users
create. There personal hierarchies, which we refer to as
saplings, are similar to how users organize their computer
files within folders and subfolders. Figure 1(b) depicts some
of the saplings specified by different users to organize their
‘animal’ and ‘bird’ images. Our ultimate goal is to infer
the common conceptual hierarchy related to ‘animal’ from
the individual saplings. One natural solution is to aggregate
saplings shown in Figure 1(b) together into a deeper and
bushier tree shown in Figure 1(a).

To learn a common tree by aggregating saplings, we need
a strategy that measures the degree to which two sapling
nodes are similar, and therefore, should be merged. Sup-
pose that we have a very simple aggregation strategy that
says two nodes are similar if they have similar names as in
the prior work [16]. From Figure 1(b), we will end up with
a graph containing one loop and two paths from ‘animal’ to
‘bird’, rather than the tree shown in Figure 1(a). Suppose
that we can also access tags with which users annotated pho-
tos within saplings, and that photos one of the ‘bird’ nodes
have tags like “pet”and“domestic” in common, while photos
belonging to the other ‘bird’ node have tags like “wildlife”
and “forest” in common. A cleverer similarity function that,
in addition to node names, takes tag statistics within a node
into consideration, should split ‘bird’ nodes into two differ-
ent groups: ‘pet bird’ and ‘wild bird’, which are put under
‘pet’ and ‘wildlife’ nodes respectively.

The similarity function plays a crucial role in sapling inte-
gration process, and a sophisticated enough similarity func-
tion that can differentiate node senses may potentially cor-
rectly integrate the final tree. However, finding and tuning

such function is very difficult. Moreover, data is often incon-
sistent, noisy and incomplete, especially on the Social Web,
where data is generated by many different users.

One possible way to tackle this challenge is to use a simple
similarity function and incorporate constraints during the
merging process. Intuitively, we would not consider merg-
ing the ‘bird’ node under ‘pet’ with the one under ‘wildlife’
because it will result in multiple paths from ‘animal’. Specif-
ically, we can impose constraints that will prevent two nodes
from being merged if (1) this will lead to links from different
parent concepts or (2) this will lead to an incoming link to
the root node of a tree. These constraints guarantee that
there is, at most, a single path from one node to another.

2.1 Personal Hierarchies in Flickr
Structured data in the form of shallow hierarchies is ubiq-

uitous on the Social Web. The social bookmarking site De-
licious allows users to bundle related tags together. On
Flickr, users can group related photos into sets and then
group related sets in collections. Some users create multi-
level hierarchies containing collections of collections, etc.,
but the vast majority of users who use collections create
shallow hierarchies, consisting of collections and their con-
stituent sets. These personal hierarchies generally represent
subclass and part-of relations.

We use the term sapling to refer to the tree representing
a usually shallow personal hierarchy. A sapling is composed
of a root node ri and its child, or leaf, nodes 〈li1, ..lij〉. The
root node corresponds to a user’s collection, and inherits
its name, while the leaf nodes correspond to the collection’s
constituent sets and inherit their names. We assume that
hierarchical relations between a root and its children, ri →
lij , specify broader-narrower relations.

On Flickr, users can attach tags only to photos. A sapling’s
leaf node corresponds to a set of photos, and the tag statis-
tics of the leaf are aggregated from that set’s constituent
photos. Tag statistics are then propagated from leaf nodes
to the parent node. We define a tag statistic of node x
as τx := {(t1, ft1), (t2, ft2), · · · (tk, ftk )}, where tk and ftk
are tag and its frequency respectively. Hence, a root node’s
tags, τri , are aggregated from all the leaves’ tags, τlij

. These

tag statistics can also be used as a feature for determining
if two nodes are similar (of the same concept).

Any method that aggregates structured social metadata
to learn folksonomies has to address a number of challenges.
Social metadata is usually very sparse, with each individ-
ual user providing just a small amount of evidence, in the
form of tags or nodes, for folksonomy learning. Vocabu-
lary noise, due to idiosyncratic naming conventions, mis-
spellings, and the like, is common, and so is ambiguity and
synonymy. Moreover, there is structural noise, with users
employing varying, and even conflicting, categorization con-
ventions. Varying levels of expertise and expressiveness are
also common, with some users creating fine-grained, expres-
sive categorization schemes, and other users coarse-grained,
more general categorization schemes [17].

2.2 SAP: Incremental Clustering Approach
In a recent work [17], we investigated a relational clus-

tering method that constructs folksonomies from many per-
sonal hierarchies in an incremental manner. The folksonomy
construction starts with a seed term (which will become a
root of the learned folksonomy). Individual saplings whose



roots have the same name as the seed are clustered by using
some similarity measure, along with a predefined threshold
for merging or splitting nodes. At this step, each merged
sapling corresponds to a different sense of the seed term.
It also assumes that if root nodes are to be merged, their
leaves with similar names will also be merged. One of the
merged saplings, i.e., a particular sense of the root term,
is then selected as the starting point for growing the folk-
sonomy for that concept. Each leaf name is then used to
retrieve other saplings whose roots are similar to the name.
Subsequently, these saplings are clustered, and one whose
root is most similar to the leaf is then attached to the leaf.
Structural inconsistencies, such as loops and shortcuts have
to be removed if the attachment process creates them. This
procedure is done sequentially until the learned folksonomy
reaches at a certain depth.

Since the folksonomy has been constructed incrementally
from top to bottom, decisions to merge or split saplings at
the top of the folksonomy has to be made and fixed before its
lower portions can be learned. Consequently, only a small
portion of the folksonomy is considered at each integration
step, which can lead to a sub-optimal structure.

In this paper, we propose a probabilistic framework for
folksonomy learning that overcomes the difficulties of exist-
ing approaches. Specifically, by considering each concept
term as a node, or a data point, within a complex struc-
ture, we allow all similar nodes to merge simultaneously.
Consequently, a complex structure will appear as nodes are
combined. However, since clustering nodes arbitrarily may
lead to a structure with some undesired form, e.g., a graph
with loops and shortcuts rather than a tree, we propose a
method which exploits structural information to guide the
clustering procedure to produce a structure with a desired
form.

3. PROBABILISTIC INTEGRATION OF
STRUCTURED DATA

A key idea of folksonomy learning through sapling integra-
tion is to merge similar nodes from different saplings. Merg-
ing similar root nodes expands the width of the learned tree,
while merging the leaf of one sapling to the root of another
extends its depth. The merging process has two key sub-
components: (1) a similarity function that evaluates how
similar a pair of nodes is; (2) a procedure that decides if
two nodes should or should not be merged, based on their
similarity.

Structural information plays an important role in the merg-
ing process. Consider the case where two leaf nodes from
different saplings are about to be merged. If their parent
nodes belong to different clusters, then the merging process
will result in a structure which has two paths going to the
merged node, i.e., not a tree. But, how should structural
information be used? Intuitively, it can be specified within
the similarity function used evaluate the decision to merge
nodes. For example, similarity between two leaf nodes may
contain information about similarity of their parent (and/or
sibling) nodes. Therefore, leaf nodes whose parents are not
very similar will be less likely to merge. Alternatively, struc-
tural information can be specified explicitly through con-
straints. Such constraints will prevent leaf nodes from being
merged if their parents belong to different clusters.

In this section we present a probabilistic framework for
distributed inference, and then investigate in detail alterna-
tive ways to introduce structural information into the infer-
ence process in order to learn deep, bushy trees from many
smaller, shallow trees.

3.1 Affinity Propagation
As described in the previous section, we need an infer-

ence procedure to merge nodes, while exploiting structural
information to guide the clustering to order the integrated
data in a specific form, a tree in this context. Affinity Prop-
agation (AP) [7] offers a natural framework to incorporate
structural information.

AP is a powerful clustering algorithm that identifies a set
of exemplar points that well represent all the points in the
data set. The exemplars emerge as messages are passed be-
tween data points, with each point assigned to an exemplar.
AP tries to find the exemplar set which maximizes the net
similarity, or the overall similarity between all exemplars
and data points assigned to them. Each exemplar and its
data points is considered to be a cluster.

We describe AP in terms of a factor graph [12] on binary
variables. As recently introduced by Givoni and Frey [8], the
model is comprised of a square matrix of binary variables,
along with a set of factor nodes imposed on each row and
column in the matrix. Following notation of Ref. [8], let cij
be a binary variable indicating whether node i belongs to
node j (or, j is an exemplar of i). Let N be a number of
data points; consequently, the size of the matrix is N ×N .

There are two types of constraints that enforce cluster
consistency. The first type, Ii, which is imposed on the row
i, indicates that a data point can belong to only one exem-
plar (

∑
j cij = 1). The second type, Ej , which is imposed on

the column j, indicates that if a point other than j chooses j
as its exemplar, then j must be its own exemplar (cjj = 1).
AP avoids forming exemplars and assigning cluster mem-
berships, which violates these constraints. Particularly, if
the configuration at row i violates I constraint, Ii will be-
come −∞, which is not a very optimal configuration (and
similarly for Ej).

In addition to constraints, a similarity function S(.) in-
dicates how similar a certain node is to its exemplar. If
cij = 1, then S(cij) is a similarity between nodes i and j;
otherwise, S(cij) = 0. S(cjj) evaluates “self-similarity,” also
called “preference”, which should be less than the maximum
similarity value in order to avoid all singleton points be-
coming exemplars, since that configuration would yield the
highest net similarity. In general, the higher the value of the
preference for a particular point, the more likely that point
will become an exemplar. In addition, we can set the same
self-similarity value to all data points, which indicates that
all points are equally likely to become exemplars.

A graphical model of affinity propagation is depicted in
Figure 2 in terms of a Factor Graph. In a log-domain,
the global objective function, which measures how good the
present configuration (a set of exemplars and cluster assign-
ments) is, can be written as a summation of all local factors:

S(c11, · · · , cNN ) =
∑
i,j

Sij(cij) +
∑
i

Ii(ci1, · · · , ciN )

+
∑
j

Ej(c1j , · · · , c1N ). (1)
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Figure 2: The original binary variable model for
affinity propagation proposed by Givoni and Frey[8]:
(a) a matrix of binary hidden variables (circles)
and their factors(boxes); (b) incoming and outgo-
ing messages of a hidden variable node from/to its
associated factor nodes.

Optimizing this objective function identifies the configura-
tion that maximizes the net similarity S, while not violating
I and E constraints.

The original work uses max-sum algorithm to optimize
this global objective function, and it requires to update and
pass five messages as shown in Figure 2(b). Since each hid-
den node cij is a binary variable (with two possible values),
one can pass a scalar message — the difference between the
messages when cij = 1 and cij = 0, instead of carrying two
messages at a time. The equations to update these messages
are described in greater detail in the Section 2 of Ref. [8].

Once the clustering process terminates, the MAP config-
uration (exemplars and data points assigned to them) can
be recovered as follows. First, we identify an exemplar set
by considering the sum of all incoming messages of each cjj
(each node in the diagonal of the variable matrix). If the sum
is greater than 0 (there is a higher probability that node j is
an exemplar), j is an exemplar. Once the set of exemplars
K is recovered, each non-exemplar point i is assigned to the
exemplar k if the sum of all incoming messages of cik is the
highest compared to the other exemplars.

One can directly apply AP to combine saplings into a more
complex structure. In particular, each node in a sapling is
treated as a data point. Subsequently, similar data points
are grouped together into clusters by AP, while relations
between data points are grouped together if their child nodes
belong to the same cluster and their parent nodes also belong
to the same cluster. Nevertheless, combining saplings in
this way could produce an arbitrary graph rather than a
tree form. This is because AP does not have an explicit
procedure to avoid creating loops and shortcuts.

3.2 Expressing Structure through Similarity
Following our previous work [17], we define a similarity

measure between nodes in different saplings, which exploits
heterogeneous evidence available in the structure of the in-
put data. Basically, the similarity function is a combination
of local similarity and structural similarity. The local simi-
larity between two nodes i and j, localSim(i, j), is based on
the intrinsic features of i and j, such as their tag distribu-
tions. The structural similarity, structSim(i, j) is based on
features of neighboring nodes. If i is a root of a sapling, its
neighboring nodes are all of its children. If i is a leaf node,

the neighboring nodes are its parent and siblings. The sim-
ilarity between nodes i and j is:

nodesim(i, j) = (1− α)× localSim(i, j) (2)

+ α× structSim(i, j),

where 0 ≤ α ≤ 1 is a weight for adjusting contributions
from localSim(, ) and structSim(, ). To reduce the com-
putational complexity, we assume that nodes with different
stemmed names belong to different concepts, and as a result,
their similarity is 0. Thus, we only need to evaluate the simi-
larity between a pair of nodes with the same stemmed names
to decide whether the nodes refer to the same or different
concepts (meanings).

3.2.1 Local Similarity
To compute localSim(i, j), let tij be a number of common

tags in the top K most frequent tags of nodes i and j:

localSim(i, j) = min(1.,
tij

J
), (3)

where J is a threshold on a number of common tags.

3.2.2 Structural Similarity
Structural similarity of two nodes depends on their posi-

tions within their saplings. We define three versions:
structSimRR(, ) which computes structural similarity be-
tween two root nodes (root-to-root similarity), struct−
SimLL(, ), which evaluates structural similarity between a
leaf of one sapling to that of another, and structSimLR(, )
which evaluates structural similarity between a root of one
sapling and the leaf of another (leaf-to-root similarity).

Root-to-Root similarity. Two saplings A and B are likely
to describe the same concept if their root nodes rA and rB

have similar names and some of their leaf nodes also have
similar names. In this case, there is no need to compute local
similarity of these leaf nodes. Structural similarity between
two root nodes is then defined as follows:

structSimRR(rA, rB) (4)

=
1

Z

∑
i,j

δ(name(lAi ), name(lBj )),

where δ(., .) returns 1 if the both arguments are exactly the
same; otherwise, it returns 0; name(lAi ) is a function that
returns the name of a leaf node lAi of sapling A. Z is a nor-
malizing constant, which is defined as Z = min(|lX |, |lY |),
where |lX | is a number of children of X. We use min(, )
instead of union. When merging with a relatively small
sapling with a larger one, the fraction of common nodes
may be very low compared to total number of child nodes.
Hence, the normalization coefficient with the union (Z =
union(lX , lY )), as defined in Jaccard similarity, results in
overly penalizing small saplings. min(, ), on the other hand,
seems to correctly consider the proportion of children of the
smaller sapling that overlap with the larger sapling.

Leaf-to-Leaf similarity. Two leaf nodes, lA and lB are
likely to describe the same concept if they have a similar
name and some of their siblings also have similar names.
Structural similarity between two leaf nodes is defined as



follows:

structSimLL(lA, lB) (5)

=
1

Z − 1
((
∑
i,j

δ(name(lAi ), name(lBj )))− 1).

This is similar to structSimRR(, ) but we have to subtract
one for excluding the present pair of leaf nodes.

Root-to-Leaf similarity. Merging the root of one sampling,
rB , with the leaf, lA, of another extends the depth of the
learned folksonomy. Since we consider a pair of nodes with
different roles, their neighboring nodes also have different
roles. This would appear to make them structurally in-
compatible. Nevertheless, we expect the root of sapling A
to share some common features with the root rB. Conse-
quently, we simply define the similarity as,

structSimLR(rB, lA) = localSim(rB , rA). (6)

3.2.3 Structural Similarity with Cluster Labels
Structural similarity described above does not take the

cluster (or concept) of the term into account. For a given
pair of terms, we can use cluster labels of their neighboring
terms to help decide whether or not they should belong to
the same cluster. Intuitively, the more neighboring terms
share common cluster labels, the more similar the node pair
is. This is along the same line to the earlier work on collec-
tive entity resolution [1], where the entity identification de-
cision is based on common neighboring entities rather than
references’ features.

Let clust(i) be a function which returns the cluster label
of node i. For the root-to-root structural similarity using
cluster labels, we modify Eq. 4 simply by replacing name()
with clust(). In other words, structSimRR(rA, rB) is a nor-
malized intersection between cluster labels of A’s leaves and
B’s leaves.

For the leaf-to-leaf similarity on a pair of leaf nodes, we
can only consider the cluster label of their roots rather than
all of their siblings. This is because the cluster labels of their
root nodes have already taken cluster labels of their siblings
into account. Consequently, structSimLL(lA, lB) with clus-
ter labels is simply computed from δ(clust(rA, clust(rB)).

3.2.4 Negative Similarity
The structural similarity above does not provide an ex-

plicit force to discourage clustering that may cause incom-
ing links from different parent concepts. In some settings,
e.g.,[1], the negative similarity can be applied to discourage
the merge that violates a constraint. In our context, nev-
ertheless, this similarity is inapplicable since it is imposed
on pairwise basis. Specifically, suppose that a root node
is formed as a representative (exemplar) of a certain clus-
ter, leaf nodes having different parent clusters can still be
legally merged to the cluster. This is due to the fact that
AP only considers similarity of nodes to their exemplars. As
a result, such configuration does not violate any constraints;
therefore, incoming links from different clusters are still per-
mitted.

3.3 Expressing Structure through Constraints:
Relational Affinity Propagation (RAP)

We extend AP to add structural constraints that will en-
sure that the learned folksonomy makes sense – no loops,
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Figure 3: Relational Affinity Propagation (RAP)
proposed in this paper. (a) Schematic diagram of
the matrix of binary hidden variables (circles). Vari-
ables within the green area correspond to leaf nodes,
while those within the pink area correspond to root
nodes of saplings. Filled-in circles stand for exem-
plars. We omit E, I and S factors to simplify the
diagram. (b) Factor graph representation of RAP.

and, to the extent possible, forms a hierarchy. Since we
want the learned structure to be a tree, all nodes assigned
to some exemplar must have their parent nodes in the same
cluster, i.e., assigned to the same exemplar. To achieve this,
we must enforce the following two constraints: (1) merging
should not create incoming links to a cluster, or concept,
from more than one parent cluster (single parent constraint);
(2) merging should not create an incoming link to the root
of the induced tree (no root parent constraint). For the sec-
ond constraint, we can simply discard all sapling leaves that
are named similar to the tree root. Hence, we only need to
enforce the first constraint. The first constraint will be vio-
lated if leaf nodes of two saplings are merged, i.e., assigned
to the same exemplar, while the root nodes of these saplings
are assigned to different exemplars. Consequently, the leaf
cluster will have multiple parents pointing to it, which leads
to an undesirable configuration.

Let pa(.) be a function that returns the index of the par-
ent node of its argument, and explr(.) be a function that
return the index of the argument’s exemplar. The factor F ,
“single parent constraint”, checks the violation of multiple
parent concepts pointing to a given concept. The constraint
is formally defined as follows:

Fj(c1j , · · · , cNj) =

⎧⎨
⎩

−∞ ∃i, k : cij = 1;ckj = 1;
explr(pa(i)) �= explr(pa(k)),

0 otherwise.
(7)

Figure 3(a) illustrates the way we impose the new con-
straint on the binary variable matrix. The configuration
shown in the figure is valid since both C and D belong
to the same exemplar E and their parents, A and B, be-
long to the same exemplar A. However, if cBB = 1, then
the configuration is invalid, because parents of nodes in the
cluster of exemplar E will belong to different exemplars (A
and B). This constraint is imposed only on leaf nodes, be-
cause merging root nodes will never lead to multiple parent.
The global objective function for RAP is basically Eq. 1 plus∑

j Fj(c1j , · · · , cNj). The F-constraint acts as a penalty fac-
tor that penalizes the merging that leads to multiple parents.
Integrating saplings in such a way that maximizes this objec-



tive function will produce a structure with clusters of similar
nodes, while all nodes in each cluster must have their parents
coming from the same cluster. As in AP, we use max-sum
algorithm to optimize this global objective function, which
requires passing two additional messages.

To extend AP, we modify the equations for updating the
messages ρ, β and also derive 2 additional messages: σ and
τ to take into account this additional constraint. Following
the max-sum message update rule from a variable node to
a factor node (cf., eq. 2.4 in Chapter 8 of [2]), the message
update formulas for ρ, β and σ are simply:

ρij = S(i, j) + ηij + τij , (8)

βij = S(i, j) + αij + τij , (9)

σij = S(i, j) + αij + ηij . (10)

For deriving the message update equation for τ , we have
to consider two cases: i = j and i �= j, i.e., the τ message to
the nodes on the diagonal and τ for the rest. For simplicity,
we also assume that all leaf nodes have their index numbers
less than any roots. Hence, leaf node indices run from 1 to
L, where L is the number of leaves.

For the case i = j (for the diagonal nodes cjj), we have to
consider the update message for τ in two possible settings:
cjj = 1 and cjj = 0 (τjj(1) and τjj(0) respectively), and then
find the best configuration for these settings. The max-sum
message update rule from a factor node to a variable node
when cjj = 1 is [2]:

τjj(1) = max
S{j}

( ∑
k∈S{j};k �=j

σkj(1) +
∑

l/∈S{j} ;l �=j

σlj(0)
)
. (11)

For cjj = 0, it is

τjj(0) =
∑

k=1:L;k �=j

σkj(0), (12)

where S{j} is a subset of leaf nodes (including j) that share

the same parent exemplar. Formally, S{j} ∈ T; T ⊃ {1, · · · , L};
{j} ⊂ S{j} and all k in S{j} share the same parent exem-
plar. For Eq. 11, it favors the “valid” configuration (the
values of ckj), which maximizes the summation of all in-
coming messages to the factor node Fj . The example of a
valid configuration in this case is as follows. Suppose we
have only 3 leaf nodes: k and k′ and k′′. We would say
< ckj = 1, ck′j = 1, ck′′j = 0 > is a valid configuration if k
and k′ have their parents belonging to the same exemplar.

For Eq. 12, since no other nodes can belong to j, the valid
configuration simply sets all ckj to 0. Note that we omit
Fj from the above equations since invalid configurations are
not very optimal, so that they will never be chosen. Thus,
Fj is always 0.

From Eq. 11 and Eq. 12, the scalar message τjj is simply:

τjj = τjj(1)− τjj(0) = max

{
maxS{j}

∑
k∈S{j};k �=j σkj

0
(13)

For i �= j, we also have to consider the same subcases. For
cij = 1, we have:

τij(1) = max
Sx

( ∑
k∈Sx;k �=i

σkj(1) +
∑

l/∈Sx;l �=i

σlj(0)
)
. (14)

For cij = 0, we have

τij(0) = max
(∑

k �=i

σkj(0),max
S

( ∑
k∈S;k �=i

σkj(1) (15)

+
∑

l/∈S;l �=i

σlj(0)
))
,

where S ∈ T; T ⊃ {1, · · · , L}, and all k in S share the same
parent exemplar without the restriction that S must con-
tain x. When j is a root node, the leaf node i will never
have the multiple-parent conflict with j, but we still need
to check whether other merging leaf nodes share the same
parent exemplar to i. Therefore, we set x = {j} for this

case. Specifically, Sx in Eq. 14 is replaced by S{j}. When j
is a leaf node, however, we have to make sure that node i,
j and other merging leaf nodes have the same parent exem-
plar. Thus, we set x = {i, j}. In other words, we substitute

S{i,j} for Sx in Eq. 14. In cij = 0 case, the best configuration
may or may not have j as the exemplar, which is different
from the cij = 1 case that requires the best configuration
necessarily having j as the exemplar.

The scalar message τij , which is a difference between τij(1)
(Eq. 14) and τij(0) (Eq. 15) is as follows:

τij = min
(
max
Sx

∑
k∈Sx;k �=i

σkj , (16)

(
max
Sx

∑
k∈Sx;k �=i

σkj −max
S

∑
l/∈S;l �=i

σlj

))
.

From the above equation, since the first argument of the
formula is always larger than, or equal to the second one, its
shorter form is simply:

max
Sx

∑
k∈Sx;k �=i

σkj −max
S

∑
l/∈S;l �=i

σlj . (17)

There is one specific case that the above equation does not
cover. The case appears when both i and j are leaf nodes and
do not share the same parent exemplars. Therefore, the case
cij = 1 should never happen, and that makes τij → −∞. In
other words, we will always prefer cij = 0 to cij = 1. As a
result, the scalar message for this case is defined as,

τij(explr(pa(i)) �= explr(pa(j))) = −∞. (18)

For sake of simplifying implementation, we can use any neg-
ative value instead of −∞ to simply tell the inference pro-
cedure that we always favor cij = 0 in this case.

The inference of exemplars and cluster assignments starts
by initializing all messages to zero and keeps updating all
messages for all nodes iteratively until convergence. One
possible way to determine the convergence is to monitor the
stability of the net similarity value,

∑
i,j Sij(cij), as in the

original AP.
Recovering MAP exemplars and cluster assignments can

be done in a slightly different way to the original AP with
one extra step, in order to guarantee that the final graph is
in a tree form. In particular, for a certain exemplar, we sort
its members by their similarity value in descending order.
The parent exemplar of a cluster of nodes is determined as
follows. If the exemplar of the cluster is a leaf node, the
parent exemplar of the cluster is the parent exemplar of the
exemplar. Otherwise, the parent exemplar of the highest-
ranked leaf node will be chosen. We then split all member
nodes that have different parent exemplars to that of the



cluster. Note that a more sophisticated approach to this
task may be applied: e.g., once split, find the next best valid
exemplar to join. However, this more complex procedure is
very cumbersome – the decision to re-join a certain cluster
may recursively result in the invalidity of other clusters.

Note that RAP can be extended to induce other structure
types such as DAG. In DAG case, we simply change the
condition in Eq. 7. In particular, for a certain exemplar, its
leaf nodes can now have multiple parents, but there will be
no descendant nodes of its root nodes belonging to the same
exemplar to some ancestor nodes of its leaf nodes.

Computational Complexity
Both AP and RAP use similarity between pairs of nodes to
make cluster decisions. Standard similarity function that
only relies on node features can be pre-computed at the
first iteration, and reused throughout the inference process.
On the other hand, class label-based similarity has to be
evaluated at every iteration.1 Therefore, the computational
complexity of computing class label-based similarity grows
linearly with the number of iterations.

Let N be a number of all nodes (data points) in the data
set. Generally, it requires O(N2) operations to compute
all pairwise similarities. Nevertheless, one can apply the
blocking idea, e.g., [14], to significantly reduce the num-
ber of such pairwise computations. We use a simple block-
ing scheme, only comparing sapling nodes that share the
same stemmed name (we assume that terms having differ-
ent stemmed names will never get clustered together). Let
M be the number of unique stem terms. Hence, for each
stem term, there are N

M
nodes to be compared on average;

as a result, the computational complexity of pairwise simi-
larity reduces to O(( N

M
)2).

To determine the computational complexity of the cluster-
ing procedure, in each iteration AP requires to pass messages
to O(( N

M
)2) nodes. Therefore, the number of operations is

proportional to the number of node pairs to be compared.
RAP, however, uses additional operations to update τ mes-
sages. Specifically, it needs to (1) update all cluster labels;
(2) group nodes that share the same parent. For each node
group with the same stem name, the first operation requires
sorting nodes by their message values, which can be done
in O( N

M
log(N

M
)) operations. The second step can be done

in O( N
M
) operations with a proper data structure. Conse-

quently, RAP requires an additional O(N(1 + log N
M
)) oper-

ations per iteration compared to AP.

4. EVALUATION ON REAL-WORLD DATA
We evaluate the different settings described in the previ-

ous section on real-world data collected from Flickr and used
in recent studies [16, 17]. This data set contains collections
and their constituent sets (or collections) created by a sub-
set of Flickr users who are members of seventeen nature and
wildlife photography groups. These users had many other
common interests, such as travel and sports, arts and crafts,
and people and portraiture. All the tags associated with im-
ages in the set were also extracted. We stemmed tags, set,
and collection names. In all, the data set contains 20, 759
saplings created by 7, 121 users. A small fraction of these

1For more accurate similarity, one can re-evaluate similarity
once one of relevant nodes reassigned to a different cluster,
but this would require much more computation.

saplings are multi-level. We manually selected 32 seed terms
and used the following heuristic to identify relevant saplings.
First, we selected saplings whose root names were similar to
the seed term. We then used the leaf node names of these
saplings to identify other saplings whose root names were
similar to these names, and so on, for two iterations.

To compare the different strategies for exploiting struc-
tural information, we apply the two clustering procedures,
AP and RAP, with different similarity functions, to these
data sets. We used the following similarity functions: (1)
local : only local similarity; and (2) hybrid : local and struc-
tural similarity; and (3) class-hybrid : local and structural
similarity using class labels. To make this work compara-
ble to [17], we used the following parameter values in the
similarity functions: in local similarity Eq. 3, we set the
number of top tags K = 40, and the number of common tags
J = 4; in the hybrid similarity function, the weight com-
bination between local and structural similarity is α = 0.9
when comparing two nodes that are both roots or leaves,
and α = 0.2 when one node is a root and the other a leaf.
Note that unlike [17], there is no need to set the cluster-
ing threshold, since exemplars emerge and compete against
each other to attract other similar nodes. In all, we have
six different settings (two clustering procedures with three
similarity schemes).

We apply a strategy similar to [17] to remove inconsistent
nodes. Specifically, a inconsistent leaf node is identified by
the number of users who specified it, Nl, and its parent, Nr.
If Nl

Nr
< 0.01, the leaf node term is highly idiosyncratic, and

we classify it as inconsistency. Moreover, if there is only one
leaf node and a few root nodes in a certain cluster, we will
split the leaf node out of the cluster. This heuristic helps to
remove concepts that are less relevant to the seed term of
the folksonomy.

4.1 Evaluation Methodology
Wemeasure the performance of the different learning strate-

gies by measuring the properties of the learned tree. Specif-
ically, we evaluate both the quality and structure of the
learned tree (folksonomy). The quality of the learned folk-
sonomy is determined by comparing it to a reference taxon-
omy. Following methodology described in [17], we use the
taxonomy for classifying web pages from the Open Directory
Project (ODP)2 as a reference hierarchy. Since the ODP hi-
erarchy is relatively large, we only consider the portion of
it that overlaps the Flickr data set. We apply two met-
rics: modified Taxonomic Overlap (mTO) [16], and Lexical
Recall (LR). Lexical Recall measures term overlap between
the learned and reference taxonomies, independent of their
structure. mTO measures how well the learned hierarchy
preserves parent-child relations found in the reference tax-
onomy.

For structural evaluation, we apply two metrics: (1) net
similarity (NetSim); (2) the number of structural conflicts
(Conflicts). Net similarity measures how well the approach
can combine similar smaller structures. It is computed by
summing similarities of all nodes to their exemplars. To
make all settings comparable, we use Jaccard similarity of
the top tags to compute NetSim. The number of conflicts
measures the structural integrity of the learned tree. It is
given by the number of nodes whose parents belong to dif-
ferent clusters. This number is calculated at the end of the

2http://rdf.dmoz.org/, as of September 2008



Metric Similarity Avg
Scheme Rank
local 1.71

LR hybrid 1.39
class 1.87

local 1.55
mTO hybrid 2.32

class 1.81

local 2.84
Conflict hybrid 1.39

class 1.68

local 1.48
NetSim hybrid 2.45

class 2.03

Metric Similarity Avg
Scheme Rank
local 1.61

LR hybrid 1.39
class 1.94

local 1.61
mTO hybrid 2.26

class 1.81

local 2.29
Conflict hybrid 1.39

class 2.10

local 1.39
NetSim hybrid 2.35

class 2.23

(a) AP (b) RAP

Table 1: The table compares the performance of
(a) AP and (b) RAP, when using different similarity
schemes on various metrics. The numbers show the
average ranks across all 32 seeds. The lower rank,
the better performance.

final iteration, just before the last step that removes struc-
tural conflicts that may still appear. The smaller the value,
the more consistent the learned structure.

4.2 Results
Wemeasure how using structural information, either through

structural similarity or through structural constraints, af-
fects the quality of the learned folksonomy. To begin, we
first evaluate the performance of different similarity schemes
(with or without structural information) by running them
with AP and RAP. Since all learning stratategies tend to
produce more than one tree, we average their performance
across all induced trees. We report performance of each
learning strategy on a particular metric by ranking it against
all other strategies and averaging the rankings across all data
sets. This gives a measure of how often a strategy outper-
forms others. Average rankings are summarized as in Ta-
ble 1(a) for AP and in Table 1(b) for RAP.

From Table 1, all similarity schemes perform in a similar
manner in both AP and RAP. Specifically, structural infor-
mation in the similarity function (hybrid and class-hybrid)
does help reduce the number of structural conflicts in both
AP and RAP. Nevertheless, these similarity functions per-
formed worse on mTO and NetSim. This is because they are
more stringent than local, and cluster fewer saplings together
in the folksonomy learning task where individual saplings
are rather sparse. Therefore, “similar” structures are less
collapsed as indicated by lower NetSim. Not surprisingly,
these similarity functions do not improve mTO scores over
local. This is because mTO favors deeper trees to shorter
ones if the nodes are ordered correctly. Nevertheless, we hy-
pothesize that in domains where individual structures con-
tain rich information, hybrid similarity should outperform
local similarity.

For LR, structural information through hybrid similarity
can help recover more concepts. This is because learning
strategies with similarity function can exploit structural in-
formation when local information is not sufficient. However,
class-hybrid performs worse than hybrid in LR and in the
other metrics. We speculate that class labels at the begin-
ning of the learning process may not be reliable enough, and
that leads to the worse performance.

Clustering Scheme
Measure AP RAP

LR 1.35 1.35
mTO 1.42 1.29

Conflict 1.97 1.00
NetSim 1.39 1.55

(a) Local Similarity

Clustering Scheme
Measure AP RAP

LR 1.29 1.29
mTO 1.48 1.26

Conflict 1.97 1.00
NetSim 1.48 1.45

(b) Hydrid Similarity

Clustering Scheme
Measure AP RAP

LR 1.29 1.19
mTO 1.48 1.29

Conflict 1.97 1.00
NetSim 1.32 1.58

(c) Class-Hydrid Similarity

Table 2: The table compares the performance be-
tween AP and RAP when using (a) local, (b) hybrid
and (c) class-hybrid similarity on various metrics.
The numbers show the average ranks across all 32
seeds. The lower rank, the better performance.

The results of keeping the similarity function fixed, and
studying the effectiveness of the clustering strategy are shown
in Table 2. RAP generally outperforms AP on almost all
measures. Specifically, it recovers more concepts (better LR
score), learns structures better aligned with the reference
hierarchy (better mTO), produces significantly more consis-
tent structures (fewer Conflicts). However, RAP produces
trees with lower net similarity (NetSim), since it contains
more stringent criteria to merge saplings than AP. Note that

Next, we compare RAP with local similarity, found to be
superior to alternative clustering schemes, to the previous
folksonomy learning approach SAP [17]. Unlike SAP, the
methods proposed in this paper generally return more than
one tree. We simply evaluate the most popular tree, which
has the largest number of merged nodes at the root level.
Figure 4 displays an example of the most popular tree of
bird, which is induced by RAP with local similarity.

Due to space limitations, we only report the quality of
the learned folksonomy, as measured by mTO scores and
the number of overlapping paths (#OPaths) to the reference
hiearchy. For #OPaths, we consider two paths are “overlap-
ping” if their root (source) nodes share the same name; and
their leaf (sink) nodes share the same name. Therefore, the
number of overlapping paths are enumerated by counting
how many leaves in the learned folksonomy share similar
names to some leaves in the reference hierarchy. Since mTO
is computed from the overlapping paths, the approach that
yields higher mTO and higher #OPaths at the same time
is preferable. Note that we cannot compare RAP with SAP

on Conflicts and NetSim metrics because of their algorith-
mic difference. In particular, RAP provides an approximate
solution, which often contains some conflicts in a “difficult”
case. In SAP, however, conflicts are heuristically removed as
a tree grows. Moreover, it’s impossible to compute NetSim
on a SAP tree since SAP does not identify any exemplars.

As shown in Table 3, RAP with local similarity can pro-
duce more consistent taxonomies compared to SAP (15 vs.
12 cases). Moreover, if considering both numbers of com-



Figure 4: A folksonomy learned for bird using RAP

with local similarity. Due to space limiations, con-
cepts with a similar name that do not merge to-
gether are visualized in a single node with a number
in parentheses that enumerates their number.

parable paths (#OPaths) and mTO, RAP+local is clearly
superior to SAP (14 vs. 4 cases). Specifically, the former
produces more consistent structures on a higher number of
comparable paths, with respect to the reference hierarchy.

Nevertheless, AUT (a metric for measuring how detailed a
folksonomy from its bushiness and depth [17]) and LR scores
(not presented in the table) of trees produced by RAP are
inferior to SAP (6 vs. 24 cases, and 12 vs. 19 cases re-
spectively). This is because of the nature of AP and its
extension, RAP, that allows different trees to emerge simul-
taneously. In many cases, these trees attract the most simi-
lar structures to it. Compared to SAP, which greedily grows
one tree at a time, attracting all similar concepts to it, RAP

assigns concepts to different trees with which they have the
best fit. Since we only consider one of the trees in the evalu-
ation, there is a high chance that the selected tree contains
relatively fewer unique concepts and so is not bushier than
SAP’s tree.

The overall experimental results clearly suggest that the
proposed approach (RAP), which incorporates structural in-
formation through constraints during probabilistic inference
process can learn better, more consistent structures. We
speculate that RAP can be even more advantageous in do-
mains where heuristics for correcting the learned structure
to a specific form are difficult to specify and expensive to
carry out.

5. RELATED WORK
Learning from structured data has emerged as a popular

research area in machine learning. Closest to ours is work on
learning systems of concepts [11] and learning hierarchical
topics from words in documents [3]. Nevertheless, our work
is fundamentally different from them in that, we “align” or
integrate many small shallow hierarchies which are explicitly

SAP RAP + local
seeds #OPaths mTO #OPaths mTO
africa 27 0.895 37 0.869
anim 92 0.659 106 0.656
asia 85 0.788 43 0.785
australia 27 0.665 46 0.672
bird 22 0.755 38 0.714
build 0 0.000 0 0.000
canada 27 0.587 47 0.689
cat 0 0.000 1 0.508
c. america 2 0.754 6 0.863
citi 0 0.000 0 0.000
countri 4 0.665 1 0.000
craft 0 0.000 14 0.400
dog 1 1.000 4 1.000
europ 301 0.670 133 0.596
fauna 31 0.490 14 0.529
fish 0 0.000 7 0.672
flora 18 0.481 28 0.512
flower 1 1.000 9 0.783
insect 5 0.924 18 0.836
invertebr 1 1.000 26 0.752
n. america 118 0.576 182 0.683
plant 7 0.735 11 0.795
reptil 3 0.622 4 0.625
s. africa 3 0.600 4 0.600
s. america 15 0.832 28 0.637
sport 27 0.647 114 0.649
u. kingdom 82 0.724 135 0.620
u. state 55 0.749 133 0.823
urban 0 0.000 4 0.603
vertebr 0 0.000 3 1.000
world 475 0.461 44 0.432

Summary 1429(sum) 0.557(avg) 1240(sum) 0.629(avg)

Table 3: The table compares the performance on
mTO of the proposed approach,RAP with local sim-
ilarity scheme, to the previous work, SAP [17].
The table also reports a number of comparable
paths,#OPaths to the reference hierarchies.

specified by users. Consequently, our work attempts to find
the best “alignment” or “integration,” which maximizes the
similarity between concepts and has no structural inconsis-
tencies.

In the social web domain, most of the previous work uti-
lizes tag statistics as evidence for learning broader/narrower
relations between concepts [19, 15]. Since these works are
based on tag statistics, they are likely to suffer from the
“popularity vs generality”problem, where a tag may be used
more frequently not because it is more general, but because
it is more popular among users. Moreover, the approaches
only focus on learning pair-wise relations rather than con-
structing full hierarchies. These are all different from the
present work, which focuses on exploiting existing relations
and combining them together into full hierarchies.

Folksonomy integration is similar to ontology alignment [6,
20] in that both identify matches between concepts in pairs
of structures. Nevertheless, ontology alignment differs from
our problem, since in ontology alignment there are typically
just a few structures to align, and those structures are deep
and semantically rich. Here, we focus on the much nois-
ier setting, where there are many smaller fragments created
by end users with a variety of purposes in mind. A recent
work [17] addressed this problem by applying the relational
clustering approach to exploit structure and tag statistics to
incrementally attach relevant saplings to the learned folk-
sonomies. In that work, since the folksonomy has been con-



structed incrementally from top to bottom, only a small por-
tion of the folksonomy is considered at each integration step,
which may lead to a sub-optimal structure. This is different
from the method described in this paper that integrates all
fragments simultaneously into a unified tree.

Affinity propagation, on which the present work is based,
has been applied to many clustering problems, e.g. segmen-
tation in computer visions [13], because it provides a natural
way to incorporate constraints while simultaneously improv-
ing the net similarity of the cluster assignments, which is not
trivial to handle with standard clustering techniques. In ad-
dition, no strong assumption is required on the threshold,
which determines whether clusters should be merged or not.
Moreover, the cluster assignments can be changed during
the inference process as suggested by the emergence of ex-
emplars, compared to “incremental” clustering approaches
(e.g., [1]), in which previous clustering decisions cannot be
changed. To the best of our knowledge, ours is the first ex-
tension of AP algorithm that can learn tree structures from
many sparse and shallow trees.

Several other statistical relational learning (SRL) approaches
may be applicable to this class of problems. For example,
Markov Logic Networks (MLN) [18] and Probabilistic Sim-
ilarity Logic (PSL) [4], are generic frameworks for solving
probabilistic inference problems. They may be used for folk-
sonomy learning by translating similarity function as well
as constraints into logical predicates. Since our similarity
function is continuous, hybrid MLN (HMLN) [21] would be
required. Nevertheless, AP framework is more preferable for
the present problem due to its simplicity. For some prob-
lems which require to model multiple types of relations and
constraints, MLN and PSL may be more suitable.

6. DISCUSSION AND CONCLUSION
We described a probabilistic approach, RAP, that extends

the distributed inference approach used by affinity propa-
gation to combine a large number small structures into a
few, integrated complex structures. We studied two differ-
ent ways to incorporate structural information into the in-
ference process, and applied the approach to the folksonomy
learning problem. The experimental results suggest that, in
folksonomy learning setting, the approach that incorporates
structural information through constraints, RAP, can help
produce high quality folksonomies, often better than those
learned by the current state-of-the-art approach. In addi-
tion, the proposed approach is general enough for other do-
mains, in which partial structures are specified, such as tags
bundles in Delicious, files and folders in personal workspaces
and semantic networks.

Regarding future work, we would like to extend the ap-
proach to induce other classes of structures, e.g., DAGs. We
would also like to extend RAP to apply to other structure
learning problems, such as alignment of biological data. Fi-
nally, we would like incorporate more efficient inference algo-
rithm and compare the aproach to other statistical relational
learning (SRL) approaches.
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