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Abstract—There is increasing interest in analyzing networks
of all types including social, biological, sensor, computer, and
transportation networks. Broadly speaking, we may be inter-
ested in global network-wide analysis (e.g., centrality analysis,
community detection) where the properties of the entire network
are of interest, or local ego-centric analysis where the focus is
on studying the properties of nodes (egos) by analyzing their
neighborhood subgraphs. In this paper we propose and study
ego-centric pattern census queries, a new type of graph analysis
query, where a given structural pattern is searched for in every
node’s neighborhood and the counts are reported or used in
further analysis. This kind of analysis is useful in many domains
in social network analysis including opinion leader identification,
node classification, link prediction, and role identification. We
propose an SQL-based declarative language to support this class
of queries, and develop a series of efficient query evaluation
algorithms for it. We evaluate our algorithms on a variety of
synthetically generated graphs. We also show an application
of our language in a real-world scenario for predicting future
collaborations from DBLP data.

I. INTRODUCTION

Network analysis is an area of growing importance in a
variety of domains including the social sciences, biology,
communications, ecology, finance, the internet, law enforce-
ment, national security, social media and others. Most of the
work in network analysis focuses on either (a) global macro-
level analysis characterizing properties of the entire network
and communities (subgraphs) within the network, or (b) local
micro-level analysis characterizing properties of the actors
(nodes) in the network. Macro-level analysis is important
for characterizing networks and understanding the evolution
of networks; examples of such analysis include measuring
structural properties like degree distribution, diameter, and
graph cohesion [30], and discovery of patterns or motifs in the
network [28], [27], [6], [7], [21], [38]. Micro-level analysis fo-
cuses instead on measuring properties of the actors in network,
e.g., degree centrality, second-order degree, local clustering
coefficient etc. This is often called ego network analysis,
because it looks at the individual actors (egos) and their neigh-
bors (called alters) in the network. Although global network
analysis is well-understood and efficient computational tools
are well-developed, similar tools are not yet available for the
harder problem of ego-centric network analysis that requires
analyzing a very large number of small, largely overlapping
networks.

In this paper, we address one such problem in ego-centric
analysis, namely counting the number of structural patterns
or motifs that occur either in the k-hop neighborhoods of the
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Fig. 1. (a) Pattern that captures two couples that are friends with each
other – such a pattern may be useful in a targeted marketing application;
(b) Example pattern used in the node classification application; (c) Different
brokerage patterns – the colors denote organizations, and the function of the
broker (the middle node) depends on the organizations that the three nodes
belong to (e.g., B is a coordinator if all three are in the same organization).

nodes (for a given k), or in subgraphs defined by intersections
or unions of k-hop neighborhoods of pairs of nodes; k-hop
neighborhood of a node n is defined to be the incident
subgraph on the nodes reachable from n in k hops or less. We
refer to this type of query as an ego-centric pattern census.
We illustrate the need for such analysis using a few motivating
applications:

Targeted Marketing: Viral marketing is proving to be an
effective tool for product advertisement. Selected consumers
are given a product with the hope that they will like the
product and recommend it to their friends. These consumers
must be chosen wisely to minimize the cost and maximize
the benefits of advertising. Simple criteria such as picking
consumers with the most friends, or consumers that are
connected to many other consumers through short paths,
are typically used. However the ability to identify richer
structures is desirable in many cases. For example, a travel
agency may wish to identify couples that have either the
largest number of couples in their combined network, or the
largest number of couple pairs, i.e., couples who are friends
with couples. The latter structure is depicted in Figure 1(a).

Node Classification: In collective classification [32], a node’s
neighborhood is used to predict the node’s own class label.
For example, in a collaboration network, a scientist who



collaborates mostly with scientists from a specific field (e.g.,
databases or software engineering) is likely to be from
the same field. In a family relationship network (with “is
married to” and “is parent of” relationships), for each child
we may wish to count the number of relatives up to 3 hops
away who are smokers (or obese), with their parents also
being smokers (or obese). This could be a measure of the
risk of being a smoker (or obese) for the child, and can be
used for predicting that risk. The pattern of this query is
depicted in Figure 1(b).

Structural Balance: In social balance theory, signed net-
works are networks that have positive and negative signs on
their links, denoting whether a link expresses a positive tie
(e.g., friendship) or a negative tie (e.g., foe) [10]. In signed
networks, triangles with an odd number of negative links
(one or three) are considered unstable. In such networks,
we can measure the amount of instability in each node’s
ego network by counting the number of unstable triangles
in its k-hop neighborhood.

Brokerage Analysis: In organizational theory, management
scientists are interested in the roles different individuals play,
both within an organization, and across organizations. For
example, in a transaction network, the middle node in a
directed triad (e.g., node B in the triad A → B → C) is
called a coordinator if all three are in the same organization,
or a gatekeeper if A is in a different organization than B
and C. Figure 1(c) shows the different brokerage types. A
brokerage score of a given type can then be computed for
a node by counting the number of patterns of that type in
which the node occurs as the middle node.

Graph Indexing: Finally, counts of specific structural pat-
terns in every node’s k-hop neighborhood in a large graph
are regarded as node signatures and are often used for
subgraph pattern matching to prune the search space [43].
Our algorithms can be used to efficiently build sophisticated
signatures, that can be used when searching for large,
complex subgraphs.

The problem of ego-centric pattern census combines elements
from micro-level ego-centric network analysis, subgraph pat-
tern matching, and motif counting. The goal of subgraph
pattern matching is to find all matches of a given query graph
in the database graph. While the general problem of pattern
matching is NP-complete, there is much work on designing
efficient algorithms and index data structures to answer those
queries [20], [43], [44], [37]. Motif counting, on the other
hand, is the problem of counting specified structural patterns
of small sizes in the network [28], [27], [4], [6], [7], [21],
[38]. Motif discovery typically does not take node or edge
attributes into account, but rather depends solely on the pattern
structure. It is commonly performed on naturally occurring
graphs like biological networks [28], or computational graphs
such as software graphs [38] or computer network graphs [3].
In these works, motif profiles (i.e., counts of different motif
structures in the graph) have proven to be a strong indicator
of a network’s function. Local motif counting (i.e., counting

motifs that a node is part of) has also been recently used as
a tool to classify a node’s role. For example, Kerrebroeck et
al. [39] count the number of loops a node is part of, and
use it as a measure to quantify the node’s importance in the
network. Prüzlj [31] proposes the notion of local graphlet
degree distribution as a means for network comparison.

Several ego-centric measures can be expressed as ego-
centric pattern census queries with very simple input patterns,
and can be seen as special cases of ego-centric pattern cen-
sus. For example, an ego-centric measure like node degree
corresponds to searching for a pattern of a node in a 1-hop
neighborhood, and clustering coefficient (and its k-clustering
coefficient version [22]) can be expressed in terms of counting
edge patterns in 1-neighborhood (and k-neighborhood, respec-
tively). Similarly, Jaccard coefficient of a pair of nodes can
be computed by counting a node pattern in the nodes’ 1-
neighborhood intersection and union.
Our approach and contributions: In this work we investi-
gate ego-centric pattern census queries, and develop efficient
techniques for executing them. Our key contributions include:
• We introduce a flexible declarative SQL-based query lan-

guage for specifying ego-centric pattern census queries.
Our query language allows users to specify the neighbor-
hood size (k), the set of focal nodes (or pairs of nodes),
and the pattern to be counted.

• We propose an efficient graph pattern matching algo-
rithm, and show that it outperforms GraphQL [20], a
recent graph pattern matching system.

• We introduce two query evaluation algorithms for the
ego-centric census queries, one based on searching from
nodes to patterns (node-driven) and another based on
searching from patterns to nodes (pattern-driven).

• We empirically evaluate our algorithms on a variety of
real-world and synthetic data.

Outline: The rest of paper is organized as follows. In Sec-
tion II we present the data model and our language specifica-
tion. In Section III, we propose an efficient pattern matching
algorithm that is used as part of the algorithms in Section IV
that we propose for evaluating pattern census queries. In
Section V we discuss experimental performance evaluation
through synthetic datasets and workloads. In addition, we
use our language to design a link prediction experiment over
DBLP and report its results. We discuss related work in detail
in Section VI.

II. DATA MODEL AND LANGUAGE SPECIFICATION

We begin with a brief discussion of the graph data model,
and some basic definitions. We denote the database graph by
G = (VG, EG), where VG and EG denote the sets of nodes
and edges respectively. The database graph may be directed or
undirected, and both the nodes and the edges can have arbitrary
sets of attributes (stored as attribute-value pairs). Similarly
we denote the pattern graph by P . A pattern graph may be
associated with a set of predicates on the underlying attributes.

A pattern graph P = (VP , EP ) is said to be isomorphic to
a graph M = (VM , EM ) if there exists a bijective mapping



TABLE I
EXAMPLES OF PATTERNS AND PATTERN CENSUS QUERIES

Row # Pattern Query
1 PATTERN single_node {?A;} SELECT ID, COUNTP(single_node, SUBGRAPH(ID, 2)) FROM nodes

2 PATTERN single_edge {?A-?B;}
SELECT n1.ID, n2.ID,
COUNTP(single_edge, SUBGRAPH-INTERSECTION(n1.ID, n2.ID, 1))
FROM nodes AS n1, nodes AS n2

3

PATTERN square {
SELECT ID, COUNTP(square, SUBGRAPH(ID, 2)) FROM nodes

?A-?B; ?B-?C;
?C-?D; ?D-?A;

}

4

PATTERN triad {

SELECT ID, COUNTSP(coordinator, triad, SUBGRAPH(ID, 0)) FROM nodes

?A->?B; ?B->?C; ?A!->?C;
[?A.LABEL=?B.LABEL];
[?B.LABEL=?C.LABEL];
SUBPATTERN coordinator {?B;}

}

µ : VP → VM such that (v, v′) ∈ EP if and only if
(µ(v), µ(v′)) ∈ EM , and the predicates in P are satisfied
under µ. We say that a subgraph M of a graph G is a match
for a pattern graph P if M is isomorphic to P .

Next, we introduce our language for specifying pattern cen-
sus queries. Our pattern specification language is designed to
be general and flexible. The language is based on SQL, but our
algorithms actually operate on an disk-resident adjacency-list
graph representation, and our system can be easily extended
to support a visual pattern specification language as well.

The pattern census SQL queries are written against a logical
representation of the graph as two relations: nodes(ID,

NATTR1, ...) and edges(ID1, ID2, EATTR1, ...),
where ID is the node identifier. Attribute references in queries
are interpreted dynamically, and hence the list of attributes
does not have to be pre-specified.

For a pattern census query, we need to be able to specify
three things:

Search Neighborhoods: We need to specify the neighbor-
hoods in which to do pattern census. We currently support
specifying three types of search neighborhoods:
• SUBGRAPH(N, k): This specifies a k-hop neighborhood

around the node, i.e., the incident subgraph on the nodes
that are reachable from N in k hops or less.
• SUBGRAPH-INTERSECTION(N1, N2, k): Given two

nodes N1 and N2 and a radius k, this specifies the
intersection of the k-hop neighborhoods of N1 and N2.
• SUBGRAPH-UNION(N1, N2, k): Similar to above except

we take union instead of intersection.

Focal Nodes: We need to be able to specify for which nodes
or for which pairs of nodes to conduct the pattern census. We
use standard SQL constructs for this purpose, i.e., the user
can specify predicates that should be satisfied by the nodes or
pairs of nodes. Predicates are given in the WHERE clause of
the SQL statement.

Pattern: Our pattern specification language (see Ta-
ble I) allows the user to specify the pattern name (e.g.,
single_node, square, triad), the nodes in the pattern
(e.g., ?A, ?B, ?C), the connections (edges) between the nodes

(e.g., ?A-?B), and predicates on either the node attributes or
the edge attributes (e.g., ?A.LABEL=?B.LABEL). The struc-
tural pattern (nodes and edges) is specified using variables
(i.e., A,B,C) that can be bound to any node in the graph.
The user can also specify the direction of each edge if desired
(e.g., ?A->?B), and can specify that a particular edge should
not exist1. Table I (1-3) shows three simple patterns and SQL
queries that count the number of patterns in different types of
neighborhoods. Table I (4) shows a somewhat more complex
directed pattern, that also specifies that a particular edge (from
?A to ?C) should not exist and requires all three nodes to have
the same label (this pattern corresponds to a coordinator in
brokerage analysis).

We also allow the user to specify one or more subpatterns
in the pattern, where each subpattern is specified as a subset
of the nodes in the pattern. This allows the user to precisely
dictate the types of matches that should be counted. Consider
the example shown in Table I (4). Here we specify a single
subpattern containing the middle node in the triad, and the
census is done in the 0-hop neighborhood around each node
(which contains just that node). In other words, this query
counts the number of triads in which ?B is the coordinator. It
is not possible to do this type of census without the subpattern
construct (if we simply count the number of triads in the 1-
hop neighborhood around each node, we would also count the
triads for which B is not a coordinator).

Finally, the above constructs are put together using two user-
defined SQL aggregate functions to fully specify the query to
be executed: (1) COUNTP(p, S), where p is the pattern name,
and S is the neighborhood specified using one of the subgraph
functions, and (2) COUNTSP(sp, p, S), where sp specifies
a subpattern to be counted instead.

III. SUBGRAPH PATTERN MATCHING

A key component of both of our proposed query evaluation
algorithms is a pattern matching algorithm that is used to
find all matches for the given pattern in the graph. We

1In our prototype implementation, we currently optimize queries with
selection predicates on the form ?A.LABEL=constant. Negation and join
predicates can be incorporated as a final filtering step that filters out the tuples
violating those conditions.



TABLE II
NOTATION USED IN THE PAPER

Notation Explanation
G = (VG, EG) Database graph
n, n′ Database graph nodes
P = (VP , EP ) Pattern graph
v, v′ Pattern graph nodes
M Set of matches of P in G
Vσ(G) Focal nodes, i.e., result of the SQL node selection

predicates
M A pattern match (i.e., a subgraph of G isomorphic

to P )
m,m′ Nodes in a pattern match M
N(x) Immediate neighbors of node x
N l(x) Neighbors of node x with label l
Nk(x) Neighbors of node x in radius k
S(n, k) k-hop neighborhood subgraph of node n
µ(v,M) Image of v in a match M . M is not stated when

it is clear from the context.
µ−1(m,M) The node in P which m matches. M is not stated

when it is clear from the context.

adapt the algorithm proposed recently by He and Singh [20]
(denoted GQL henceforth), by incorporating additional novel
pruning steps that lead to orders-of-magnitude performance
improvements over that prior work. Our algorithm consists
of four steps: (1) enumerate candidate matches for each
pattern node, (2) initialize candidate neighbor sets for each
candidate node, (3) simultaneously prune candidate nodes and
their candidate neighbors, and (4) extract pattern matches
directly from the pruned set of candidates and the candidate
neighbors. Although similar in spirit to GQL, our algorithm
differs from it in subtle but significant ways. Our algorithm is
centered around the idea of explicitly maintaining candidate
neighbors with each candidate node. This not only results in
more efficient pruning of the search space, but also results
in orders of magnitude improvements in the final stage of
extracting patterns. Our algorithm is also much simpler. In
the description that follows, we assume both the pattern and
database graphs have an explicit attribute called label drawn
from a finite label space; the unlabeled case is equivalent to
both the database and pattern graphs having the same label for
all nodes. Our algorithms are applicable to both directed and
undirected graphs; however we focus on undirected graphs
here for simplicity. Table II lists the notation used in the
following discussion.

A. Enumerating candidates of each pattern node

The first step of this algorithm is to enumerate the candidate
database graph nodes for each pattern node. We utilize node
profiles [20], [44] for this purpose. A node profile is a compact
representation of a node’s neighborhood that contains the
number of neighbors for each label. Let L = {l1, l2, . . . , lL}
denote the L vertex labels. Then, the profile P (n) of a node
n is the vector: 〈|N l1(n)|, |N l2(n)|, . . . , |N lL(n)|〉, where
N li(n) denotes the set of neighbors of n having label li. A
database graph node n is a candidate for a pattern graph node
v if and only if P (v) is contained in P (n), i.e., for each label
li ∈ L in N(v), |N li(n)| ≥ |N li(v)|. To make this filtering
process fast, each database node profile is calculated once and

stored along with the graph as an index. The result of this step
is a set of database node candidates C(v) for each pattern node
v ∈ VP .

B. Initializing the candidate neighbor sets

Let v be a pattern node and v′ be one of its neighbors
in the pattern graph. For each node n ∈ C(v) that is a
candidate for v, we maintain a set of candidate neighbors
with respect to v′, denoted by CN(n, v, v′), i.e., neighbors
of n that are a possible match to v′. We initialize each such
set by finding the neighbors of n that have the same label as
v′, i.e., CN(n, v, v′) = C(v′) ∩N(n).

C. Simultaneously pruning the candidates and their neighbors

Consider a pattern node v and a candidate node n ∈ C(v).
For every neighbor v′ of v in the pattern graph, we must have
that CN(n, v, v′) is non-empty. We use this observation to
prune the candidate sets. We make passes over the candidate
sets; in each pass, we remove those nodes from the candidate
sets that do not satisfy this condition, and we then prune
the candidate neighbor sets by identifying nodes n′ such that
n′ ∈ CN(n, v, v′) but n′ /∈ C(v′). It is not hard to prove
that the number of iterations is bounded by the number of
nodes in the pattern graph (we omit the proof because of space
constraints). Our approach is much simpler to implement than
the approach based on semi-perfect matchings proposed by He
et al. [20], but does not prune as aggressively for some types
of query patterns; however, as we show in the experimental
study, overall the performance of our approach is superior to
theirs.

D. Extracting the set of matches from candidate sets

The output of the previous step is the set of candidates
for each pattern node, along with their candidate neighbors.
To find the final set of matches, we process these sets of
candidates in a forward manner. For this purpose, we first
choose an order of the pattern nodes such that each prefix
of the order forms a connected component. Let v1, · · · , v|VP |
be that order. At step i, we produce the set of matches
for the pattern subgraph consisting of v1, · · · , vi (and all
edges between them). In step i + 1, we grow the matches
by adding possible matching nodes to vi+1. Let vj1 , · · · , vjl ,
where j1 < j2 < · · · < jl < i + 1, be the pattern
nodes that are connected to vi+1 that appear before vi+1

in the chosen order. Then we find the possible matches
for mi+1 efficiently by taking an intersection of candidate
neighbor sets: CN(nj1 , vj1 , vi+1), CN(nj2 , vj2 , vi+1), . . . ,
CN(njl , vjl , vi+1), and removing nodes that already appear
in n1, · · · , ni, if any. Since the candidate neighbor sets are
typically small, this step can be done very efficiently (as
opposed to prior work [20] where this check requires scanning
over comparatively large candidate sets). If the intersection of
the candidate neighbor sets is empty, then the corresponding
partial match is discarded. In the experimental section, we
show that utilizing candidate neighbors leads to orders of
magnitude savings in finding pattern matches.



IV. QUERY EVALUATION ALGORITHMS

Next, we develop a suite of algorithms to solve the ego-
centric pattern census problem. In this section, we present
algorithms for evaluating queries of type:

SELECT ID, COUNTP(pattern, SUBGRAPH(ID, k))

FROM NODES WHERE (PREDICATE)

We defer the discussion of how to handle queries involving
subpatterns and pairwise intersection/union search neighbor-
hoods to the appendix.

We investigate two broad methods for answering such
queries: node-driven, and pattern-driven, that can be seen as
duals of each other. In node-driven algorithms, we start from
the nodes and search for pattern matches in their neighbor-
hoods, whereas in pattern-driven algorithms, we start from the
pattern matches and look for the nodes whose neighborhoods
contain those pattern matches. We assume the existence of a
function pattern-match(G,P) which returns the set of
all matches of the pattern P in the graph G. Furthermore, we
refer to the set of database graph nodes selected as a result of
applying the node restriction predicates as Vσ(G).

A. Node-driven algorithms

The simplest node-driven algorithm, which we use as a
baseline, works by extracting the k-hop subgraph around each
node n ∈ Vσ(G), denoted S(n, k), and then performing pat-
tern matching on that subgraph. This baseline algorithm (called
ND-BAS), however, suffers from repeated and overlapping
computations, especially for k ≥ 2, and is computationally
infeasible in practice. Next we propose two node-driven meth-
ods: pivot indexing and differential counting.

1) Pivot Indexing (ND-PVOT): The pivot indexing algo-
rithm starts with finding all pattern matches in the database
graph, denoted byM, and then counts the number of matches
in each node’s neighborhood. We use the pattern-match
algorithm to find M. Then, for each node n ∈ Vσ(G), and
for each pattern match M ∈ M, we check if the nodes in
M are entirely contained in S(n, k). However, the naive way
to do this requires O(|Vσ(G)| ∗ |M| ∗ |VP |) checks, which
makes this base algorithm impractical. We next introduce two
optimizations to reduce the running time significantly.
Pattern Indexing: To avoid checking if every match M ∈M
is contained in S(n, k) for every n, we index M so that the
relevant subset of M can be retrieved when needed. For this
purpose, we first designate a node v in the pattern graph as the
pivot node, and build a pattern match index (denoted PMIv)
on M using the nodes corresponding to the pivot node in the
matches. Let PMIv(n

′) denote the list of matches returned
by the index for node n′ (i.e., the list of pattern matches in
which n′ is the image of the pattern node v).

Now, to count the pattern matches in S(n, k), we traverse
the neighborhood of every node n ∈ Vσ(G) in a breath first
fashion starting with n until we reach the maximum depth k.
For each node n′ visited in this process, we retrieve PMIv(n

′)
and for each match M ∈ PMIv(n

′), we check if VM is

completely contained within Nk(n). Next we discuss how to
efficiently reduce these containment checks further.
Avoiding Containment Checks: Let maxv denote the dis-
tance between v and the node farthest from it in the pattern
graph. Let d(n, n′) denote the shortest distance between n
and n′. Then, if d(n, n′) + maxv ≤ k, any pattern match in
M ∈ PMIv(n

′) must be completely contained in S(n, k).
Thus, for any node n′ ∈ VG for which d(n, n′) ≤ k−maxv ,

we can avoid checking whether each M ∈ PMIv(n
′) is

entirely contained in S(n, k) and instead we simply add
|PMIv(n

′)| to the overall pattern match count for n. On
the other hand, if d(n, n′) + maxv > k, we need to explic-
itly check whether all nodes in PMIv(n

′) are in S(n, k).
Specifically, let v′ denote a node in the pattern graph such
that d(v, v′) + d(n, n′) > k. Then, we must explicitly check
whether the corresponding node in M is within k hops from
n. However, if d(v, v′) + d(n, n′) ≤ k, then this check can
be avoided. Note that both d(v, v′) and d(n, n′) are easily
computed (the former can be pre-computed once for the
pattern graph, whereas the latter is available since we are using
breadth first search).
Pivot Selection: Finally, the choice of the pivot node v be-
comes critical for the performance of this algorithm. However,
it is easy to see that choosing the node with the minimum value
of maxv is optimal with respect to the number of database
nodes for which we have to do explicit checks, i.e.,

v = argminx∈VP
{d(x, argmaxy∈VP

{d(x, y)})}

The pseudocode is listed in Algorithm 2 in Appendix B.

2) Differential Counting (ND-DIFF): The second node-
driven approach that we investigate is based on the idea of
exploiting shared neighborhoods – Zhang et al. [43] use a
similar idea for building a pairwise signature index in their
proposed approach for subgraph pattern matching. Let M[n]
denote the set of pattern matches contained in S(n, k). Given
two nodes, n and n′, and M[n], we can construct M[n′]
by: (1) removing all matches M ∈ M[n] for which at
least one node in M is present in Nk(n) − Nk(n′), and (2)
by finding additional matches that contain nodes present in
Nk(n′)−Nk(n) and are fully contained in S(n′, k).

As above, we start with finding all pattern matchesM using
the pattern-match algorithm. We then build a modified
pattern match index that indexes M using all the nodes in
the match (instead of just the pivot node). In other words,
PMI[n] contains all pattern matches that contain n. We start
with an arbitrary database graph node n and compute M[n]
using PMI[n] (using a technique very similar to the above
algorithm). We then pick an arbitrary neighbor n′ of n and
compute M[n′] using M[n]. The detailed algorithm is listed
in Algorithm 3 in Appendix B.

Differential counting is appropriate for finding node-centric
counts of compact structures such as nodes or edges, but more
complex patterns will likely have parts that fall in unshared
areas, making differential counting less effective in such cases.
Furthermore, picking a random neighbor does not always



m1 m2 m3 

n2 

n1 

n3 # Queue Head
1 m1(0, 1, 2),m2(1, 0, 1), m3(2, 1, 0) m1

2 m2(1, 0, 1),m3(2, 1, 0), n1(1, 2, 3) m2

3 m3(2, 1, 0), n1(1, 2, 3), n2(2, 1, 1) m3

4 n1(1, 2, 3), n2(2, 1, 1) n1

5 n2(2, 1, 1), n3(2, 3, 4) n2

6 n3(2, 3, 4), n1(1, 2, 2) n3

7 n1(1, 2, 2) n1

8 n3(2, 3, 3) n3

9 φ −

# Queue Head
1 m2(1, 0, 1),m1(0, 1, 2),m3(2, 1, 0) m2

2 m1(0, 1, 2),m3(2, 1, 0), n2(2, 1, 2) m1

3 m3(2, 1, 0), n2(2, 1, 2), n1(1, 2, 3) m3

4 n2(1, 2, 2), n1(1, 2, 3) n2

5 n1(1, 2, 2) n1

6 n3(2, 3, 3) n3

7 φ −

(a) (b) (c)
Fig. 2. (a) Example used to illustrate the advantage of best-first traversal order. (b) and (c) Simultaneous node expansions around the pattern match
{m1,m2,m3} using breadth-first and best-first approaches, respectively.

guarantee that the shared neighborhood is large enough (we
experimented with a heuristic based on shingle ordering [12],
but the results were essentially the same and hence we do not
report those here). In addition, if there is a selection predicate
that specifies a subset of nodes to do pattern census for, then
sharing opportunities may be rarer (especially with selective
predicates). In our experimental evaluation, pivot indexing
technique always outperformed differential counting.

B. Pattern-driven Algorithms

The second class of algorithms that we propose start with
the pattern matches and search for nodes that contain the
pattern match within their neighborhoods. These can be seen
as dual to the node-driven algorithms in that, here we process
each pattern match once, but may process the nodes multiple
times, whereas in node-driven algorithms, we process each
node once, but may process each pattern match multiple times.

The baseline pattern-driven algorithm (called PT-BAS) pro-
cesses the pattern matches in the database graph independently
one at a time. As before, let S(n, k) denote n’s k-hop neigh-
borhood subgraph. For each pattern match M = (VM , EM ),
for each node mi ∈ VM , we traverse S(mi, k) in a breadth-
first fashion, and for each node in S(mi, k), we compute its
distance from mi. We then find the node mmin ∈ VM with
the least number of k-hop neighbors, and for each of its k-hop
neighbors, we check whether that neighbor is reachable within
k hops from every other node in VM .

Next we discuss a series of optimizations that improve upon
this baseline algorithm.

1) Simultaneous Traversal: In the baseline algorithm, an
edge may be traversed multiple times if it is shared among the
neighborhoods of the nodes in VM (this will often be the case).
We reduce the number of such edge traversals by traversing
the neighborhoods of all nodes in VM simultaneously, using a
breadth-first algorithm whose queue is initialized with VM . In
each step, we remove and process one node from the queue.
With each visited node n, for each pattern match node m ∈
VM , we maintain PMDm[n], the current upper bound on the
distance between n and m. When a node n is visited, we
update the distance vector for its neighbor n′ according to the
relation: PMDm[n′] = min(PMDm[n]+1, PMDm[n′]) for
each m ∈M . If at least one of the distances is updated, then
n′ is pushed on the queue. The algorithm terminates when the
queue is empty. Initially PMDm[m] = 0 for each m ∈ VM

and is equal to ∞ (or k + 1) otherwise.

2) Distance Shortcuts: We can save some initial PMD
computation steps by utilizing the fact that the pattern P is iso-
morphic to any pattern match M ∈M. We find the distances
between every pair of nodes v, v′ in the pattern, and reuse
these to initialize PMD for the nodes in VM for each match
M . Specifically, for m,m′ ∈ VM , we set PMDm[m′] =
d(µ−1(m), µ−1(m′)) if d(µ−1(m), µ−1(m′)) ≤ k, and ini-
tialize it to k + 1 otherwise (recall that µ−1(m) denotes the
pattern node ∈ P that matches the node m ∈M ).

3) Best-first Ordering: Depending on the order in which the
nodes are visited, unnecessary traversals can still occur despite
the above two optimizations. Here we present a heuristic
approach to further minimize the unnecessary computation by
choosing which node to visit next. Specifically, we choose
the node with the minimum score(n) = Σm∈VM

PMDm[n]
in the queue to visit next. The intuition behind this heuristic
is that the node with lowest score() value is the node that
is closest (of the remaining nodes) to all the pattern match
nodes combined, and likely more influential in determining
the distances from the pattern match nodes.

As an example, consider the graph in Figure 2(a). In this
graph, the pattern match nodes are m1, m2 and m3, and
k = 3. Figure 2(b) shows the operation of the simultaneous
breadth-first traversal approach. Initially, the traversal queue is
initialized with the three M nodes, m1, m2, m3, along with
their PMD values for (m1,m2,m2). At each step, the node
nh at the head of the queue is removed and its neighbors are
inserted into the queue along with their PMD values if they
do not exist, or their PMD values are updated if they already
exist. In Figure 2(b), we observe that in step 4, n1 is examined
before n2, which is examined in step 5. As a result, when n2
is examined, it updates the PMD of n1, causing it to be
reinserted, and subsequently causing n3 to be reinserted too.
Figure 2(c) shows the operation of the algorithm by employing
the best-first order. It can be seen that the reinsertions of nodes
n1 and n3 have been eliminated, and each node is visited
exactly once. The details of the algorithm are provided in
Algorithm 4 in Appendix B.

Although the best-first approach reduces the number of
traversals, it comes with an additional cost of having to
maintain a priority queue, which requires O(log |Q|) time
for insertion and deletion, where |Q| is the queue size.
However, in our implementation, we eliminate the cost of



maintaining a heap-based priority queue by observing that the
range of possible scores is pre-defined and small. Specifically,
score(n) ≤ (k + 1)|VP | (since PMDm[n] ≤ k + 1). Hence,
we use an array-based priority queue where we store the nodes
with score equal to i at position i, leading to a complexity of
O(1) for both insertions and deletions.

4) Center-based Expansion: Best-first ordering is aimed at
reducing the number of node reinsertions into the queue; a
node reinsertion may cause its neighbors to be reinserted and
hence is an expensive operation. However, best-first ordering
does not entirely eliminate node reinsertions. Our next opti-
mization is based on the idea of identifying a set of important
nodes and making sure they are not reinserted into the queue.
Let C ∈ VG denote the set of nodes (called centers) that are
picked apriori for this purpose. We pre-compute the distances
d(c, n) ∀ c ∈ C, n ∈ VG. At query time, we insert these
nodes along with their scores (computed at query time) to
the traversal queue as part of the queue initialization, i.e.,
PMDm[c] = d(c,m) for all c ∈ C and m ∈ VM . Now
once these nodes are visited (and their neighbors processed),
they will never be reinserted into the queue. Further, we can
use the triangle inequality to get tighter upper bounds on the
distances for other nodes. For any m,n′, c ∈ VG, we have
that d(m,n′) ≤ d(m, c)+d(c, n′). So when we visit a node n
whose neighbor n′ is not yet initialized, we can set the PMD
values of n′ as:

PMDm[n′] = min(PMDm[n]+1,minc∈C(d(m, c)+d(c, n′)))

Our final task is to choose a set of centers apriori. Many
network centrality measures have been proposed in the so-
cial network analysis literature to reflect various notions of
importance in social networks [40], including page rank,
betweenness centrality, closeness centrality, to name a few.
In our implementation, we pick C to be the set of nodes with
the highest degree centrality, i.e., the nodes with the highest
degrees, primarily due to its low computation cost compared
to other centrality measures.

5) Pattern Match Clustering: The algorithm presented so
far processes each pattern match independently. Since many
pattern matches may be close together, and in fact may
overlap, processing groups of them together could potentially
lead to more savings. However, the trade-off here is a larger
number of distance computations – for a pattern match M that
is processed in isolation, we compute distances of all nodes in
M to all nodes that are within k hops of at least one node in
M . If we were to process multiple pattern matches together, a
larger set of distances has to be computed (for every node in
a pattern match, we have to compute distances to all database
nodes that are within k hops of a node in any pattern match).

We use the center distance index along with the K-means
clustering algorithm to group pattern matches together. For
each match M , we construct a feature vector:

F (M) = 〈d(c1,m1), d(c1,m2), . . . , d(c|C|,m|VP |)〉
After computing these feature vectors for all the matches,

we use the K-means clustering algorithm [26] to cluster the
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Fig. 3. Query patterns used in the synthetic dataset experiments – the letters
inside the circles indicate the label of the node.

matches into K clusters. (We discuss the issues in choosing
K in the next section.) We then process each cluster indepen-
dently by simultaneously expanding around all pattern matches
in the cluster.

Incorporating this final optimization gives us our proposed
pattern-driven algorithm (called PT-OPT). The details of the
algorithm are listed in Algorithm 4 in Appendix B. (We omit
the pattern clustering optimization for simplicity.)

V. EXPERIMENTAL EVALUATION

In this section, we present the results of a comprehensive
experimental evaluation using our prototype implementation,
which is written in Java on top of the disk-based graph
database engine Neo4j [2]. We begin with comparing our
graph pattern matching algorithm with the prior approach
by He et al. [20], and demonstrate that our approach of
using candidate neighbor sets results in orders of magnitude
savings. We then compare the performance of our node-driven
and pattern-driven algorithms, and we study the effect of the
various optimizations proposed for pattern-driven algorithms
in detail. Furthermore, we discuss a real-world experiment,
where we solve a link prediction problem over DBLP through
our framework and report its results.

For the first set of experiments, we use synthetic database
graphs generated according to the preferential attachment
model [8]2. For labeled graphs, the labels are generated
randomly. The graph sizes vary from 20K nodes to 1M nodes,
with the number of edges 5× the number of nodes in all
graphs. The patterns used in the experiments are shown in
Figure 3. All experiments were performed on identical Linux
machines with 2.2 GHz quad-core processor, 8 GB of RAM,
and a 750 GB 7200 RPM disk drive.

A. Experiments using synthetic datasets

We begin with comparing the performance of our pattern
matching algorithm (CN) with GraphQL system (GQL) [20],
also written in Java. For this purpose, we use the executable
binaries that we obtained from the authors of the system.

1) Comparison with GQL for different graph sizes: Fig-
ure 4(a) shows the results (in log scale) of comparing CN with
GQL for varying graph sizes (from 200K nodes/1M edges to
1M nodes/5M edges), with labels drawn randomly from a set

2The datasets are available at: http://www.cs.umd.edu/∼walaa/datasets.html.
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Fig. 4. (a) Comparison with GQL for different graph sizes and (b) for different patterns; (c) Pattern census: varying graph size (unlabeled graphs); (d) Pattern
census: varying graph size (labeled graphs); (e) Pattern census: varying node selectivity; (f) Effect of centers on the pattern-driven algorithm; (g) Effect of
clustering on the pattern-driven algorithm; (h) Precision @50 and @600 of DBLP link prediction using different structures and hop lengths.

of 4 labels, for two query patterns: clq3 and clq4 (Figure 3).
As we can see, our algorithm is orders of magnitude better in
almost all cases (with speedups ranging from 10 to 140). Our
detailed study (omitted because of space constraints) indicates
that the speedups are attributable, in large part, to the use of
candidate neighbor sets.

2) Comparison with GQL for different patterns: Here we
compare CN and GQL using a 1M node graph (with 5M
edges), for the the labeled query patterns shown in Figure 3.
The results are shown in Figure 4(b). GQL takes 37 hours for
calculating matches for sqr (480 times the runtime of CN);
therefore, we do not show that point on the graph. The results
confirm that our algorithm outperforms GQL by orders of
magnitude.

For the next three experiments (3, 4 and 5), we compare the
following pattern census query evaluation algorithms:
Node-driven baseline (ND-BAS): In this algorithm, we ex-

tract S(n, k) for each node and use the pattern matching
algorithm to count the number of matches.

Node-driven differential counting method (ND-DIFF):
This method, based on the GADDI index method in
[43], traverses the nodes in the graph in some order, and
computes the pattern matches for one node by utilizing the
pattern matches for the prior node in the sequence.

Node-driven pivot method (ND-PVOT): Our proposed
pivot indexing node-driven algorithm.

Pattern-driven baseline (PT-BAS): The baseline algorithm
presented in Section IV-B.

Optimized pattern-driven algorithm (PT-OPT): The pro-
posed pattern-driven algorithm with all the proposed opti-
mizations. Unless otherwise is stated, the number of clusters
is set to be the number of matches divided by 4, and we use
12 centers. The number of K-means iterations is 10.

Random-first pattern-driven algorithm (PT-RND): The
proposed pattern-driven algorithm with all the proposed
optimizations except best-first traversal. Instead, we choose
the next node to process from the queue randomly.

3) Varying graph size – unlabeled graphs: Here we com-
pare the performance of the 6 algorithms in evaluating the
query (with k = 2):

SELECT ID, COUNTP(clq3-unlb, SUBGRAPH(ID, 2))

FROM nodes

We vary the graph size from 20K nodes to 100K nodes.
The results are shown in Figure 4(c). We do not plot the
running time of ND-BAS – for 20K nodes, the runtime of
ND-BAS is 116 minutes, which is 218 times higher than
our best performing algorithm (ND-PVOT). We see that ND-
PVOT outperforms not only the other node-driven algorithms,
but also the pattern-driven algorithms. This is because the
query pattern (unlabeled triangle) is not very selective, i.e., the
number of matches is quite high, and hence the approaches
based on searching from patterns do not perform as well.
We observed consistent behavior for other non-selective query
patterns.

4) Varying graph size – labeled graphs: Here we use
graphs with node labels randomly chosen from a set of 4
labels, and vary the graph size from 200K nodes to 1M
nodes. We use a similar query as above (k = 2) but use
a labeled triangle pattern (clq3) instead. As we can see
(Figure 4(d)), PT-OPT significantly outperforms the other
pattern-based algorithm, including PT-RND, illustrating the
importance of the best-first order in reducing the overall
runtime. Pattern-driven algorithms generally outperform node-
driven algorithms because the query pattern is more selective
in this case.

5) Varying focal node selectivity: Next, we vary the selec-
tivity of the focal nodes specified in the query, controlled by



the WHERE clause. We use an unlabeled 500K database graph.
The query is:

SELECT ID, COUNTP(clq3-unlb, SUBGRAPH(ID, 2))

FROM nodes WHERE RND() < R

where we vary R from 20% to 100%. As shown in Figure 4(e),
performance of pattern-driven algorithms is not affected by
the focal nodes’ selectivity, because those algorithms start
from the pattern matches and examine their neighborhood
irrespective of whether the nodes in the neighborhood are
selected or not. On the other hand, running time of the node-
driven methods increases linearly with the selectivity, and
eventually becomes worse than pattern-driven methods.

6) Effect of the number of centers on pattern-driven algo-
rithm: Next we examine the effect of both the number of
centers and how they are chosen, using a labeled graph of 1M
nodes and 5M million edges, and 4 labels. The query is:

SELECT ID, COUNTP(clq3, SUBGRAPH(ID, 2))

FROM nodes

We compare the proposed way of choosing centers, i.e., using
nodes with the highest degree (DEG-CNTR) versus using
randomly chosen centers (RND-CNTR). For both methods,
we vary the number of centers from 0, which corresponds
to not using centers, to 24 centers. Note that the number of
centers affects both (1) the clustering quality and (2) distance
initializations in the pattern match neighborhoods (PMD).
The purpose of this experiment is to study (2) in isolation of
(1) since using too few centers clearly degrades the clustering
quality and the overall performance. Therefore, we isolate the
effect of (1) in this experiment by fixing the number of centers
that are used for clustering regardless of the number of centers
used for PMD. The results are shown in Figure 4(f). We
can see that using the high-degree nodes as centers greatly
helps the query performance, whereas with random centers
the performance worsens with increasing number of centers.
On the other hand, looking at the performance of DEG-
CNTR as the number of centers increases, we observe that
the performance initially improves, but as the number of
centers becomes too large, the overheads of using centers start
dominating.

7) Effect of pattern clustering: Finally we study the effect
of the pattern clustering optimization on the performance of
our proposed pattern-driven algorithm using a labeled graph
of 1M nodes and 5M edges, and 4 labels. The query is:

SELECT ID, COUNTP(clq3, SUBGRAPH(ID, 2))

FROM nodes

We compare the performance of three alternatives: (1) no clus-
tering (NO-CLUST), (2) random clustering (RND-CLUST),
and (3) the proposed K-means approach that is based on using
the centers (OPT-CLUST). We also vary the number of clusters
from 100 to 600 to show the effect of changing the number
of clusters on the performance. Note that this parameter has
no effect on NO-CLUST.

The results are shown in Figure 4(g). We observe that
OPT-CLUST significantly outperforms both RND-CLUST and
NO-CLUST, illustrating both the benefits of clustering and
the need to choose the cluster carefully. Furthermore, we

can see that there is a trade-off in setting the number of
clusters – with too large a number of clusters (600), there
is no significant advantage to using clusters since the matches
are largely processed independently, but the performance also
degrades with too few clusters (100). This is because in the
latter case, there are too many matches in each cluster and
the resulting redundant distance computations outweigh the
benefits of clustering.

B. Real-world Experiment

In this experiment, we utilize our language to compare the
predictive power of different structures in predicting future
scientific collaborations (this is an example of a link prediction
task). We collected publication data from SIGMOD, VLDB
and ICDE conferences from 2001 to 2010. Given the co-
authorship information from years 2001 to 2005, we predict
collaborations in the period from 2006 to 2010. For this pur-
pose we defined 9 pairwise measures using our language. For
each pair of authors, we measure the number of nodes, edges
and triangles in their common 1, 2, and 3 hop neighborhoods.
In other words, we use a query of the form:

SELECT n1.ID, n2.ID, COUNTP

(struct, SUBGRAPH-INTERSECTION(n1.ID, n2.ID, r))

FROM nodes AS n1, nodes AS n2 WHERE n1.ID > n2.ID

where struct represents a node, edge, or triangle pattern, and
k is 1, 2 or 3, resulting in 9 total configurations. In the
prediction step, for each configuration, we pick the top K
pairs in terms of their common structures (i.e., the pairs of
authors with the highest counts for the corresponding pattern),
and then measure the precision at K defined as the number
of correct predictions divided by K. Figure 4(h) shows the
precision of each of the nine configurations at K = 50 and
K = 600. In addition to the nine measures, the figure shows
the performance of Jaccard coefficient, a similarity measure
that is regarded as a good predictor and commonly used in
link prediction [25]. We also measured the precision of the
random predictor (which selects random K pairs of nodes) and
it yielded a zero precision at both K = 50 and K = 600. For
our measures, common nodes within 2 hops has the strongest
prediction power, almost twice that of Jaccard coefficient.
Several other measures also outperform Jaccard coefficient.
With respect to runtime performance, we compared ND-BAS,
PT-BAS, and PT-OPT. While ND-BAS’s performance was the
poorest of all (by orders of magnitude), PT-OPT speedups
over PT-BAS ranged between 0.9x for searching nodes in
1 hop (i.e. slightly slower due to optimization overhead) to
3.4x faster for searching triangles in 3 hops. This simple
experiment illustrates the power of our framework in enabling
social network analysis.

VI. RELATED WORK

Our work is closely related to several active research topics
that are being studied in different communities. In social
network analysis, distinction is often made between socio-
centric analysis and ego-centric analysis. The former has
seen much work over the last two decades with focus on



understanding how networks evolve (see, e.g., [30], [8]), com-
puting and reasoning about global or local properties of the
networks, designing visualization tools to help with analysis
(e.g., NodeXL [36]) and so on. In ego-centric analysis, instead
the focus is typically on understanding how the structure of
the neighborhood around a node affects the node or dictates
its function. For example, structural holes in ego networks
are considered indicative of the positional advantage or dis-
advantage of individuals [9], [23]. Although computational
techniques for ego-centric analysis are not as well-developed
yet, there is increasing interest in understanding how to do ego-
centric analysis more efficiently and several software packages
support reasoning over ego networks (e.g., EgoNet [1]).

Another related research area is the study of network
motifs [28], [27], [6], [7]. Roughly speaking, network motifs
are subgraphs that occur more frequently than expected to
appear in a random network. Most real-world networks exhibit
a small set of motifs that occur repeatedly in the network, and
can be considered its building blocks. There is much work
on efficiently counting the number of motifs that appear in a
given network [4], [5], [16]. Although similar in spirit, our
focus on counting motifs (generalized to allow predicates on
the node or edge attributes) in all ego networks requires us to
develop new computational techniques to solve the problem.

In the area of graph databases, several query languages have
been proposed to query and manage graph data including
GraphLog [13], GOOD [18], GraphDB [17], GOQL [35],
PQL [24], and GRDB [29]. There is also much work on
subgraph pattern matching with renewed interest in recent
years. Several researchers have proposed exact or approximate
methods for searching for patterns in graph databases consist-
ing of several relatively small graphs as well as a single large
graph (e.g., [34], [41], [19], [45], [42], [11], [33]). Examples
of exact methods include GraphQL [20], GADDI [43], and
SPath [44]. We have already discussed GraphQL in detail
in Section III. GADDI [43] uses a distance index based on
the number of discriminating substructures between pairs of
nodes. Zhao et al. [44] propose an indexing technique that
is based on neighborhood signatures and shortest paths. In
future work, we plan to comprehensively compare our pattern
matching algorithm with these alternatives – as we noted
earlier, our pattern census algorithms can use any exact pattern
matching algorithm as a subroutine. Other work in this area
has focused on variants of the pattern matching problem. Fan
et al. [15], [14] allow an edge in the pattern to represent a
short path in the database graph, and the matching is based on
the concept of bounded simulation. Similarly, Zou et al. [46]
propose distance join where the query is a pattern along with
a distance δ. A match exists iff for two vertices vi and vj
that are connected by an edge in the pattern, the shortest path
between their images v′i and v′j is ≤ δ.

VII. CONCLUSIONS

We introduced a new type of graph analysis query, called
a pattern census query, which has broad applications in a
variety of domains including targeted marketing, brokerage

analysis, and social sciences. We designed a general and
flexible language for specifying pattern census queries, and
developed efficient algorithms for answering such queries.
Our comprehensive experimental evaluation over a prototype
system that we have built illustrates that our algorithms can
efficiently evaluate pattern census queries over large graphs. In
future work, we plan to focus on approximation techniques for
even larger graphs and also top-k query evaluation techniques
to more efficiently identify the nodes with the highest pattern
census counts.
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APPENDIX

A. Subgraph Pattern Matching Algorithm

Algorithm 1 lists our proposed pattern matching algorithm.

B. Algorithms for Evaluating Pattern Census Queries

Here we provide pseudocode for our proposed algorithms
for evaluating ego-centric pattern census queries. We also
discuss how to extend these algorithms to handle subpatterns,
and pairwise union and intersection search neighborhoods.
As discussed in Section II, subpatterns are useful when the
user wants to look for the entire pattern, but only requires
checking whether a portion of the pattern is present in a
node’s neighborhood. On the other hand, pairwise union and
intersection neighborhoods are often of interest when the focus
is on pairs of nodes rather than single nodes (e.g., in link
prediction or entity resolution).
Node-driven Algorithms: Our proposed pivot indexing algo-
rithm is listed in Algorithm 2. Next we discuss how to extend
the algorithm for subpatterns and pairwise neighborhoods.

Input : Database graph G = (VG, EG); pattern
P = (VP , EP ); A permutation of the pattern nodes
v1, v2, ..v|VP | s.t. each prefix is a connected
component of P

Output: Matches of P in G

for v ∈ VP do1
C(v)← {};2
for n ∈ VG s.t. l(n) = l(v) do3

if profile(v) v profile(n) then4
C(v)← C(v) ∪ n;5
for v′ ∈ N(v) do CN(n, v, v′)← C(v′)∩N(n);6

repeat7
for v ∈ VP , n ∈ C(v), v′ ∈ N(v) do8

if CN(n, v, v′) = {} then C(v)← C(v)− n;9

for v ∈ VP , n ∈ C(v), v′ ∈ N(v), n′ ∈ CN(n, v, v′) do10
if n′ /∈ C(v′) then11

CN(n, v, v′)← CN(n, v, v′)− n′;12

until no change in C and CN ;13
/* Let Mi denote the matches of pattern

subgraph v1, . . . , vi. */
for n ∈ C(v1), n

′ ∈ CN(n, v1, v2) do14
M2 ←M2 ∪ (n, n′);15

for i = 2 to |VP | − 1 do16
for (n1, . . . , ni) ∈Mi do17

for ni+1 ∈
⋂
vj∈N(vi+1),j<i+1 CN(nj , vj , vi+1) do18

if ni+1 not in (n1, . . . , ni) then19
Mi+1 ←Mi+1 ∪ (n1, . . . , ni+1);20

return M|VP |;21

Algorithm 1: Subgraph Pattern Matching Algorithm

Input : Database graph G; pattern P ; set of nodes Vσ(G);
neighborhood radius k

Output: The number of matches of P within k hops of each
node of Vσ(G)

v ← argminx∈VP {d(x, argmaxy∈VP {d(x, y)})};1
maxv ← d(v, argmaxy∈VP {d(x, y)});2
for u ∈ VP do3

for i← 1 to maxv do4
if d(v, u) ≥ i then distant[i]← distant[i] ∪ u5

M←pattern-match(G,P);6
PMIv ←build-pmi-index(M, v);7
for n ∈ Vσ(G), n′ ∈ Nk(n) do8

if maxv + d(n, n′) ≤ v then9
counts[n]← counts[n] + |PMIv[n

′]|;10
else11

for M ∈ PMIv[n
′] do12

if µ(distant[k − d(n, n′) + 1],M) ⊆ Nk(n) then13
counts[n]← counts[n] + 1;

return counts;14

Algorithm 2: Pivot Indexing Algorithm



Input : Database graph G; pattern P ; set of nodes Vσ(G);
neighborhood radius k

Output: The number of matches of P within k hops of each
node of Vσ(G)

M ← pattern-match(G,P);1
/* Index the matches on all the pattern

nodes */
PMI ← build-pmi-index(M, VP);2
S ← Vσ(G);3
current← Next element from S;4
Mcurrent ← {};5
while S is not empty do6

S ← S − current;7
if prev = NULL then8

N1 ← Nk(current);9
N2 ← {}; Mcurrent ← {};10

else11
N1 ← Nk(current)−Nk(prev);12
N2 ← Nk(prev)−Nk(current);13

for n ∈ N1,M ∈ PMI[n] do14
if VM ⊆ Nk(current) then15
Mcurrent ←Mcurrent ∪M ;16

for n ∈ N2 do Mcurrent ←Mcurrent − PMI[n];17
counts[current]← |Mcurrent|;18
if there exists n s.t. n ∈ S ∩N(current) then19

prev ← current; current← n;20

else21
prev ← NULL; current← Next elem. from S;22

return counts;23

Algorithm 3: Differential Counting Algorithm

Handling Subpatterns: In this algorithm, handling subpat-
terns is straightforward. As before, pattern matching is per-
formed using the entire pattern graph; however, the pivot is
selected from the set of subpattern nodes VSP ⊆ VP , and the
distance checks are only done for the database graph nodes
that match the subpattern nodes.

Handling Pairwise INTERSECTION and UNION: In the
case of intersection and union, the outer loop (line 9) iterates
over pairs of nodes (n1, n2) ∈ V 2

σ (G), where V 2
σ (G) is the

set of selected pairs, and the Nk(n) is replaced with the
set of nodes in Nk(n1) ∩ Nk(n2) and Nk(n1) ∪ Nk(n2) for
intersection and union, respectively (lines 10 and 15). The
distance d(n, n′) is replaced with max(d(n1, n

′), d(n2, n
′))

and min(d(n1, n
′), d(n2, n

′)), respectively.
The adapted differential counting algorithm for handling

individual node cases is listed in Algorithm 3. We omit the ex-
tensions for handling subpatterns and pairwise neighborhoods
due to space constraints.
Pattern-driven Algorithm: The pseudocode for our proposed
pattern-driven algorithm is listed in Algorithm 4 (we omit the
clustering-based optimization for brevity).

Handling Subpatterns: To handle subpatterns, we use
µ(VSP ,M) instead of VM in the algorithm above. In other
words, for each match M , we only consider its subgraph inci-
dent on the nodes in VM that match nodes in the subpattern.

Input : Database graph G; pattern P ; set of nodes Vσ(G);
neighborhood radius k; set of centers C

Output: The number of matches of P within k hops of each
node of Vσ(G)

M=pattern-match(G,P);1
for M ∈M do2

for m ∈ VM ,m′ ∈ VM do3
if d(µ−1(m), µ−1(m′)) ≤ k then4

PMDm[m′]← d(µ−1(m), µ−1(m′);5

else6
PMDm[m′]← k + 1;7

Q← VM ;8
while Q is not empty do9

n← argminq∈Q
∑
m∈VM

PMDm[q];10
dequeue(Q,n);11
near ← TRUE; far ← TRUE;12
for m ∈ VM do13

if PMDm[n] > k then near ← FALSE;14
if PMDm[n] < k then far ← FALSE;15

if near then N [M ]← N [M ] ∪ n;16
if not far then17

for n′ ∈ N(n) do18
noChange← TRUE;19
for m ∈ N(M) do20

if PMDm[n′] = NULL then21
noChange← FALSE ;22
PMDm[n′]← min(PMDm[n] +23
1,minc∈C(d(m, c) + d(c, n′)));

if PMDm[n′] > PMDm[n] + 1 then24
noChange← FALSE ;25
PMDm[n′]← PMDm[n] + 1;26

if not noChange then enqueue(Q,n′);27

N [M ]← N [M ] ∩ Vσ(G);28
for n ∈ N [M ] do counts[n]← counts[n] + 1;29

return counts;30

Algorithm 4: Pattern-driven Algorithm

Handling Pairwise INTERSECTION and UNION: To han-
dle INTERSECTION, we note that all the pairs in N [M ]
already have the pattern in the intersection of their neighbor-
hood. Therefore, instead of adding the match M to each node
in N [M ], we add it to each node pair in N [M ]×N [M ]. For
UNION, for each match M , we partition the set N(M) into all
possible size 2 partitions P1, P2. We denote nodes reachable
from P1 and P2 by N [P1] and N [P2], respectively. The match
M is added for each pair of nodes (n1, n2) ∈ N [P1]×N [P2].
Because of the requirement to partition the pattern in different
ways, and perform the computation in on every partitioning
way, pattern-driven UNION evaluation is only useful for very
simple and selective patterns.


