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Abstract— Many websites allow users to tag data items to make 
them easier to find.  In this paper we consider the problem of 
classifying tagged data according to user-specified interests. We 
present an approach for aggregating background knowledge 
from the Web to improve the performance of a classier. In 
previous work, researchers have developed technology for 
extracting knowledge, in the form of relational tables, from semi-
structured websites.  In this paper we integrate this extraction 
technology with generic machine learning algorithms, showing 
that knowledge extracted from the Web can significantly benefit 
the learning process. Specifically, the knowledge can lead to 
better generalizations, reduce the number of samples required 
for supervised learning, and eliminate the need to retrain the 
system when the environment changes.  We validate the 
approach with an application that classifies tagged Fickr data.  

Keywords: Information Extraction, Web Harvesting, 
Ontologies, Classifiers, Background Knowledge 

I.  INTRODUCTION 
A common way that websites organize crowd-sourced data is 
by asking users to tag the data. A tag is a keyword or 
“folksonomic term” assigned as metadata to an information 
object, such as a picture on Flickr, a video on YouTube, or a 
document on DocStoc.  In this paper, we describe an 
application that monitors sites with tagged data items, such as 
pictures on Flickr, to identify items that match user-specified 
interests, such as pictures of NBA basketball games. While 
this classification problem could be addressed using standard 
information retrieval techniques, we can take a more 
interesting approach here because we are monitoring data 
sources over time, as opposed to searching in real-time 
 In particular, we describe a system that can, in response to a 
particular classification task, extract domain knowledge from 
the Web and autonomously “educate itself” to improve its 
performance.  The approach is interesting in part because we 
use a very general, unsupervised extraction system that can 
capture relational data from semi-structured web sites. This 
relational data can be expressed in the form of standard first-
order “domain theories” and which can be directly utilized by 
generic machine-learning classifiers.   

 In contrast to many other systems that learn from the 
Web, our system starts with a (domain-independent) 
classification task, rather having the goal of simply building an 
ontology.  It is distinguished from other task-oriented systems 
in that it employs generic extraction, representation and 

learning methods (rather than methods designed for the specific 
task). 

II. THE APPLICATION 
Our research was motivated by a “Web Intelligence” portal 
builder that we are developing for situation awareness in niche 
domains. This application allows a domain expert to integrate 
and monitor Web data from heterogeneous sources. The 
collected data can then be displayed in a “vertical portal”, 
which end-users can easily browse on a regular basis to find 
out what’s happening in that domain. For an example, we built 
a portal that tracks wildfires in the U.S., aggregating statistics 
on each fire from the U.S. Forest Service, news stories from 
online newspapers, fire warnings from state agencies, pictures 
of wildfires from Flickr, videos from YouTube, etc.  The 
information is integrated so that users can easily see what’s 
new in a region or find out about a particular fire. 
 The portal infrastructure is domain-independent and 
applicable for a wide-variety of domains, including musical 
groups, political events and sports. Our challenge is enabling a 
domain expert to aggregate information about a particular 
domain, without requiring any programming.   
 In particular, one type of valuable data is tagged data from 
sites like Flickr, YouTube, Del.i.cious, etc.  In these sites, 
users collaboratively annotate data with informal tags to help 
categorize the data.  This makes it possible, in theory, to 
search a site such as Flickr for pictures of wildfires for the 
wildfire portal, or pictures of professional basketball games 
for an NBA portal, and so forth.  Unfortunately, however, 
entering the search term "wildfire” into Flickr returns a wide 
variety of photos, only a minority of which are relevant, 
because the tags are informal, and each tag may have a 
plethora of “meanings”.  For instance, on Flickr the tag 
“wildfire” is associated with photos of roses (the “Wildfire” 
variety), girls with red hair, sunsets, horses, etc., along with 
the wildfire incident photos relevant to this portal. 
 To filter out irrelevant data from tagged sources, the portal 
employs a classifier which can be trained by a domain expert.  
The expert first provides a few search keywords such as 
“wildfire” and “fire” (or “basketball”, “NBA”, etc.) which 
system uses to disjunctively query a tagged data source such 
as Flickr, YouTube, Technorati, etc.1 We refer to the set of key 

                                                             
1 To query the source, we can either rely on an API provided by the source, 
such as Flickr’s API, or use a web agent to harvest data from the source.  In 
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words used to query the source as Q, and the union of the 
tagged data objects returned by the source in response to Q is 
Ө = {O1, O2,…On}. Each of these objects Ox is associated with 
a set of tags { , ,.. }. 
 The expert then labels a random sample of the returned data 
Ө as positive/negative, and the system induces a classifier to 
identify instances of the target concept based on their tags.  
The classifier not only is useful for automatically filtering the 
data set Ө but can be re-applied when the data source is re-
queried later, i.e., using the same query set Q to generate a 
new set of objects Ө�. 

 This approach eliminates the need to manually filter 
the data.  Even so, it suffers from two well-known problems 
with machine learning. First, to induce a good classifier, the 
expert may be required to train the system on many examples, 
which can be tedious. Second, the classification rules may 
grow stale over time since the distribution of tags associated 
with the target concept may change. 

III. WELLGROUND 
In order to address these short-comings, we developed the 
WebGround system, which is designed to collect background 
knowledge from the Web to aid classification. As we will 
show, background knowledge can significantly improve the 
accuracy of classification and reduce the number of training 
examples required, saving experts considerable time and 
effort.  Consider, for instance, the task of identifying tagged 
photos of NBA games. For this task, knowing the names of 
NBA players, teams, and arenas can be helpful.  In particular, 
this knowledge is particularly useful for identifying the less 
popular players, since their names rarely occur in the training 
set.  
 Background knowledge can also be useful if the target 
concept changes over time. For instance, new NBA players are 
drafted each year. Rather than retraining the system, one can 
simply monitor the appropriate knowledge sources and update 
the background knowledge appropriately. 

 The WebGround system, in response to a 
classification problem, “educates itself” by aggregating 
background knowledge from the Web.   WebGround’s process 
begins by querying the source with the search keywords in Q to 
return tagged data that the expert can label, as described earlier.  
However, to reduce the number of examples required to 
achieve a given level of performance, the system also searches 
for and extracts relational data on the Web that mention the 
tags. This relational data is potentially useful as background 
knowledge for classification.  In the next sections we describe 
the process of extracting potentially relevant data from Web 
sites, and how the data is encoded to augment standard 
classifiers. 

IV. SITE SELECTION AND DATA EXTRACTION 
WebGround identifies sites with potentially useful domain 
knowledge by employing commercial search engines, such as 
Google, to return a list of URLs based on the user-provided 

                                                                                                           
either case, it is straightforward to regularly retrieve data from an internet 
source that matches at least one of our keywords. 

search keyword set, Q. This simple approach has tended to 
work well in our experiments, because the search keywords 
tend to be general, such as “NBA” or “wildfire”, and Google 
is proficient at returning a mix of sites that are rich with data.   
Our approach does not require all the sites to be relevant; as 
long as relevant data is found in at least one site, the approach 
can be useful. 
 WebGround analyzes each site and extracts relations (i.e., 
tables of data). Our extraction approach is based on previous 
work by Gazen & Minton (2005), who developed an 
unsupervised learning system that automatically extracts semi-
structured (and structured) data from a website. Semi-
structured data consists of data where the formatting of the 
data can be described by a (reasonably simple) formal 
grammar; however, that grammar must be induced (rather than 
being explicit, as in HTML tables explicitly specified by a 
<table> tag). For instance, much of the data on Amazon.com 
is semi-structured, such as the product titles, prices, feature 
lists, etc, all of which are formatted in a regular fashion 
throughout the site.  
 Before explaining the extraction process, let us consider 
how websites are built. Consider the schematic for a 
(extremely simplified) weather website “Forecast.com” shown 
in Figure 1. From the homepage the user can choose a U.S. 
state, each of which is associated with a URL.  On each state 
page there is a list of cities and URLs. At the next level, each 
city page includes the weather outlook and a high and low 
temperature. This information can be described by three 
database tables. Note that there are three types of pages, each 
type being similarly formatted and containing the same data 
fields.  
 The site extraction problem is to extract all the data from 
the site, essentially to reconstruct the database tables.  Our 
approach works as follows.  First, starting from the URL 
provided by the search engine, the system spiders the site (to a 
specified depth).  Next, a set of “expert” modules analyze the 
pages.  Each expert is an algorithm that makes similarity 
judgments about the pages, focusing on a particular type of 
structure. For example, we have experts that identify pages 
with similar HTML sections, experts that identify pages with 
similar visual layout components, experts that identify pages 
with similar semantic elements, and so forth.  Based on the 
similarity judgments the system clusters the pages, following 
the approach of Gazen and Minton.  The goal is to cluster the 
pages into page types, so that each cluster contains similarly 
formatted pages.   

 After the pages are clustered, the system identifies 
which strings on the pages represent “data”. Essentially, this 
involves inducing a grammar that describes the organization of 
the data on the page. Previous authors have developed a variety 
of methods for this (e.g.., Crescenzi, 2001).  Once the pages 
have been clustered into page types, WebGround searches for 
template components that are common to all the pages in the 
cluster, as discussed by Lerman et al. (2003). To make the 
process efficient, WebGround relies on a restricted class of 
grammars based on the Embedded Catalog formalism (Muslea 
et al., 2001). Specifically, a page type must consist of a 
sequence of fields separated by template components.  Each 
field is either an atomic field, containing one data item, such as 
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the city’s high temperature, or a list field containing of a 
repeated sequence of atomic fields [a1, a2,...an]* separated by 
template components, such as a list of US states and their 
URLs.  

 For each page type, WebGround constructs a set of 
relational tables. All the non-list fields are included in one 
table, and each list field results in its own table.  Thus each 
atomic field corresponds to a distinct column in these tables. 
Note that the current version of WebGround does not generate 
meaningful names for the columns. The system has no 
understanding of the semantics of the data.  

  

As shown in Figure 1, each page type corresponds to a cluster 
of one or more pages, and each table normally includes data 
from each of the pages in the cluster. Of course, for a given 
web site, there may be many tables generated, with many 
columns per table, because the system attempts to extract all 
the data on the site, including URLS, scripts, HTML, as well as 
text fields and numbers 

V. FEATURE CREATION 
The next step is to convert the tables into features that can be 
used for classification.  Our current approach is to create a 
new predicate for each column in each table, using the 
projection operator.  That is, for each column c in relational 
table r of site s we create a predicate Ps,r,c such that for each 
data element x in column c, Ps,r,c(x) holds.  Then, for every 
data element in each table, we identify matching tags, 
effectively enabling a classifier to use the predicates as 
generalized tags.    For instance, suppose we have a data object 
-- a photo -- named O27 that has a tag “San Diego”, which we 
might represent as HasTag(O27, “San Diego”), or some 
equivalent representation depending the classification 
algorithm used.  If WebGround extracts the tables from the 
Forecast.com site shown in Figure 1, then column 2 of table 2, 
which lists U.S. cities, will generate the background fact 
PForecast.com,2,2(“San Diego”).  Essentially, PForecast.com,2,2  functions 

as an “Is-City” predicate.  This enables the classifier to learn 
to classify photos about cities in general, as opposed to having 
to learn individual rules that mention each city.2  
 One issue that arises with employing background 
knowledge for classifying tagged data is that tags may not 
precisely match the acquired knowledge.  In part, this arises 
because the tags are very informal. For instance, Flickr tags 
may not include spaces, even in long phrases, so a single tag 
might be “SanDiegoROCKS”.  To address this, we employ a 
tag cleaning process which rewrites each tag and heuristically 
inserts spaces to separate words. A tag t then matches 
background fact Ps,r,c(f) iff the words in f are a subsequence of 
the words in t.  This insures that verbose tags match the 
relevant background facts, while tags that only match part of a 
fact do not (they often have other meanings). So, for instance, 
the tag “IloveSanDiego” matches the city “San Diego”. 
However, the tag “Diego” does not match the city “San 
Diego”. For the purposes of this paper, we also refer to a 
predicate Ps,r,c matching a tag t, by which we mean that there 
exists a background fact Ps,r,c(f) such that f matches t. 
 Even though we create only unary predicates, as we noted 
earlier, there are potentially a large number of predicates 
created by WebGround.  In our example, all of the columns in 
Figure 1 become predicates, including the list of cities, the list 
of weather conditions, the temperatures, etc.  However, only a 
small minority of the columns in most tables are likely to be 
useful.   Because of the cost of testing the predicates during 
learning, WebGround eliminates predicates that appear 
irrelevant. Specifically, WebGround includes the following 
criteria that potential predicates must satisfy: 
• Each predicate must match more than k1 distinct tags within 

the positive training examples. In our experiments, k1 was 
set to 1, so that predicates have to convey more information 
than any single existing tag. 

• The ratio of positive training examples that match the 
predicate to negative examples matched by the predicate 
must be greater than k2. In our experiments, K2 was set to 1, 
so that predicates must be at least minimally informative 
with respect to the target concept. 

• Each predicate must have at least k3 members in the 
corresponding column. In our experiments k3 was set to 5, so 
that very short lists were eliminated from contention. 

In our experiments we integrated several different learners 
with WebGround, including Weka’s SMO SVM and J48 
decision tree implementations (Hall, et al., 2009), Naïve Bayes 
(our own implementation), and the Aleph first-order logic ILP 
system (Srinivasan, 2001). In the case of SVMs and decision 
trees, the WebGround knowledge is encoded as propositional 
features of the data objects. For instance, when classifying 
Flickr photos, the tags associated with each picture are 
encoded as binary features, and the matching predicates are 
also encoded as binary features.  That is, if a photo has a tag t, 
and Ps,r,c is a predicate that matches t, we add the tag Ps,r,c to 
the photo.  

                                                             
2 Note that our method only takes advantage of a portion of the background 
knowledge, because only unary predicates are created.  Later, we discuss 
creation of n-ary predicates. 

Figure 1:  A Simplified Weather Website 
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For Naïve Bayes, we use a slightly different scheme to avoid 
adding many potentially-similar features to the photos (which 
violates the conditional independence assumption underlying 
Naïve Bayes). For each tag that matches one or more 
predicates, we replace the tag with the most informative 
matching predicate as the feature.3 So each photo is associated 
with a “bag-of-tags” that includes the predicate names as part 
of this bag. Finally, for the ILP system we can encode the 
background knowledge directly as facts, as was described 
previously. 

VI. EXPERIMENTAL RESULS 
In this section, we report on experiments in classifying tagged 
NBA images and wildfire images, two very different domains.  
As noted above, we have previously built portals for both 
domains using a more manual, labor-intensive approach. The 
experiments here were conducted separately to evaluate 
WebGround’s performance under controlled conditions.   

A. NBA Experiments 
 Our first experiments focus on the NBA domain. To create 
our dataset of NBA photos we sampled Flickr using the search 
keywords “NBA” and “basketball”, as described previously, 
and then manually identified pictures with current NBA 
players and/or pictures of NBA games (the same criteria we 
use for our portal) to create a labeled dataset.4  This full data 
set contains 640 images, of which 204 were labeled as positive 
examples. For our classification task, we created 10 
experimental folds, each consisting of these 204 positive 
samples and 204 randomly sampled negative examples. For 
each fold, we then broke the data into a test set composed of a 
random sample of 40% of the fold’s data, setting aside the 
remaining 60% of the data for training. This results in 10 
distinct folds, each with a set of positive and negative 
examples for testing. We kept the number of positive and 
negative examples equal in both the training and test data to 
simplify thresholding (i.e., we assume equal priors).  
 We then used WebGround to collect background knowledge 
using the same search keywords “NBA” and “basketball”.  As 
described above, the system queried Google with these terms, 
and retrieved the URLs returned on the first page of results. 
WebGround extracted a large number of relevant tables from 
sites such as NBA.com and Sportsillustrated.com, including 
tables listing players, teams, as well as other information. 
 The system then classified the images as NBA photos (or 
not) using our four different classifiers (Naïve Bayes, decision 
trees, SVM, and Aleph). Figure 2 shows the average F-
measure of each classifier as the amount of training data 
increases from 10% to 60%. (Initially we set aside the full 

                                                             
3 Using the training data, we define a predicate’s “informativeness” as a 
combination of its ratio of positive to negative samples in the training data, 
and its size (i.e., the number of elements in the corresponding column), under 
the assumption that larger predicates are more likely to match unseen tag 
samples in test data. 
4 To keep the experiments simple, the learning task was designed to focus 
solely on analyzing user tags. We ignored the photo’s title and description. 
We also eliminated the tags “NBA” and “basketball” because they were used 
as the query terms. So in some respects this experimental task is harder than 
the actual application requires. (The same methodology was used for both the 
NBA and Wildfire dataset described later.) 

60% of training data for each fold such that when we train on 
20% of the data, for instance, we are including the 10% of 

training data it subsumes.) 
 As the graphs illustrate, in all cases, the additional 
background knowledge resulted in accuracy increases due to 
better generalization and faster learning (in that fewer 
examples were required to achieve any given level of 
accuracy). We note that with one exception (Naïve Bayes at 
60%) these F-measures are statistically significant at 95% 
confidence, using a two-tailed t-test.  
 Digging deeper into these results, we found that in fact, it is 
a boost in recall that results in the increased F-measure. In 
almost all cases, the differences in precision are not 
statistically significant, while the large boost in recall is. 
Therefore, the background knowledge allows the classifier to 
correctly identify more correct cases, without hindering its 
precision.  
 The key point is that the classifiers clearly make use of the 
background knowledge.  For example, analysis of the decision 
trees show that acquired predicates are often used near the root 
of the trees, indicating that they are often more informative 
than the individual tags. If we look at the specific predicates 
acquired by WebGround that were incorporated in the 
classifiers, we find that lists of NBA players, teams, and 
locations were among those selected by the learners, as one 
might expect.  As we noted earlier, the background 
knowledge appears particularly useful for helping the 
classifiers “recognize” infrequently occurring tags. For 
example, the tag “KobeBryant” occurred frequently enough in 
training so that the classifiers learned it was a strongly 
predictive of a positive instance. However, tags associated 
with less popular players, such as “Earl Watson” may not even 
show up in the training set.  Thus, the learned predicate that 
matches NBA player names is particularly helpful for 
classifying pictures of less popular players.  
 One potential disadvantage of our current approach is that, 
in many cases, the lists included spurious elements that were 
extracted by overly aggressive heuristics. For instance, one list 
of NBA teams included terms such as “NHL” and “NFL” in 

Figure 2: Experimental Results, NBA Domain  
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addition to the team names.  This may occur for several 
reasons. For example, WebGround may incorrectly cluster 
pages, incorporating too many pages into a cluster. In this 
case, the system may then create a single field from different 
HTML structures (e.g., two different lists) on multiple pages, 
and the result will be a noisy list.  Alternatively, the syntactic 
structure of the pages may not precisely reflect the semantics 
of the target domain.  For example, there may be a list of 
URLS for navigating the site that not only includes the NBA 
teams but also includes the terms “contact us” and “help”. 
 Interesting, the learning algorithms achieve significantly 
higher accuracy than people when classifying the photos based 
on the tags alone (an artificial task for people, so perhaps not 
surprising). We recruited three volunteers, all NBA fans, who 
were given all the training data (60%) for a given fold, and 
asked to manually classify the photos based on the tags alone.  
Table 1 shows the average recall, precision, and F1-mesaure 
for the three human volunteers, compared to the four 
classifiers using WebGround.  
 We found that the humans had low recall and high 
precision, because they focused on tagged photos that they are 
confident about. Interestingly, we computed the Kappa 
agreement statistics between all pairs of volunteers, and found 
only moderate-to-fair agreement between the pairs. This 
means that each human user was able to accurately classify 
only a subset of the photos, and these subsets did not have 
high overlap. By contrast, the machine learners have better 
overall coverage. 

Table 1: Comparison with Human Subjects on NBA domain 
 Recall Precision F1 

Humans 51.22% 85.6% 64.1% 
SVM with Webground 75.61% 80.0% 77.7% 
NaïveBayes with WebGround 89.76% 75.3% 81.8% 
Decision Tree with WebGround 70.85% 81.1% 75.4% 
Aleph ILP with WebGround 66.6% 82.5% 73.5% 

 

B. Wildfire Experiments 
Our experiments with the Wildfire domain were designed to 
validate our claim that WebGround can learn background 
knowledge to reduce the need for retraining when the 
environment changes. We used the same methodology to 
construct an initial data set, identifying Flickr pictures that 
showed wildfire incidents. This corpus contained 402 images, 
of which 100 were positive examples. Again, we broke the 
data into 10 folds, consisting of 60% of the positive samples 
(and an equal number of random negative samples), and 40% 
for testing. 
 In our evaluation, we trained the system, and then, to 
simulate the occurrence of new fires over time, we discarded 
the original testing data for each fold, and replaced it with a 
modified test set containing 20 new positive samples and 20 
random negative samples. To generate this special test set we 
identified some wildfire incidents (listed by the National 
Forest Service) that were not included in our initially gathered 
dataset of 402 images, due to the nature of our sampling 
process and the fact that not all fires receive equal attention 

from Flickr users. We then searched Flickr, specifically 
looking for pictures of these fires to create the special test set.   
 We invoked WebGround to collect background knowledge 
using the search keywords “wildfire” and “fire”, and used 
Yahoo as our search engine to find relevant sites (we used 
Yahoo rather than Google to demonstrate that the system is 
search engine agnostic). All three classifiers we tested did 
significantly better with the background knowledge extracted 
from these sites.  (Aleph was not tested due to time 
constraints.)  As with the NBA data, the best overall 
performance was achieved by Naïve Bayes.  Naïve Bayes 
alone had 62.5% recall and 69.7% precision, whereas with 
Webground the algorithm achieved 85.5% recall and 71.4% 
precision.  Thus, F1 improved from 65.58 to 77.52., an 18% 
boost. These results validate our claim that WebGround 
knowledge (which generalizes fire instances into predicate 
concepts) can produce results that are less brittle in the face of 
a changing environment. 
 Our review of the extracted concepts and the rules learned 
by the system shows a few concepts were particularly 
important.  For example, relevant concepts included a list of 
recent fires from Inciweb.org, a government sponsored site 
that publishes information about U.S. wildfire incidents, 
including a list of wildfires during the last three months. As 
with the NBA results, the extracted lists often included a 
variety of spurious terms, however this did not significantly 
impact our results.   

 Figure 3 shows an illustrative decision tree learned by 
the system.  The list of InciWeb fires is the root node in the 
tree. (Inciweb.org,5,4, refers to the 5th table, 4th column of the 
Inciweb.org site, which lists the names of fires.)  Other nodes 
in the tree refer to a table from CNN (which happens to include 
terms that are fire-related) and a table from Smokeybear (which 
has some forest-related terms).5 This tree also includes nodes 
that test for some basic tags, such as the tag “Nature”. 

                                                             
5 Note that once the system identifies which extracted concepts are included 
in a classifier, it is straightforward to build a Web agent that is specifically 
designed to monitor the site and update the data, as in (Lerman et al., 2003). 

Figure 3: Example of a Learned Decision Tree 
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VII. RELATED WORK AND DISCUSSION 
Our work focuses on monitoring folksonomy-oriented sites for 
tagged objects.  Previous work has primarily considered 
searching such sites, the difference being that in monitoring 
applications the query Q is fixed and the set of data objects Ө 
are (slowly) changing, whereas in searching, query Q changes 
on each invocation.  While the work on search is generally 
quite different from our focus, some researchers (e.g. Passant, 
2007, Specia & Motta, 2007) have considered how an 
ontology can be used to enrich or disambiguate tags, which is 
similar to our goal. However, as Limpens et al. (2009) point 
out, “the main limitation of such an approach is the limited 
coverage of currently available ontologies”. We are not aware 
of any research on enhancing folksomy search where 
background theories are extracted from web sites. 
 More closely related to WebGround are systems that harvest 
Web data for constructing knowledgebases or ontologies. 
Most of this research focuses on unstructured  text sources 
(e.g, Schoenmackers et al, 2010; Kozareva et al., 2008).  
Several researchers have focused on automously extracting 
ontological data from structured sites, such as Wikipedia (e.g., 
Suchanek et al, 2008)  However, as useful as it is, Wikipedia 
is not as comprehensive as the Web itself (e.g., Wikipedia 
does not currently include a list of recent wildfires.)   There 
has been comparatively little work on unsupervised extraction 
of relational data from semi-structured sites.  One reason, as 
we described, is that the harvested tables can be noisy, and 
much of the data is not suitable for inclusion in an ontology.  
Because WebGround has a concrete classification task, it has a 
clear measure of the utility of the harvested data. 
 Other task-oriented Web harvesting systems exist, of 
course, but many of these are customized to extract and 
process data using task-specific methods.  For instance, Ern et 
al. (2005) describe a crossword puzzle solver that extracts 
potential answers from web pages by looking specifically for 
words/terms of given length.  In contrast, WebGround’s 
extractor (which harvests arbitrary relational data) and 
classifiers are completely generic. 

 One direction for future work is to create more 
complex predicates from the harvested relational data. 
Currently, WebGround creates only unary predicates. In effect, 
although the system is harvesting tables, we are considering 
each column as an isolated list.  We could theoretically take 
advantage of the rows of the table to create binary, or even n-
ary predicates, so that relations could be used by the classifier. 
In the NBA domain, this would allow the creation of predicates 
capturing “teammate-of” or “plays for” relations.  To avoid 
overwhelming the classifier with too many additional 
predicates, we believe that more sophisticated predicate 
selection criteria could be developed. 

VIII. CONCLUSION 
A distinguishing feature of our work is that the knowledge 
acquisition process is both autonomous and driven by the 
classification problem.  This is both a strength and a weakness. 
On the positive side, the harvesting process is both highly 
directed and there is a clear goal – to improve the performance 
of the classifier.  On the other hand, this leads to potentially 
myopic behavior.  The system collects information that is 
relevant to the problem, but does not create a clean and 
complete domain theory. As a result, the acquired knowledge 
often contains spurious data items, as we pointed out.  

 Our work takes a step towards more autonomous 
classifier systems that can learn about a domain.  Specifically, 
we have shown in two domains that using rich features 
extracted by WebGround resulted in significant improvements 
in classification performance for all the classifiers we tested. 
We believe this approach is a promising direction for future 
research. 
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