
Declarative Analysis of Noisy Information Networks
Walaa Eldin Moustafa #1, Galileo Namata #2, Amol Deshpande #3, Lise Getoor #4

#Department of Computer Science, University of Maryland
College Park, MD, USA

1walaa@cs.umd.edu
2namatag@cs.umd.edu

3amol@cs.umd.edu
4getoor@cs.umd.edu

Abstract—There is a growing interest in methods for analyzing
data describing networks of all types, including information,
biological, physical, and social networks. Typically the data
describing these networks is observational, and thus noisy and
incomplete; it is often at the wrong level of fidelity and abstraction
for meaningful data analysis. This has resulted in a growing body
of work on extracting, cleaning, and annotating network data.
Unfortunately, much of this work is ad hoc and domain-specific.
In this paper, we present the architecture of a data management
system that enables efficient, declarative analysis of large-scale in-
formation networks. We identify a set of primitives to support the
extraction and inference of a network from observational data,
and describe a framework that enables a network analyst to easily
implement and combine new extraction and analysis techniques,
and efficiently apply them to large observation networks. The key
insight behind our approach is to decouple, to the extent possible,
(a) the operations that require traversing the graph structure
(typically the computationally expensive step), from (b) the
operations that do the modification and update of the extracted
network. We present an analysis language based on Datalog, and
show how to use it to cleanly achieve such decoupling. We briefly
describe our prototype system that supports these abstractions.
We include a preliminary performance evaluation of the system
and show that our approach scales well and can efficiently handle
a wide spectrum of data cleaning operations on network data.

I. INTRODUCTION

In today’s world, networks abound. Examples include social
networks, communication networks, financial transaction net-
works, gene regulatory networks, disease transmission net-
works, ecological food networks, sensor networks, and more.
There is a growing interest in methods for analyzing such
network data for scientific discovery, anomaly detection, vul-
nerability prediction, and assessing the potential impact of
interventions. Although observational data describing these
networks can often times be obtained, an inherent problem
with much of this data is that it is noisy and incomplete, and
at the wrong level of fidelity and abstraction for meaningful
data analysis. Thus there is a need for methods which extract
and infer “clean” annotated networks from noisy observational
network data. This involves inferring missing attribute values
(attribute prediction), adding missing links and removing spu-
rious links between the nodes (link prediction), and eliminating
duplicate nodes (entity resolution).

While methods have been proposed for doing each of these
extractions/inferences in isolation, there has been little work
on fully integrated approaches. The little work that has been
done has been ad hoc, domain specific, and typically per-
formed outside a declarative data management framework.

This makes it cumbersome to store and compare results of
different approaches, or to handle dynamic updates to the
underlying observation network. Furthermore, the sizes of real-
world networks are growing at a rapid pace, with networks
with millions of nodes and edges becoming ubiquitous. To
support analysis and cleaning of these networks, a framework
is needed for efficiently storing, managing, and analyzing such
large, dynamic network data.

In this paper, we present the design and architecture of a data
management system that enables efficient, declarative analysis
of large-scale information networks. Our goal is to provide
a declarative framework for common operations required in
cleaning and extracting networks, a mechanism for combining
them in various ways, and an implementation for efficiently
applying them to large observation networks. The three main
challenges in building such a framework are: (a) network
analysis is heavily dependent on the actual graph structure
and typically requires traversal of the node neighborhoods and
computation of structural features; (b) most network analysis
techniques are inherently iterative, and require repeated passes
over the graph; and (c) network cleaning and analysis often
needs to be “collective” (where a decision in one part of the
network affects the information flow in other parts of the
network).

The key to our approach is to decouple the graph traversal
operations from the modification operations; the traversal op-
erations are typically computationally expensive, especially for
large disk-resident graphs. We present a declarative analysis
language based on Datalog, and show how it can be used
to cleanly achieve such decoupling. This decoupling enables
us to develop a framework for declarative analysis over large
networks, and facilitates efficient execution, by allowing us
to push much of the computation inside a database system.
Further, the declarative framework allows us to efficiently
incorporate, and propagate through the analysis task, dynamic
updates to the network data. We have implemented a prototype
system called GRDB (Graph Database) that supports our
declarative framework. Our preliminary results illustrate the
computational and usability advantages of our system.

Our main contributions can be summarized as follows:

• We identify the commonalities between different graph
extraction and cleaning tasks and derive a decoupling that
enables efficient integration of these tasks.

• We propose an interface for specifying network analysis
tasks that makes it easy for the users (network analysts)
to experiment with different methods and combinations of
features to decide how to best analyze and clean a network.
Our framework supports defining prediction domains, fea-
tures, and functions, which allows a declarative interface for
the coupled inferences required for network cleaning.
• We present several extensions to Datalog giving it opera-
tional semantics rather than fixed-points semantics, where
necessary, to make it more suitable for network analysis.
• We develop algorithms for efficiently computing the fea-
tures, and for incrementally maintaining them in the pres-
ence of updates introduced by the predictions (a requirement
given the iterative nature of network analysis). Due to space
limitations, we discuss these techniques only briefly.
• We present the results of a preliminary experimental study
over a real dataset.

II. NETWORK INFERENCE OPERATIONS

The operations that are commonly required in cleaning net-
work data include filling in missing information, correcting
inaccurate information, and consolidating and reconciling re-
dundant information. In this work, we frame these operations
as prediction problems, and use machine learning classification
algorithms to perform them. We make a distinction between
local classification algorithms, which make predictions based
on known attributes of the prediction element and collective
classification algorithms whose predictions can depend on the
output of other classifiers. The prediction problems supported
in our system can be broadly classified into three categories:

Attribute prediction: Predicting the value for an attribute of
a node. Predictions can be made based on the values of other
attributes of the node (local classification) or based on the
predicted neighbors’ attribute values (collective classification).
The underlying assumption in attribute prediction is that the
links between nodes carry important information for inferring
the attribute values.

Link prediction: Predicting the edges in the network [10],
[12]. The link prediction problem can be formulated as a
classification problem where we associate a binary variable
for each pair of nodes which is true if a link exists between
the two nodes and false otherwise. The prediction can depend
on structural features computed based on the network (e.g.
number of common neighbors) and attribute values of nodes.

Entity resolution: Identifying when two nodes in the graph
are referring to the same real-world entity. In this case,
the nodes should be merged, and their attributes and links
should be updated accordingly. Common approaches to entity
resolution use a variety of similarity measures, often based
on approximate string matching criteria [8], [4], [6]. These
work well for correcting typographical errors and other types
of noisy reference attributes. More sophisticated approaches
make use of domain-specific attribute similarity measures and
often learn such mapping functions from resolved data. Other
approaches take graph structure and similarity into account
[2], [9] and allow dependencies among the resolutions, e.g.,
collective entity resolution [5].

III. SPECIFICATION LANGUAGE AND DATA MODEL

Our specification language for defining inference tasks builds
upon Datalog. A Datalog program consists of a set of rules and
a set of facts. Facts represent statements that are true, whereas
rules allow us to deduce new facts from other true facts that
are already known (or deduced), and exist in the knowledge
base. A Datalog rule has the following syntax:

L0 D L1, ..., Ln

where each of Li is a literal of the form Pi(X1, . . . , Xn), or
∼Pi(X1, . . . , Xn), where Pi is a predicate symbol, and X1, . . . , Xn

are terms. For the purposes of our GRDB specification, we
consider only definite clauses, in which there are no negations.
Also, in some places, we use the shorthand P(X) where X
stands for X1, . . . , Xn. Terms can be variable terms or constant
terms. Informally, rules are read as ‘if L1, ..., Ln are true,
then L0 is true.’ L0 is called the rule’s LHS or head, and
L1, ..., Ln are called the rule’s RHS, or body. Each Li

on the rule’s RHS is called a subgoal. A fact is a rule
with an empty body and is always true. A fact that has
all its terms constant is called a ground fact. In database
terminology, each predicate symbol corresponds to a relation
name. An extensional database (EDB) is the set of relation
names corresponding to ground facts. An intensional database
(IDB) is the set of relation names corresponding to inferred
facts. Our graph is stored in an EDB, while rules defining
various inference tasks are expressed as IDBs.

We use Datalog as the base language for our graph analysis
framework for several reasons.

• Datalog can naturally capture both graph structure and
properties of graph elements (i.e., nodes and edges). For
example, one may query two hop neighbors from node X

using the rule TwoHops(X,Z):-Edge(X,Y),Edge(Y,Z).
• Compared to SQL, Datalog is a natural language to answer

path-based graph queries because it is a recursive language.
• On the other hand, compared to XPath, Datalog deals with

graph edges as first-class citizens, where they can have
identifiers and attributes that can be queried. In XPath, an
edge is just expressed by the “/” (slash) operator.
• Compared to RDF query languages like SPARQL, Datalog

can be naturally extended to handle concepts like feature
domains (Section IV) and updates.
• Finally, compared to imperative languages, a declarative

language like Datalog relieves the user from the burden
of specifying how to evaluate the query by pushing this
work to the evaluation engine. Furthermore, its algebraic
properties allow the system to incrementally compute the
changes in query results when the base graph changes, while
in imperative languages, it is not as clear how to track
dependencies and perform incremental maintenance.

Our data model supports multiple node and edge types where
each type has its own set of attributes. Although our ap-
proach and framework can be applied to any EDB schema
representing a graph structure, for brevity, we will assume
just two EDBs, Node(X, A) and Edge(X,Y, B), where the Node
relation contains a key, X, along with a set of attributes A
and the Edge relation contains a key (X,Y) along with edge

attributes B. We have the following shorthand: Node(X) stands
for Node(X,_,...)and means that node X exists in the EDB.
Similarly, Edge(X, Y) means that node X points to the node
Y. Node(X,Att=V) stands for Node(X,_,..,V,..) and means
that node X has the value V for attribute Att, and similarly,
Edge(X, Y, Att=V) means that edge (X, Y) has the value V

for attribute Att.

We extend Datalog with several constructs to enable our
analysis framework. Some bear close similarity to existing
Datalog extensions (e.g. aggregation), whereas others are new.

• Aggregates: An aggregate is a term of the form Agg〈Y〉
where Agg is an aggregation function, and Y are the ag-
gregate function arguments. For a rule: P(X, Agg〈Y〉) D
P1(X1), . . . , Pn(Xn), where X,Y ⊆

⋃
i Xi, a set is created for each

value of X, the aggregate operation Agg is applied on each
set, and a corresponding fact is added.
• Update Rules: We use update rules to express graph updates

that result from inference operations. Since updates have side
effects, the order in which these side effects should take
place must be specified explicitly in the program. Hence, our
programs are divided into two parts: (1) the non-update rules
(i.e. query rules) where evaluation order does not matter, and
(2) the update rules where it matters. We use following syntax
to express updates:
[INSERT | DELETE | UPDATE] P(X) D P1(X1), . . . , Pn(Xn)
where the predicate name P corresponds to an EDB, where
the changes will take place. The semantics are that the rule
is evaluated and the results are then added or deleted from
P’s EDB for INSERT or DELETE, and updated (based on their
keys) for UPDATE.
• ITERATE Construct: We introduce the ITERATE construct

as a looping construct to allow updates to be performed
iteratively:

ITERATE(N) { Block of Update Rules }

where N is either the number of iterations or ∗. The
semantics of the ITERATE construct are that it applies the
update rules in its body in the specified ordering iteratively,
and recomputes (or maintains) the results of any “query”
rules, until no change takes place or for at most N iterations,
whichever happens first. If ∗ is specified, then the evaluation
proceeds indefinitely until no changes take place.
• Other extensions: There are other Datalog extensions spe-

cific to our framework, like DOMAIN constructs, and top K
ranking. We discuss these extensions as we encounter them.

IV. DECLARATIVE ANALYSIS FRAMEWORK

While the three network cleaning operations described in
Section II result in different updates to the network, and can be
combined in complex ways, network analysis processes can be
seen, at a high level, as interleaved application of three basic
modules as shown in Figure 1(i). In this section, we describe
these components, and then present our proposed declarative
language constructs for specifying these components.

A. Defining Prediction Domains and Features
For graph inference tasks, we typically need to compute the
values of various “features” for a set of relevant objects, called

prediction elements. Depending on the nature of features, this
step is typically the most computationally expensive step in the
overall process. The prediction elements are either nodes (for
attribute prediction) or pairs of nodes (for link prediction or
entity resolution). For scalability, we must somehow constrain
the set of prediction elements, especially in the latter case. We
call the set of prediction elements considered during inference
the prediction domain of the task.

Features: We can divide the features broadly into three
categories based on their complexity:

Local: Attributes of the prediction elements themselves can
be used as features for input to a prediction function. For
nodes, these are node attributes; for pairs of nodes, these
can be binary features which describe whether the attribute
values of the nodes match, or real-valued features which
measure the distance between the nodes’ attribute values.
The key distinguishing characteristic of these features is
that they require only local information about the attribute
values of the nodes, or pairs of nodes.

Local Structural: These are features that require exploration
of a small fixed neighborhood around the prediction ele-
ment. For node predictions, commonly used features in-
clude the degree of the node, the count of the number of
neighbors within c hops with a specific property (where
c is a constant), etc. Another commonly used feature is
the clustering coefficient. The clustering coefficient C(x)
of a node x in a graph is a measure of how close the
node and its neighbors are to forming a clique; more
precisely, it is the ratio of edges observed over the number
of possible edges. In addition, for pairs of nodes, we often
measure some sort of neighborhood similarity. Common
neighborhood similarity measures include: No. of common
neighbors; Jaccard coefficient, which is the number of
common neighbors normalized by the size of the union
of the neighbors of the nodes; and, a related measure,
introduced by Adamic and Adar [1], which gives more
weight to rare features (those that are not shared by many
other entities).

Global Structural: Examples of features that depend on the
global structure of the graph include the Katz score,
betweenness centrality, and PageRank. The Katz score
for a pair of nodes is computed based on the number of
different paths between the two nodes, with the shorter paths
given higher weight than the longer paths. See Table I for
the formal definition. The betweenness centrality of a node
is determined by the number of shortest paths that contain
that node; it is the frequency with which a node appears
along the shortest path between other pairs. PageRank of a
node captures the probability that a random walk will end
up at the node.

The features can be specified using Datalog in a straightfor-
ward manner (see Table I).

Domains: While features may be defined for all prediction
elements, often we want to restrict our attention to only a
subset of the elements to make analysis tractable. We refer to

Enumerate Domains;
Compute Features

Make Predictions, and Compute
Confidence in the Predictions

Choose Which Predictions to
Apply

(n1, n2, fA, fB)
(n1, n3, ..., ...)
(n2, n4, ..., ...)

...

...

(n1, n2, T, 0.99)
(n1, n3, T, 0.10)
(n2, n4, T, 0.85)

...

...

G
raph updates:

M
erge nodes n1 and n2

....

Input
Graph

Output
Graph

DOMAIN ER(X, Y) :- Node(X, Name=V1), Node(Y, Name=V2), dist(V1,V2) < α
{
 IntersectionCount(X, Y, COUNT<Z>) :- ...
 Adamic1(X, Y, Z, COUNT<N>) :- ...
 Adamic(X, Y, SUM<1 / log(N)>) :- ...
 Features-ER(X, Y, F1, F2) :- IntersectionCount(X, Y, F1), Adamic(X, Y, F2)
}
DOMAIN LP(X, Y) :- { ... }

DEFINE Merge(X, Y)
{
 INSERT Edge(X, Z) :- Edge(Y, Z)
 DELETE Edge(Y, Z)
 UPDATE Node(X, A=ANew) :- Node(X,A=AX), Node(Y,A=AY), ANew=(AX+AY)/2
 UPDATE Node(X, B=BNew) :- Node(X,B=BX), Node(X,B=BX), BNew=max(BX,BY)
 DELETE Node(Y)
}

ITERATE(n)
{
 Merge(X, Y) :- Features-ER(X, Y, F1, F2, F3, ...), predict-ER(F1, F2, F3, ..) = true,
 confidence-ER(F1, F2, F3, ..) > 0.95
 INSERT Edge(X, Y) :- Features-LP(X, Y, G1, G2, G3, ...), predict-LP(G1, G2, G3, ..) = true,
 confidence-LP(G1, G2, G3, ..) IN TOP 5
}

(i) (ii)

(A)

(B)

(C)

!"#$%&'()*+&,(-##./

!-0#1$*+&,(-##./

!"#$%&'()#*+',(-.

)#"',&%,$/01&"$*#")',(-.

'(2#,0-%+"$3,-0&*+',(-.

',14%5(--(,'&*4,#"".
1"601)%5(-&"$*'&$. ',17%61"5$*4,#"".

1"601)%5(-&"$*+',(-.

',17%61"5$*'&$.

!"#$%&'()#*,"-.

!"#$$%&'#"($&)(*&

!"#$$%&+,-.(,&

!"#$$%&'#"($&)(*&

!"#$$%&'#"($&)(*&

!"#$$%&!"/(01&

!"#$$%&!"/(01&

!"#$%#"&'()(

!"#$%#"&'(*(

Fig. 1. (i) Illustrative workflow depicting the main steps in an iterative statistical inference task (using the example of entity resolution); (ii) An example
Datalog program that specifies an interleaved execution of an ER task and an LP task in a decoupled fashion by separating the feature computation operations
((A) from the graph modification operations ((B,C)).

Degree: Degree(x) = |Γ(x)| Degree(X, COUNT<Y>) D Edge(X, Y)

No. of neighbors w/ Att = ‘A’ NumNeighbors(X, COUNT<Y>) D Edge(X, Y), Node(Y, Att=’A’)

Clustering Coefficient
NeighborCluster(X, COUNT<Y,Z>) D Edge(X,Y), Edge(X,Z), Edge(Y,Z)
Degree(X, COUNT<Y>) D Edge(X, Y)
ClusteringCoeff(X, C) D NeighborCluster(X,N), Degree(X,D), C=2*N/D*(D-1)

Number of common neighbors IntersectionCount(X, Y, COUNT<Z>) D Edge(X, Z), Edge(Y, Z)

Jaccard’s coefficient
Jaccard(x, y) =

|Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)|

Degree(X, COUNT<Z>) D Edge(X, Z)
IntersectionCount(X, Y, COUNT<Z>) D Edge(X, Z), Edge(Y, Z)
UnionCount(X, Y, D) D Degree(X,D1), Degree(Y,D2), D=D1+D2-D3

IntersectionCount(X, Y, D3)
Jaccard(X, Y, J) D IntersectionCount(X, Y, N), UnionCount(X, Y, D), J=N/D

Adamic measure
Adamic(x, y) =

∑
z∈Γ(x)∩Γ(y)

1
log Γ(z)

Degree(X, COUNT<Z>) D Edge(X, Z)
Adamic1(X, Y, Z, N) D Edge(X, Z), Edge(Y, Z), Degree(Z,N)
Adamic(X, Y, SUM<1/log(N)>) D Edge(X, Z), Edge(Y, Z), Adamic1(X, Y, Z, N)

Similarity based on a func. f (v1, v2) Similarity(X, Y, S) D Node(X, Att=V1), Node(Y, Att=V1), S=f(V1, V2)

Katz measure
Katz(x, y) =

∑∞
l=1 β

−l.|paths(x, y)<l> |

Path(X, Y, 1) D Edge(X, Y)
Path(X, Y, L1) D Edge(X, Z), Path(Z, Y, L), L1=L+1
Path_count(X, Y, L, COUNT<1>) D Path(X, Y, L)
Katz1(X, Y, L, K) D Path_count(X, Y, L, N), K=N * power(β, -L)
Katz(X, Y, SUM<K>) D Katz1(X, Y, L, K)

TABLE I
COMMON RELATIONAL FEATURES AND THEIR DATALOG REPRESENTATION. WE USE Γ(x) TO INDICATE THE SET OF NEIGHBORS OF NODE x.

such a subset of elements as the prediction domain.

For attribute prediction, the prediction is over attribute values
of the nodes and we can use the domain construct to restrict
our attention to some subset of the nodes. This allows us,
for example, to predict attribute values only for nodes with
missing attribute values, or to predict attribute values only
for nodes which have some percentage of neighboring values
observed (not missing). Judicious use of prediction domains
is especially important for tasks such as link prediction and
entity resolution, where the prediction takes place over pairs
of nodes. For a reasonably-sized network, it is infeasible to
check every possible prediction element, and we must be able
to limit the possible node pairs that are considered.

We use the keyword DOMAIN for defining a domain for features.
The general syntax for specifying a domain is:
DOMAIN D(X1, X2, ...) D ...

{ 〈 List of features to be computed 〉 }
For example, during entity resolution, we may want to restrict
ourselves to pairs of nodes that are sufficiently close to each
other based on the string similarity distance between their
names. This can be specified as shown in Figure 1(ii)(A).
Although it may seem that this domain requires listing all
the pairs of nodes and filtering them, our framework supports
efficient methods for avoiding that. The last rule (with head
Features-ER) combines all the features into a single predicate
using which we can do inference. Note that although we have
focused on unary or binary prediction domains thus far, our

framework allows for using n-ary domains; this may be needed
for situations where we want to make predictions for groups
of three or more entities.

B. Iterative Inference and Updating
The next step in the analysis process is to perform the
required inferences and updates. For each prediction element,
the prediction is made by applying a user supplied function
over the features computed in the previous step and returning a
prediction and a confidence (or score) value. This function can
either be a user defined function or a function that is the output
of some machine learning system; in the context of GRDB,
we treat it as a black box. A key observation we make here
is that, at this point, the prediction can be done independently
for each domain element in parallel.

For attribute prediction, commonly used prediction functions
include classifiers like naı̈ve Bayes, logistic regression, and
decision trees. Similarly, for link prediction, the problem of
deciding whether to add an edge between a pair of nodes
is often treated as a binary classification problem, and the
functions listed above can be used as well. In some cases,
especially for entity resolution, a similarity function might be
used instead to compute a similarity score for a pair of nodes,
and then a thresholding mechanism may be used to decide
which nodes to merge or which edges to add.

The next step depends on the nature of the inference task. In
some cases, we may just make one pass and commit all of
the predictions made. In other cases, we may only choose
to commit a subset of the predictions, and may want to
iteratively recompute the features and perform inference on
the updated graph. The updates include attribute value changes
(for attribute prediction), edge insertions/deletions (for link
prediction), and node merges (for entity resolution), and we
must recompute the values of the features in response to
these updates. Such iterative application often results in more
accurate predictions and robust behavior. The most common
approach to choosing which predictions to commit is to choose
either the top k of the predictions (by score) or all predictions
with confidence above a given threshold.

In general, for each individual inference task, the user must
specify:

• Prediction function to be used and the predicate containing
the features. The prediction function is written as a user-
defined function (UDF) Predict: FT → P, where FT is the
feature vector and P is the set of possible predictions.
• Confidence or score function to be used to choose a subset

of the predictions to commit. This is also typically written as
a UDF Confidence: FT → [0, 1] (or more generally, Score:
FT →<).
• Prediction Confidence Cut-off: In addition, the user must

specify how to choose the subset of the predictions to be
committed. A cut-off value for the confidence is provided
by defining a predicate over the confidence function. A
predicate can take the form of a minimum given threshold
(e.g. confidence(FT) > C), or can be expressed by picking
the top K predictions. We define a Datalog extension for
this purpose (confidence(FT) IN TOP K).

• Graph Update Operations to be performed as a result of
the inference. These are expressed as Datalog update rules.
• Number of Iterations used when updates are executed

iteratively so that only high confidence predictions are
applied in each iteration. As we described earlier, update
rules are enclosed in an ITERATE block to achieve this
control.

As an example, an entity resolution task where we only com-
mit high-confidence predictions can be specified as (Figure
1(ii)(C)):

Merge(X, Y) D Features-ER(X, Y, F1, F2, F3, ...),

predict-ER(F1, F2, F3, ..) = true,
confidence-ER(F1, F2, F3, ..) > 0.95

Here Features-ER contains all the features that are needed
for inference. predict-ER and confidence-ER are the pre-
diction and confidence functions respectively. To differentiate
between functions and predicates in our Datalog programs,
we use upper case initials for predicates and lower case
initials for functions. Merge(X, Y) indicates that the graph
update operation to be performed is a merge (corresponding
to entity resolution or duplicate elimination). Other examples
include INSERT Edge(X, Y), indicating edge addition between
nodes X and Y (for link prediction, see Figure 1(ii)(C)), and
UPDATE Node(X,Att=V), indicating that the attribute value of
Att should be changed to V for node X, (for classification or
attribute prediction).

Note that update operations corresponding to link prediction
and attribute prediction are simple (i.e. a single rule). However,
the Merge operation can be composite, i.e., defined in terms
of other operations. An example of Merge definition is shown
in Figure 1(ii)(B). This allows the user specify exactly
how to update the attribute values for the new node that is
created. The semantics of composite updates is that the update
rules inside them are executed in order; however, there is no
need to recompute the features after each single update rule.
Features are recomputed only after the entire composite block
is executed.

Finally, the user may specify an interleaving of two or more
different inference tasks. For example, the syntax for specify-
ing an interleaving of entity resolution and link prediction is
as shown in Figure 1(ii)(C). Here for the second inference
task, we specify that only the TOP 5 of the predictions (based
on the confidence-LP function results) be committed at end
of each iteration.

C. Implementation
To implement our framework, we built a deductive database
system on top of the Java Edition of the Berkeley DB key/value
store. We implemented a full fledged non-transactional re-
lational database system on top of Berkeley DB that has
a query parser, a rule-based query optimizer, a relational
expression converter for converting Datalog rules to canonical
relational expressions, and a plan executor. We omit further
details of this component due to space constraints. Second,
we implemented the necessary special logic to enable our
framework, such as the DOMAIN, and the ITERATE constructs.

An important optimization is incremental maintenance. We
materialize the result of every Datalog rule in the system,
and we treat these results as materialized views over the base
relations. As the base relations change in response to the
predictions made during analysis, we need to maintain these
views. In our prototype, we devise different methods to handle
feature views, DOMAIN views, and cascaded views (where the
output of one rule is propagated to another rule).

V. EXPERIMENTAL EVALUATION

We crawled a portion of the PubMed online dataset – a citation
network in the medical domain. The size of the network is
50, 634 papers and it has 115, 323 citation edges. The dataset has
four categories describing the topic of the paper (Cognition,
Learning, Perception, and Thinking). We used GRDB to infer
the category (class label) of each paper. We used 2-fold cross
validation, where we trained a classifier using about half of
the network, and tested it on the other half. We used logistic
regression for the prediction function, which we supply with
the presence of words of the paper abstract (we use a bag
of 1678 words) and the count of citations of each category.
When committing the top 10% of the predictions and iterating
for 10 iterations, the incremental maintenance method takes
28 minutes (average over the two folds) to finish, while
recomputation from scratch takes 42 minutes. Note that there
is some inherent overhead due to the large number of local
features (i.e., words of the abstract) which logistic regression
has to reason about for each node in each iteration. Using
this approach leads to 84% accuracy in predicting the paper
categories. 1

VI. RELATED WORK

In recent studies, Datalog has been the centerpiece in enabling
declarative specification in various domains, like network
protocol specification [11], sensor networking [7], recommen-
dation in social networks [13], and data cleaning [3]. Arasu et
al. [3] employ Datalog to solve the problem of collective entity
resolution using domain-specific constraints. The constraints
are in the form of user-defined soft and hard rules. The system
performs the deduplication by satisfying all the hard rules
and minimizing the number of violations to the soft rules.
Our approach also supports a declarative approach toward
collective entity resolution, however our approach is capable
of performing a more general set of network inferences. In [4],
the authors consider the problem of generic entity resolution,
where they define entity resolution in terms of two functions,
match that matches two records and merge that merges two
records if they match. These two functions are treated as black-
boxes, and the authors define classes for the their properties,
studying efficient algorithms for different classes. Our work
is in a similar spirit, in attempting to define black boxes for
the prediction problems, however we focus on a declarative
specification for the interactions among the predictions, and
efficient incremental maintenance.

1We also performed an extensive performance evaluation using syn-
thetic data. Details can be found in the extended version of the paper at:
http://www.cs.umd.edu/~walaa/grdb.pdf.

San Martin and Gutierrez [14] present a social network data
model for representing, querying and transforming social
networks. The proposed data model is based on RDF and the
proposed query and transformation language is based on a
composition of SPARQL and SQL. The authors gather the re-
quirements of the proposed language from operations common
in social network software tools and published social network
research, such as network projection, subnetwork extraction
and ranking. However, our focus here is on supporting the
full range of graph extraction and inference problems includ-
ing attribute prediction, entity resolution and link prediction,
which prior work does not support.

VII. CONCLUSIONS

We described the design of a data management system, called
GRDB, for supporting declarative graph analysis over noisy
information networks. Our system supports new constructs
for defining graph-based inference operations, and heavily
exploits the common properties shared by these operators
to enable efficient storage and execution. We chose to base
our language on Datalog because of its expressive power in
representing computation over graphs in an intuitive and easy-
to-understand manner. The key insight behind our approach is
to decouple the operations that require traversing the graph
structure (typically the computationally expensive step) from
the operations that do the modification and update of the ex-
tracted network. We built a prototype system that implements
this functionality and briefly discussed its implementation. We
showed a preliminary performance evaluation study on a real-
world data network.

Acknowledgements: This work was supported in part by NSF
under Grants IIS-0546136 and IIS-0916736.

REFERENCES

[1] L. Adamic and E. Adar. Friends and neighbors on the web. Social
Networks, 25(3):211–230, 2003.

[2] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy
duplicates in data warehouses. In VLDB, 2002.

[3] A. Arasu, C. Re, and D. Suciu. Large-scale deduplication with
constraints using dedupalog. In ICDE, 2009.

[4] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang,
and J. Widom. Swoosh: a generic approach to entity resolution. The
VLDB Journal, 18:255–276, 2008.

[5] I. Bhattacharya and L. Getoor. Collective entity resolution in relational
data. ACM TKDD, 1:1–36, 2007.

[6] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and
efficient fuzzy match for online data cleaning. In SIGMOD, 2003.

[7] D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker,
and I. Stoica. The design and implementation of a declarative sensor
network system. In SenSys, 2007.

[8] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string
distance metrics for name-matching tasks. In Proc. of IJCAI Workshop
on Information Integration, August 2003.

[9] D. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting relationships for
domain-independent data cleaning. In SIAM SDM, 2005.

[10] D. Liben-Nowell and J. Kleinberg. The link prediction problem for
social networks. In CIKM, 2003.

[11] B. Loo, T. Condie, M. Garofalakis, D. Gay, J. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative networking:
language, execution and optimization. In SIGMOD, 2006.

[12] M. J. Rattigan and D. Jensen. The case for anomalous link discovery.
SIGKDD Explorations Newsletter, 7:41–47, 2005.

[13] R. Ronen and O. Shmueli. Evaluating very large datalog queries on
social networks. In EDBT, 2009.

[14] M. San Martı́n and C. Gutierrez. Representing, querying and transform-
ing social networks with rdf/sparql. In ESWC, 2009.

