
A Pipeline Approach to Graph Identification

Galileo Mark Namata NAMATAG@CS.UMD.EDU
Lise Getoor GETOOR@CS.UMD.EDU

Department of Computer Science, University of Maryland, College Park, MD 20742 USA

1. Introduction
There is a growing wealth of data describing networks of
various types, including social networks, physical networks
such as transportation or communication networks, and bi-
ological networks. At the same time, there is a growing
interest in analyzing these networks, in order to uncover
general laws that govern their structure and evolution, and
patterns and predictive models to develop better policies
and practices. However, a fundamental challenge in deal-
ing with this newly available observational data describing
networks is that the data is often of dubious quality – it
is noisy and incomplete – and before any analysis method
can be applied, the data must be cleaned, and missing infor-
mation inferred. In this paper, we introduce the notion of
graph identification, which explicitly models the inference
of a “cleaned” output network from a noisy input graph. It
is this output network that is appropriate for further analy-
sis. We present an illustrative example and use the example
to explore the types of inferences involved in graph iden-
tification, as well as the challenges and issues involved in
combining those inferences. We then present a simple, gen-
eral approach to combining the inferences in graph identi-
fication and experimentally show how the performance of
graph identification is sensitive to the inter-dependencies
among these inferences.

2. Motivation
Suppose we wish to understand and analyze the social net-
work of a large organization. Specifically, we wish to ex-
plore the network which identifies the individuals in the
organization, the close friendships between those individ-
uals, and the roles of the individuals. For large organiza-
tions, it may be very difficult, if not impossible, to gather
such a network directly. What may instead be available
for such an organization are the archived email commu-
nications. Using these communications, we can gener-
ate a communication network where nodes represent email
addresses, edges represent a communication between the
email addresses, and attributes for these nodes and edges
may include traffic statistics (e.g., frequency of communi-

Presented at ILP-MLG-SRL, Leuven, Belgium, 2009.

cations) and content (e.g., presence of a word or phrase in
an email). This available network, however, is noisy and
incomplete for our analysis. The nodes in the communica-
tion network do not accurately reflect the individuals in the
organization (i.e., individuals typically have multiple email
addresses). Moreover, the communication network neither
reflect the relationships between individuals (i.e., users not
only email close friends but also acquaintances and com-
petitors) nor the attributes for our analysis. Although the
communication network is not directly appropriate for our
task, we can use the correspondence between the commu-
nication and the social network that we would like to infer.
This requires identifying a subset of email addresses cor-
responding to the person nodes who use those addresses,
friends (who are likely to email each other regarding social
events), and their roles (reflected in the content of commu-
nications and/or with whom they communicate). We refer
to this process, from the available noisy network to the net-
work appropriate for our analysis as graph identification.

3. Definition
Graph identification involves identifying the output graph
from a given input graph, and involves constructing the
mapping from the input to the output graph. The output
graph (GO) is the graph that is appropriate for further anal-
ysis. Ideally, the output graph can be acquired directly. In
most cases, however, the output would be too difficult or
expensive to directly acquire. What may be available, in-
stead, is another graph which reflects the output graph but
is too noisy and incomplete to directly use for our analysis.
We refer to this available graph as the input graph (GI).
Given these graphs, we define graph identification as the
general problem of inferring the desired output graph given
a noisy input graph. The process of doing graph identifica-
tion results in a mapping from elements (i.e., nodes, edges,
and/or attributes) of the input graph to nodes in the out-
put graph, the application of an edge existence function be-
tween nodes in the output graph, and mapping attributes of
the nodes and edges in the output graph to values.

By its nature, graph identification is domain dependent.
The specific inferences needed to perform graph identifi-
cation will vary based on what the input and output graphs
and how the those graphs are related. In the scenario pre-



A Pipeline Approach to Graph Identification

sented in section 2, for example, we are interested in the
friendship network of individuals in a company as our out-
put graph while our available input graph is the company’s
email communication network. We know, given our do-
main, that the mapping from the elements of the input
graph to the nodes of the output graph is a many to one
mapping from the email address nodes of the communi-
cation graph to the person nodes of the social network.
Specifically, individuals in our social network likely own
at least one email address in the communication network.
Thus, we can identify the set of person nodes by mapping
all email address nodes which belong to the same person to
a person node in the output graph. The problem of creat-
ing this type of mapping is commonly referred to as entity
resolution. Once we define the mapping between the nodes
of the input and output graph, we can identify the set of
edges that exist between the nodes of the output graph. In
our domain, we can use the domain knowledge that people
who are friends likely email each other, likely have sim-
ilar attributes (e.g., interests) and likely communicate us-
ing terms common to that type of relationship (e.g., invita-
tions to social events). We can thus use this knowledge to
define (or learn) an edge existence function for friendship
edges which we can then apply over all people nodes in the
output graph. The problem of defining (or learning) this
existence function is commonly referred to as link predic-
tion. Finally, we know that individuals who fill a particular
role are likely to discuss their role in their communications.
We also know that social networks are often homophilic
such that individuals who fill the same role are likely to be
friends. We can use this knowledge to define a mapping for
the attribute value of a person’s role. The problem of pre-
dicting the values of these types of attributes is commonly
referred to as collective classification. Consequently, in our
example in section 2, graph identification is performed by
the application of entity resolution, link prediction, and col-
lective classification over the input graph.

Although the specific inferences in graph identification is
domain dependent, at its core graph identification is still
the problem of performing three inferences: the node map-
ping, edge existence function, and attribute value mapping.
An important aspect of graph identification is how these
three inferences should be applied and how they interact.
One method for doing graph identification involves apply-
ing a collection of local predictors for the three inferences
(e.g., applying local entity resolution (ER), link prediction
(LP ), and collective classification (CC) models). Another
method for doing graph identification involves defining a
joint model, and extracting the output graph with the most
likely configuration. For the rest of this paper, we will ex-
plore the former method. We will examine a simple, gen-
eral way the local predictors can be combined, and show,
in general, how inter-dependent these inferences are.

4. Pipeline Graph Identification
One method to perform graph identification is to apply a
collection of local predictors. The benefit of this method
is that we can use any previously defined models for each
of the individual predictors. For our scenario in section 2,
for example, this method allows us to apply a previously
learned local entity resolution, link prediction, and classi-
fication models. When applying local predictors, however,
we have to address the additional challenge of how to com-
bine these predictors. In what order should these predictors
be applied? When and how should the predictions be com-
mitted and information shared between these predictors?

In this paper, we present and analyze the most direct way of
applying these inferences, in a pipeline (Roth & Yih, 2004).
In the pipeline approach, we apply the predictors one at a
time and in sequence. Referring to the example in section 2,
we apply the entity resolution, link prediction, and collec-
tive classification in turn, as shown in Algorithm 1. In this
approach, since all predictors are applied only once and in
sequence, all predictions are committed at the end of each
turn and are available for use in the next predictor in the
pipeline.

Algorithm 1 Example Pipeline Graph Identification
Input: GI , ERmodel, LPmodel, CCmodel

Output: GO

1: Create intermediate graph, Gn

2: Gn ⇐ Gtest
I

3: Apply ERmodel on Gn (i.e., merge nodes)
4: Apply LPmodel on Gn (i.e., add links)
5: Apply CCmodel on Gn (i.e., add labels)
6: Gtest

O ⇐ Gn

5. Experiment
In order to study the pipeline approach of graph identifica-
tion, we experiment to see what strengths and weaknesses
this approach has over different types of networks. First,
we developed a novel synthetic data generator which al-
lows us to create an input and output graph, modeled after
the communication and social networks presented in sec-
tion 2. In our generator, we can control the reference, link
existence, and label ambiguity in the inference so that we
can vary the ability of each predictor, ER, LP, and CC, re-
spectively, to make an accurate inference. We generate net-
works with different ambiguity levels (Low, Med, High)
for each type of ambiguity. and perform graph identifi-
cation by applying Algorithm 1. In our experiments, we
used three commonly used predictors for the ER, LP, and
CC models. For entity resolution, we use collective rela-
tional clustering (CRC) (Bhattacharya & Getoor, 2007). In
CRC, for a given pair of nodes we use the similarity be-
tween the node entity attributes of the input graph nodes for
the feature similarity and the Jaccard-Coefficient similarity
of their neighborhoods for the relational similarity. For link



A Pipeline Approach to Graph Identification

prediction, we use logistic regression using a feature which
measures the percent similarity of the mapped input graph
node attributes of a given output graph node pair. Finally,
for collective classification, we use the iterative classifica-
tion algorithm (ICA) (Lu & Getoor, 2003), using logistic
regression for the bootstrap and relational classifiers. For a
given output graph node, we use aggregates of the attributes
over the mapped input graph nodes in the bootstrap classi-
fier. For the relational classifier, we use these aggregates,
as well as the percent of neighboring nodes (i.e., nodes ad-
jacent to a given node with a friendship edge) which have
a specific label. We train predictors, for all combinations
of ambiguity (27 in total), on one graph and test on another
graph to compute the F1 performance averaged over six
runs for each predictor. We provide specific details of the
synthetic data generator and how we compute the F1 per-
formance over our experiments in the supplementary mate-
rial.1

5.1. Results and Discussion

The results are presented in Table 1. Due to space, we only
show results where we vary one type of ambiguity while
holding the others at medium. In general, we see that good
performance of predictors early in the pipeline result in im-
proved performance of later predictors. In fact, the best
performances are seen when the entity ambiguity is low
resulting in ER performing well. Good ER performance
results in a more accurate set of person nodes, and thus a
more accurate set of mappings for use by the features of LP
and CC. We see the same trend in CC performance when
link existence ambiguity is low. LP performance improves
which results in more accurate links for the relational fea-
tures used in CC. Note though the improvement in LP per-
formance does not affect ER and the improvement in CC
performance does not affect LP and ER. This is a weak-
ness in the pipeline approach in that the flow of informa-
tion is only one way. Ideally, in graph identification, the
models and features used by the predictors should be able
to make use of predictions from all other predictors to im-
prove its performance (e.g., use labels and predicted edges
in the ER feature relational similarity, use predicted labels
in LP relational features). An obvious extension to address
this weakness is an iterative pipeline approach where the
pipeline is repeatedly applied over the network. We per-
formed an initial study of the iterative pipeline approach
but the results were inconclusive indicating a naive itera-
tive approach may not be enough. This is a subject of fu-
ture work. Next, we note that when predictors early in the
pipeline perform poorly, the effect is reduced performance
for all predictors later in the pipeline. In fact, the result-
ing reduction in performance can be drastic as shown when

1Supplementary materials are available for download from
http://linqs.cs.umd.edu/supplementary/namata-mlg09

we increase reference ambiguity. Although link existence
and label ambiguity is held constant, poor performance by
ER early in the pipeline results in up to a 0.452 drop in
LP and 0.198 in CC performance as both are forced to
make predictions over people nodes whose mapped email
address nodes inaccurately and incompletely reflect a per-
son and that person node’s friendships and attributes. Thus,
in graph identification, we need to be aware of what the
expected performance of each predictor is and how each
predictor will impact the other predictors in the overall in-
ference.

Table 1. Average and standard deviation of F1 performance of ER,
LP, and CC in the pipeline approach of various levels of ambiguity

ER (F1) LP (F1) CC (F1)
Reference Ambiguity

Low 0.758± 0.093 0.554± 0.089 0.715± 0.065
Med 0.627± 0.169 0.439± 0.148 0.677± 0.078
High 0.213± 0.033 0.102± 0.034 0.517± 0.110

Link Existence Ambiguity
Low 0.627± 0.169 0.500± 0.161 0.705± 0.066
Med 0.627± 0.169 0.439± 0.148 0.677± 0.078
High 0.627± 0.169 0.101± 0.057 0.653± 0.052

Label Ambiguity
Low 0.627± 0.169 0.439± 0.148 0.797± 0.069
Med 0.627± 0.169 0.439± 0.148 0.677± 0.078
High 0.627± 0.169 0.439± 0.148 0.517± 0.085

6. Conclusion and Future Work
In this paper, we introduce the notion of graph identifi-
cation. We discuss the types of inferences involved in
graph identification and explore those inferences using an
illustrative example problem. We present a simple, gen-
eral approach to applying these inferences in graph iden-
tification and show how important the inter-dependence
of these inferences is in accurately predicting the output
graph. In future work, we plan to further explore these
inter-dependencies by exploring alternate ways to combine
local predictors and comparing those methods to a full joint
approach to graph identification.

Acknowledgments
The work was supported by NSF Grant No. 0746930.

References
Bhattacharya, I., & Getoor, L. (2007). Collective entity resolution

in relational data. ACM Transactions on Knowledge Discovery
from Data, 1, 1–36.

Lu, Q., & Getoor, L. (2003). Link-based classification. Proceed-
ings of the International Conference on Machine Learning.

Roth, D., & Yih, W. (2004). A linear programming formulation
for global inference in natural language tasks. Proc. of CoNLL-
2004 (pp. 1–8). Boston, MA, USA.


